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Abstract— In October 2012, the humanoid robot HRP-2
was presented during a live demonstration performing fine-
balanced dance movements with a human performer in front
of more than 1000 people. This success was possible by
the systematic use of operational-space inverse dynamics to
compute dynamically consistent movements following a motion
capture pattern demonstrated by a human choreographer. The
first goal of this article is to give an overview of the efficient
inverse-dynamics method used to generate the dance motion.
Behind the methodological description, the second and main
goal of the article is to present the robot dance as the first
successful real-size implementation of inverse dynamics for
humanoid-robot movement generation. This gives a proof of
concept of the interest of inverse dynamics, which is more
expressive than inverse kinematics and more computationally
tractable than model-predictive control. It is, in our opinion, the
topical method of choice for humanoid whole-body movement
generation. The real-size demonstration also gave us some
insight of nowadays methodological limits and the consequent
future needed developments.

I. INTRODUCTION

Motion generation for humanoid robots is a challenging

task involving coordination, control and stabilization of the

balance. Coordination problems are inherent to kinemati-

cally redundant robots like humanoids, which are highly

redundant systems, and control difficulties arise from the

complex humanoid tree-like structure as well as its unstable

vertical position. Inverse kinematics (IK) is the most used

technique to generate whole-body movements [8], but it

is poorly able to deal with dynamic constraints. This lack

of expressivity limits the movements that can be gener-

ated, such as multi-contact movements. However, it is well

understood, very easy to implement, and computationally

efficient: it can be considered as the current state of the

art. Operational-space inverse dynamics (OSID) can be

seen as an evolution of IK that can deal with most of these

limitations: the extended expressivity makes the formulation

of more complex constraints possible, and faster motions

as well as movements with important momentum changes

can be generated [13], [4], [5]. This comes with a higher

computational cost. Several teams are studying the related

methods but few robotic results have yet been demonstrated

on complete humanoids or other complex robots. Both IK

and OSID are instantaneous linearizations of the motion

problem, where the non-linearity coming from the temporal

evolution is neglected, leading to obvious limitations but

keeping a reasonable computational cost. Numerical optimal

Fig. 1: Humanoid robot HRP-2 and the hip-hop dancer

control (also called trajectory optimization or trajectory

filtering) [28], [15], is able to consider the full temporal

evolution of the system inside a non linear resolution scheme,

making the expressivity capabilities of the motion generator

much higher. When the optimal trajectory is updated in

real-time with sensor measurements, it is referred to as

model predictive control (MPC). Despite several recent

and promising results, the underlying computational cost for

whole-body motion generation currently makes this approach

unfeasible for a real-time implementation and generic solvers

tend to get stuck into local minima or to return trivial

solutions.

While IK has poor capabilities in terms of handling the

constraints due to the dynamics of the motion, MPC has

yet a prohibitive cost and lacks a sufficient understand-

ing to deploy beyond some expert-designed demonstrations.

Compared to these two solutions, OSID is a very mature

trade-off that provides an affordable computational cost as

well as good capabilities to handle the major constraints

of complex dynamic robots such as a humanoids. In this

article, we first present a global overview of the OSID

method that we developed during the last five years. This

overview covers a sound summary of several previous techni-

cal papers [24], [14], [6] where more implementation details

are given. Taken together, this methodology produces the

best OSID performances of the community, providing a fast,

real-time, hierarchical, inequality-prone solver. Beyond this

methodological introduction, the objective of this article is to



demonstrate the maturity of the OSID approach to generate

whole-body movements by reporting a complete proof of

concept realized with the humanoid robot HRP-2: we have

generated a 10-minute sequence of dance movements based

on human motion captured trajectories for a live demon-

stration (see Fig. 1). Such complex movements would have

been very difficult to generate with only IK, but it was fast

and efficient to generate them with OSID. We believe that

this proof of concept can convince that currently OSID has

only advantages with respect to IK and that it is time for it

to become the standard solution for complex robot motion

generation.

The article first briefly describes the theoretical solver used

to generate the movement. Then the technical generation of

the dance sequence emphasizing the most important experi-

mental results is described. Finally, the insights that our team

gained during the realization of this proof of concept are

discussed, as well as the consequences that are foreseen for

future research in whole-body motion generation.

