P. G. Ciarlet, The Finite Element Method for Elliptic Problems, Classics in Applied Mathematics, SIAM, 2002.

G. Cohen, Higher-order numerical methods for transient wave equations, 2001.
URL : https://hal.archives-ouvertes.fr/hal-01166961

Y. Maday and A. Patera, Spectral element methods for the incompressible Navier-Stokes equations, State-ofthe-art surveys on computational mechanics, 1989.

D. Komatitsch and J. Tromp, Introduction to the spectral element method for three-dimensional seismic wave propagation, Geophysical Journal International, vol.139, issue.3, pp.806-822, 2002.
DOI : 10.1046/j.1365-246x.1999.00967.x

G. Derveaux, A. Chaigne, P. Joly, and E. Bécache, Time-domain simulation of a guitar: Model and method, The Journal of the Acoustical Society of America, vol.114, issue.6, pp.3368-3384, 2003.
DOI : 10.1121/1.1629302

URL : https://hal.archives-ouvertes.fr/hal-00989042

L. Krivodonova, An efficient local time-stepping scheme for solution of nonlinear conservation laws, Journal of Computational Physics, vol.229, issue.22, pp.8537-8551, 2010.
DOI : 10.1016/j.jcp.2010.07.037

A. Kanevsky, M. Carpenter, D. Gottlieb, and J. , Application of implicit???explicit high order Runge???Kutta methods to discontinuous-Galerkin schemes, Journal of Computational Physics, vol.225, issue.2, pp.1753-1781, 2007.
DOI : 10.1016/j.jcp.2007.02.021

M. Dumbser, M. Kser, and E. F. , -adaptivity, Geophysical Journal International, vol.171, issue.2, pp.695-717, 2007.
DOI : 10.1111/j.1365-246X.2007.03427.x

URL : https://hal.archives-ouvertes.fr/hal-00949831

F. Lorcher, G. Gassner, and C. D. , Munz A discontinuous Galerkin scheme based on a spacetime expansion. I. Inviscid compressible flow in one space dimension, Journal of Computational Physics, vol.32, issue.2, pp.175-199, 2007.

A. Taube, M. Dumbser, C. D. Munz, and R. , Schneider A high-order discontinuous Galerkin method with timeaccurate local time stepping for the Maxwell equations International Journal of Numerical Modelling, Electronic Networks, Devices And Fields, pp.77-103, 2009.

F. Collino, T. Fouquet, and P. Joly, A conservative space-time mesh refinement method for the 1-d wave equation. Part I: Construction, pp.197-221, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00989055

F. Collino, T. Fouquet, and P. Joly, A Conservative Space-time Mesh Refinement Method for the 1-D Wave Equation. Part II: Analysis, Numerische Mathematik, vol.95, issue.2, pp.223-251, 2003.
DOI : 10.1007/s00211-002-0447-4

URL : https://hal.archives-ouvertes.fr/hal-00989055

E. Becache, P. Joly, and J. Rodríguez, Space???time mesh refinement for elastodynamics. Numerical results, -5), pp.355-366, 2005.
DOI : 10.1016/j.cma.2004.02.023

URL : https://hal.archives-ouvertes.fr/hal-00983048

J. Diaz and M. Grote, Energy Conserving Explicit Local Time Stepping for Second-Order Wave Equations, SIAM Journal on Scientific Computing, vol.31, issue.3, pp.1985-2014, 2009.
DOI : 10.1137/070709414

URL : https://hal.archives-ouvertes.fr/inria-00193160

J. Chabassier and S. Imperiale, Introduction and study of fourth order theta schemes for linear wave equations, Journal of Computational and Applied Mathematics, vol.245, pp.194-212, 2012.
DOI : 10.1016/j.cam.2012.12.023

URL : https://hal.archives-ouvertes.fr/hal-01051803

T. Rylander, Stability of Explicit???Implicit Hybrid Time-Stepping Schemes for Maxwell's Equations, Journal of Computational Physics, vol.179, issue.2, pp.426-438, 2002.
DOI : 10.1006/jcph.2002.7063

V. Doleana, H. Fahs, L. Fezoui, and S. Lanteri, Locally implicit discontinuous Galerkin method for time domain electromagnetics, Journal of Computational Physics, vol.229, issue.2, pp.512-526, 2010.
DOI : 10.1016/j.jcp.2009.09.038

S. Descombes, S. Lanteri, and L. Moya, Locally Implicit Time Integration Strategies in a Discontinuous Galerkin Method for Maxwell???s Equations, Journal of Scientific Computing, vol.14, issue.3, pp.190-218, 2013.
DOI : 10.1007/s10915-012-9669-5

C. Baldassari, H. Barucq, H. Calandra, and J. Denel, Diaz Performance Analysis of a High-Order Discontinuous Galerkin Method, Application to the Reverse Time Migration Communications in Computational Physics, vol.11, issue.2, pp.660-673, 2012.

Y. Maday, C. Mavriplis, and A. T. Patera, Nonconforming mortar element methods -Application to spectral discretizations in Domain decomposition methods, SIAM Philadelphia, pp.392-418, 1989.

P. Joly and J. , Rodriguez Effective computational methods for wave propagation Chap 13 : Space time mesh refinement methods, 2008.

F. Brezzi, Fortin Mixed and Hybrid Finite Element Methods, 1991.

G. Cohen, P. Joly, J. E. Roberts, and N. Tordjman, Higher Order Triangular Finite Elements with Mass Lumping for the Wave Equation, SIAM Journal on Numerical Analysis, vol.38, issue.6, pp.2047-2078, 2001.
DOI : 10.1137/S0036142997329554

URL : https://hal.archives-ouvertes.fr/hal-01010373

M. J. Chin-joe-kong, W. A. Mulder, and M. , Van Veldhuizen, Higher-order triangular and tetrahedral finite elements with mass lumping for solving the wave equation, Journal of Engineering Mathematics, vol.35, issue.4, pp.405-426, 1999.
DOI : 10.1023/A:1004420829610

R. Dautray, J. L. Lions, C. Bardos, M. Cessenat, P. Lascaux et al., Mathematical analysis and numerical methods for science and technology, 2000.

J. Chabassier and S. Imperiale, Stability and dispersion analysis of improved time discretization for simply supported prestressed Timoshenko systems. Application to the stiff piano string, Wave Motion, vol.50, issue.3, pp.456-480, 2013.
DOI : 10.1016/j.wavemoti.2012.11.002

URL : https://hal.archives-ouvertes.fr/hal-00738233