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Results

Quantitative and differential modeling of metastasi s in ortho -
surgical models

To mimic clinical progression of spontaneous systemic metastatic disease, two
models involving orthotopic tumor implantation and surgical resection (ortho-surgical)
were employed. These included a xenograft breast model (LM2-4"°* cells implanted

into the mammary fat pad) and an isograft kidney model (RENCA-"“*

implanted into
the subcapsular kidney space) (38) (see Methods). Presurgical primary tumor (PT)
and postsurgical metastatic burden (MB) were tracked by bioluminescence (BL)

emission, expressed in photons/second (p/s) (Figure 2A).

In the breast model, simultaneous BL and gross tumor volume measurements
(caliper) were performed. The former only quantifies living cells whereas the latter
computes a total volume indifferently of its composition. Volume and BL emission
were significantly correlated (supplementary Figure 1B), as observed by others (46).
Determination of the signal corresponding to one cell was required in our modeling for
the value assigned to !, . Based on linear regression between BL emission and tumor
volume, we established that BL = 2.19"10° V + 7.89"10°, where BL is the
bioluminescence in p/s and V is the volume in mm?®. This relationship, evaluated at V
=10 mm® ! 10’ cells gives 1 cell | 10.08 p/s, which was approximated to 10 p/s.

Using this value gave reasonable fits to the PT growth data (supplementary Figure 2).

Validation and calibration of the mathematical model

We assessed the ability of the models to describe and predict the experimental
data of postsurgical MB dynamics. Several model designs were evaluated to define
the optimal structure and methodology that would allow accurate and reliable data
description. Specifically, for each in vivo experimental system, multiple structural

expressions and parametric dependences between the growth rate of the PT and MB
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	Supplementary Figure 1. In vitro fit and direct statistical analysis of the xenograft breast data (LM2-4luc+)