II. DYNAMIC STACK OF TASKS

The idea of OSID is to define the motion to be ex-

ecuted by the robot in terms of reference movements in

properly-chosen operational spaces [12] (sometimes called

task spaces [26]), typically with a smaller dimension than

that of the robot state space. The forward link between the

state space and the operational space is given by the so-called

task function, whose image maps the operational space. This

function is chosen so that the movement is easier to express

in the operational space than in the state space. For example,

grasping a ball can be defined in the space of the distance

between the hand and the ball, while looking at an object can

be defined in the visual space. The stake of OSID is to back-

project the reference operational motion to the state space in

order to obtain a fully coordinated whole-body movement.

When several tasks have to be simultaneously performed,

the motion solver should take care of the possible conflicts

between them. On a humanoid robot, it is widely accepted

that enforcing a hierarchy between the various objectives

is the key to a safe behavior. For example, balance will

always be considered a top-priority objective, while other

objectives such as visibility and posture are accomplished

only if possible but without disturbing the balance (or the

possible manipulation or locomotion tasks). We refer to this

hierarchy of motion objectives as the stack of tasks (SoT).

In this section, we describe the key components of our

current implementation that are able to handle a hierarchy

of inequality objectives (Section II-B) while ensuring the

dynamic consistency (Section II-C) with real-time perfor-

mances (Section II-D).

A. Task Function Approach

Let C be the configuration space, M the task space,

TeM the tangent space of M at some point e, and U an

arbitrary control space linearly linked to the configuration

tangent space TqC. The definition of a task comprises three

components: the task function e : C → M, the reference

behavior given by a vector field of M, ė∗ ∈ TeM, and

the differential map G : U → TeM relating the task to the

control input. This map defines the direct relation between

the reference vector field and the control space as ė+δ = Gu,

where u is the control signal and δ is the task drift. The

control law u∗ meeting the reference behavior is obtained as

u∗ = G#(ė∗ + δ), where {.}# is any reflexive generalized

inverse. Among the possible inverses, the Moore-Penrose

pseudoinverse {.}+ is generally chosen, but other inverses

(such as weighted inverses) can also be used.

This generic formulation directly corresponds to IK, with

U = TqC, u = q̇, and G = ∂e
∂q

the task function tangent

application. The formulation also covers inverse dynamics

[12]: the reference behavior is the expected task acceleration

ë∗ ∈ TeM, and the control input is the joint torques vector

τ ∈ U . In this case, the approach consists in finding the

desired torque control input τ∗ that generates the reference

behavior ë∗, the joint acceleration q̈ being a side variable

that might not need to be explicitly computed [24].

B. Hierarchical Quadratic Program Solver

Finding the control that satisfies instantaneous constraints

is a quadratic problem (QP) whose least-norm solution is

given by the pseudoinverse. The redundancy of the robot with

respect to the task is the linear set of controls that do not

cause any change in the task spaces, and is given by the null-

space of the tangent application G. A hierarchy is typically

obtained by projecting the secondary objectives onto the null

spaces of the higher-priority objectives. Such a solution is

well-known for handling tasks written as equalities (typically,

reaching or pointing tasks).

But robot control also needs to handle tasks like joint an-

gle, speed and power limits, auto-collisions, obstacle avoid-

ance, singularity avoidance, balance constraints, or visibility

of landmarks in the field of view or behind occlusion. All

of these tasks are inequalities. Thus, inequalities represent

important tasks and need to be considered. Some solutions

regarding inequalities are potential functions [11], damping

functions [3] or clamping [23] for joint angle limits. The

problem with these methods is their inability to deal with

inequality constraints at arbitrary levels of the hierarchy.

Consider a generic linear system with n linear equalities

or inequalities of the form bi ≤ Cix ≤ bi, where x is the

optimization variable, Ci is a coefficient matrix, bi, bi are

the lower and upper bounds respectively, and i = 1, · · · , n
represents the priority in the hierarchy1. The lexicographic

order (i) ≺ (ii) ≺ (iii) ≺ · · · , where (i) has the highest

priority, is used to represent the hierarchy. When considering

only one objective, the optimum x satisfying at best the

objective is simply obtained by solving the associated QP.

For a hierarchy of multiple objectives, the system is written

as a hierarchical quadratic problem (HQP) so that if level i

has higher priority over level i + 1, then level i + 1 should

be fulfilled as close as possible but without interfering with

level i and the other higher priority levels.

1With this representation equalities are a special case when b
i
= bi and

single-sided inequalities are special cases when b
i
= −∞ or bi = +∞.



Our team has shown that the optimum of an HQP can be

defined by a cascade of QP’s [10]: at each level i of the

hiearchy, the QP gives the solution that satisfies at best level

i under the constraint to preserve the optimum found for the

i − 1 first levels. The method is more a formal definition

than an efficient algorithm: if the cascade can be computed

using iterative calls to a QP solver, such an implementation is

computationally inefficient. In [6], we have proposed an HQP

solver based on a variation of one classical QP resolution al-

gorithm, the primal active-set solver. First, a classical primal

active set algorithm finds the active inequality constraints

and turns them into equalities; then, a hierarchized complete

orthogonal decomposition is computed to find the optimum

of the partial equality problem. The two steps are iterated

until convergence.

C. Stack of Tasks using Inverse Dynamics

One of the major interests of OSID is to handle limited-

actuation systems. Humanoid robots (and other floating-

based systems) are a particular case of them due to their

partial actuation that is completed by contacting with the

environment. The configuration of a humanoid robot is

represented by generalized coordinates q = (xb, qa), where

xb represents the position and orientation of the robot free-

floating body, and qa represents the n actuated joints of the

robot. When the robot is in contact with the environment,

the dynamic equation of the system is

Mq̈ + b+ JT
c fc = ST τ (1)

where M is the generalized inertia matrix, b is the dynamic

drift vector including Coriolis, centrifugal and gravity forces,

fc is the vector of the 3D contact forces applied at the

contact points xc, Jc =
∂xc

∂q
is the Jacobian of those contact

points, τ is the actuated torque vector, and S = [0 I] is a

matrix selecting the actuated joints. Let f⊥

c and x⊥

c be the

vectors containing only the components of fc and xc normal

to the contact surface. The complementarity conditions to

avoid interpenetration (e.g. between the foot and the ground)

are ẍ⊥

c ≥ 0 and f⊥

c ≥ 0, with ẍ⊥

c f
⊥

c = 0. The case that

guarantees contact is:

f⊥

c ≥ 0 (2)

and ẍ⊥

c = 0, or equivalently (since ẋc = Jcq̇)

Jcq̈ + J̇cq̇ = 0. (3)

In this work we assumed that large friction coefficients are

present and, thus, only the normal force constraint is used

instead of more general friction cones. The generalization

to friction cones is straightforward [4] but computationally

expensive and should be used if the sliding components are

not negligible.

At the acceleration level needed for the dynamic control,

the operational constraints are expressed as a relation be-

tween the task acceleration and the joint acceleration:

ëi = J̇iq̇ + Jiq̈ (4)

where ei is the task function, and Ji =
∂ei
∂q

is the Jacobian

of the ith task. The OSID problem is reduced to finding

the variables (q̈, τ , fc) that are consistent with the dynamic

equations and that minimize the distance to the task refer-

ence. With the lexicographic order introduced in Sec. II-B,

the dynamic SoT based on the HQP is (1) ≺ (2) ≺ (3) ≺
(4-1) ≺ · · · ≺ (4-nt), where nt tasks of the form (4) have

been considered. More details can be found in [24] and the

implementation used is freely available2.

The computation of these variables in the optimization

solver has the advantage that forces are obtained in a straight-

forward way and no consistency verification or projection is

necessary to guarantee their feasibility. Explicit constraints

on any of the variables can then be formulated, and either

a torque-controlled or a position-controlled (by integrating

the acceleration) robot can be used. However, since the

computation cost of the HQP solver scales with the cube

of the number of variables, the explicit formulation requires

some care to preserve a good computational efficiency.

D. Decoupling Motion and Actuation

For a faster computation, the optimization variables can

be decoupled. In fact, the space given by (q̈, τ, fc) in the

previous HQP can be divided in three subspaces. The first

one is the motion space, where joint accelerations (q̈) can be

freely chosen and the corresponding forces (fc) and torques

(τ ) are accordingly set. The second is the actuation space,

where the acceleration is fixed and only forces can be freely

chosen, as forces and torques are related. The third space is

useless since motion variables can be theoretically chosen,

but the resulting forces are impractical.

To explicitly distinguish the actuation space from the

motion space, two decoupled spaces can be introduced. To

this end, an automatic formulation has been proposed in

[14]. This formulation states that instead of using the original

optimization variables, the bases of the two decoupled spaces

are used and the dynamic model as well as the tasks are

reformulated in terms of these decoupled variables. This

allows for a faster computation since the decoupled spaces

present a lower dimension than the original coupled vari-

ables. The reduction of the dimensionality while keeping the

capabilities of the dedicated HQP solver is numerically stable

making a fast resolution possible. Considering 30 actuated

joints and 6 free-floating degrees of freedom, with 4 to 8

contact points (which gives a total of 36 joint accelerations,

30 joint torques and 12 to 24 forces), the decoupled control

scheme for the whole robot dynamics with a complex set of

equality and inequality constraints using a 2.9 GHz desktop

computer (iCore 5 mono thread) takes around 4ms per

control cycle, achieving real time at 200 Hz. A similar

computer is available on-board HRP-2.

E. Balance of the Robot

OSID enforces actuation constraints, in particular contacts,

which can not be obtained with IK. However, this is not

2https://github.com/stack-of-tasks



equivalent to enforcing robot balance, as it can lead the robot

to fall (i.e. moving towards the ground without possibility to

prevent the descent) while keeping the feet flat in contact.

The balance constraint can only be comprehended through a

time horizon [27] and is therefore not a direct output of the

OSID. In this section, we quickly discuss the balance aspect

to offer an intuition of what OSID brings in addition to IK

and what it lacks of with respect to MPC.

Two aspects of the robot dynamics have to be considered

to maintain balance: the linear momentum variation given

by the Center of Mass (CoM) acceleration, and the angular

momentum variation. Their control is achieved through the

selection of proper contact forces. To keep the presentation

simple, we focus on the case of flat non-sliding contacts (e.g.

feet on a horizontal concrete floor). In that case, (2) projects

down to the constraint that the Zero Moment Point (ZMP)

should stay within the support polygon. The ZMP, neglecting

the vertical CoM with respect to the acceleration of gravity

g, is completely defined by [9]:

zx = cx −
1

ω2
c̈x −

σ̇y

mg
(5)

where z is the ZMP, c the CoM, σ the angular momentum,

ω =
√

g
h

the frequency of the equivalent inverted pendulum,

h the CoM altitude, and m the mass. A similar equation

holds for the y coordinate. This intuitively shows that the

ZMP is the actuator of two different phenomena: the CoM

acceleration c̈ and the variations of the angular momentum

σ̇. Since the OSID approach considers an instantaneous

linearization of the system dynamics, there is very little it can

do to avoid any overshoot due to a large CoM acceleration

c̈. Typically, if the robot has to quickly stop because the

CoM will leave the support polygon, it is in general too late

for the system to react. In that case, the only solution is

to perform a step in order to capture the CoM later with a

different support polygon [18]. To overcome this limitation,

the solution in this article is classical: to use a CoM walking

pattern generator (WPG) to preview the effect of future CoM

movements.

On the other hand, OSID successfully handles dynamic

overshoots due to large angular momentum variations σ̇,

which arise even with limited movements of the CoM; for

example when the arms move quickly or when the chest

bends. In these situations, an IK solver would not be able to

preserve robot balance, and the robot would tip over.

In conclusion, OSID is very suitable when a WPG is

available to handle the linear momentum. It then handles the

angular momentum and therefore guarantees robot balance

despite any large manipulation or postural motion, which

is more difficult to do with only IK. In the following

experiments, a WPG is used to handle the walking phase,

while the angular momentum due to large arm, flying foot

and chest movements is handled by the OSID.

III. FROM MOTION CAPTURE TO ROBOT MOTION

The dynamic SoT is a generic motion generator that can

be used to execute any robot motion defined as a sequence

of tasks. We have demonstrated its use for sitting in an

armchair [24], predicting human behavior [21] or walking

on uneven terrain [20]. We now propose to combine it with

a motion capture system to facilitate robot programming and

to quickly produce some complex and dynamic movements.

The objective of this application is to show the interest of

OSID for quickly generating complex whole-body move-

ments without writing dedicated methods or software. In the

selected movements, we mostly focused on the capability to

handle angular momentum.

A. Related work

Motion imitation is a special case of motion generation

where the specified goal configuration is obtained from

human motion. However, the kinematic and dynamic differ-

ences between humans and robots (structure, power, shape,

weight distribution) make the direct mapping from human

joint angles to robot joint angles impossible. In computer ani-

mation, retargeting motion to characters is a well-established

application, and methods like dynamic filters [28] have been

implemented. In robotics, several methods such as optimiza-

tion before imitation [25] and the Learning from Observation

(LFO) paradigm [17] have been proposed. In particular,

dance motions have been applied to small humanoid robots

like NAO and SONY’s SDR, but motion for light-weight

robots is easier than for human-sized robots due to the

design, light material, small size, low weight, and larger feet

sole to leg length relation of the former ones (see App. I for

more details).

For human-sized robots, a pioneering work, and the cur-

rent state of the art, has been done in [17] for a traditional

Japanese dance based on IK and the LFO. It allows the

interaction with a motion designer who can set up some

key-frame postures that stabilize and guide the numerical

optimization [16]. The method leads to impressive dynamic

movements, coming from its non-causal methodology. A

consequence is the difficulty to bring it to real time, for ex-

ample, when dynamic walking is needed. This non-causality

is needed to capture a prediction horizon, which makes the

achievement of particular dynamic movements possible, as

emphasized by the study of walking [1]: a new step must be

anticipated, implying an action on the past trajectory when

looking at the motion as a trajectory optimization problem.

Being OSID an instantaneous-linearization method, it

presents similar limitations, but for most movements it can be

applied in real-time without interactions with an expert dur-

ing the movement adaptation. Moreover, different constraints

such as joint limits and collision avoidance can be taken

into account, which is a significant advantage over existing

methods. As explained in the introduction, this application

shows that OSID is a very appealing trade-off between IK

and trajectory optimization, providing both the control of a

large range of movements and fast computations. However,

as described in section II-E, the method is not able to

independently generate movements that require a prediction

[27], such as a walking step, due to the instantaneous

linearization. Like for IK, this type of effects should be



Fig. 2: Position of the markers in the human body and calibration position

specifically integrated [18], which implies that the trigger of

a new step must be anticipated by an according prediction

filter [1] if OSID-based imitation should be implemented in

real time.

B. Data acquisition

The motion capture system provides the spatial trajectory

for each of the markers attached to the human body as

Fig. 2 shows. The markers are distributed on the human body

in a proper way to minimize the motion of the skin with

respect to the bones and to facilitate their temporal tracking.

These markers are manually associated to form a skeleton in

which every link (or bone) is characterized by its position

and orientation in a fixed frame. The robot configuration is

then adjusted to fit at best the measured body positions and

orientations. For each time frame, the geometry is retargeted

by solving a non-linear least-squares problem minimizing the

distance between the observations and the model [22].

The human motion was acquired using a Motion Analysis3

motion capture system. More than thirty minutes of move-

ments were captured for the preparation of the show. The

captured data for the most important motions in this work

is freely available4 along with the geometric retargeting and

the results of the dynamic SoT, explained in the following

section.

Joint trajectories obtained by geometrical retargeting are

not dynamically consistent with the robot model: nothing

guarantees that the robot is stably balanced, or that auto-

collision or joint limits are avoided. Moreover, some impor-

tant aspects of the original motion can be damaged since the

retargeting is obtained by a trade-off among the positions

of all the bodies. If a given body is more relevant than the

others, this importance is not reflected in the obtained motion

due to the differences between the two kinematic chains. For

example, if both hands are clamping in the demonstration,

their resulting positions are not likely to satisfy the clamp.

C. Dynamical retargeting

The SoT is a means to enforce dynamic consistency

while simultaneously editing specific aspects of the resulting

motion. It is possible to make the robot more precisely track

3Ten infrared cameras distributed around the experimentation zone and
calibrated by the Motion Analysis software with acquisition frequency of
200Hz and precision of 2 mm of nearly pure white noise and negligible
bias (http://www.motionanalysis.com/).

4http://projects.laas.fr/gepetto/novela/noveladb

Fig. 3: Dynamical retargeting scheme. Motion capture information passes to
the SoT through some tasks. Tasks for operational points can be manually
activated according to the choreography. The motion is finally executed in
a dynamic simulator or the real robot.

(a) Original demonstrated motion

(b) Dynamic inconsistency of the pure geometrical retargeting

(c) Executed motion

Fig. 4: Yoga motion: (a) original demonstration, (b) dynamic replay of the
kinematic retargeting: the motion is not stable, (c) robot execution after
adding the CoM and hands tasks.

some part of the demonstration by adding a task on specific

operational points to follow exactly the corresponding tra-

jectory of the human performer. This section describes the

generic retargeting and edition process, illustrated in Fig. 3.

From the demonstration, the contact points are extracted

by detecting clusters of static points in the feet trajecto-

ries. The first constraint of the SoT is to enforce dynamic

consistency of the corresponding contact model. This also

guarantees local balance: all the contact points remain stable.

Other robot constraints are added to enforce joint limits (or

collision avoidance). The least-priority task, often named

the posture task, tracks at best the reference configuration



−0.05 0 0.05 0.1

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

x axis [m]

y 
ax

is
 [m

]

 

 

Right foot

Left foot

Human waist

Retargeted waist

Robot waist
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waist is not directly constrained, but moves to meet CoM and posture
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the proper imitation.

coming from the geometrical retargeting. It ensures that the

global structure of the movement looks similar to the one

that has been demonstrated. However, since the kinematic

structures of the demonstrator and the robot are different,

the posture similarity (corresponding to a “least-norm” trade-

off) is sometimes not satisfactory. Typically, some important

aspects of each dance figure are given by the choreography

and should be accurately tracked. They can also be auto-

matically extracted by a frequency analysis [2], by studying

the motion model of the human [7] or, like in the following,

manually determined from the choreography specifications.

A set of tasks is added to track some particular aspects of the

demonstration. The tasks used in this work are technically

described in App. II. Similarly, new motion features that

are not in the original demonstration can be added with an

appropriate task.

D. A first example: the yoga figure

The standing lotus yoga motion is a typical example

of motion easily achieved with the proposed method. The

motion starts in a double-support position. Then, a sweeping

motion of both arms is executed while reaching a stable

single-support posture with the free foot close to the support

knee and both hands joined in front of the chest. The

movement is summarized in Fig. 4-(a).

The important features of the demonstrated motion are:

balance i.e. the position of the CoM at the balanced posi-

tion; the relative position of the hands and the chest; and

the position of the free foot. When directly executing the

geometrically-retargeted motion with a realistic (dynamic)

simulator, the robot does not reach a stable single-support

posture, as shown in Fig. 4-(b). Indeed, the mass distribution

of the human and the humanoid are very different: the legs

of the robot are much heavier. Thus, posture alone does

not ensure robot balance. Also, the hands are colliding with

each other and with the chest, and the flying foot is badly

positioned.

The SoT is used to enforce balance and the proper

placements for the hands and chest. Four tasks are added to
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Fig. 6: ZMP evolution during the yoga motion. (a) Motion of the ZMP from
double to single (left foot) support. The ZMP is restricted to a reduced part
of the foot, the resulting safety margin being used to improve the movement
robustness. (b) The ZMP saturates when there is a greatest acceleration of
the arms and during the transition from double to single support in the
yoga motion. The ZMP overshoot is mostly caused by angular momentum
variations.

respectively control the CoM, each hand and the free foot.

The three latter follow the demonstrated trajectories of the

corresponding human-body points. The CoM is more difficult

to observe on the human: it can be estimated by the waist

position or using an inertial model with the correct mass

distribution, but even if recovered, it cannot be guaranteed

that the human CoM generates stable motions in the robot

due to mass differences. Thus, an artificial pattern for the

CoM was imposed to enforce balance since CoM acceler-

ations might destabilize the robot and the approach cannot

predict those states. This pattern constrains the CoM to lie

inside the support polygon and is obtained by experimentally

determining the timings for the change in the supports of

the human performer. The SoT is finally composed of the

dynamics and contact constraints, a task tracking the CoM

pattern, tasks tracking the demonstrated right hand, left

hand and right foot, and a task tracking the geometrically-

retargeted configuration. The task that tracks the free foot

is only added when the foot leaves the ground. The robot

motion is shown in Fig. 4-(c).

Although an artificial CoM pattern is imposed, the re-

sulting motion is still globally similar to the demonstration.

Fig. 5 shows the trajectory of the waist for three cases: the



Fig. 7: Example of a motion in double support: fast arms motion

Fig. 8: Example of motion in single support: raising the left leg upwards

Fig. 9: Walking while arbitrarily moving the upper part of the body

human waist acquired by the motion capture system, the

waist retargeted with geometrical methods as described in

Section III-B and the robot waist obtained as output of the

SoT. Even if the waist is not explicitly controlled, the original

waist pattern is kept during the robot replication.

This movement perfectly illustrates the discussion of

Sec. II-E: the linear momentum of the robot is controlled

in a preview horizon using a WPG, whereas the angular

momentum is locally regulated by the OSID. Fig. 6 shows

the trajectory of the x component of the ZMP caused by

the linear (c− 1
ω2 c̈) and angular ( σ̇

mg
) momentum variations.

The ZMP saturates to enforce the contact constraint, which

mostly corresponds to a bounding of the angular components.

The WPG is not sufficient to enforce the balance due to

large arm movements. Using IK instead of OSID, the robot

would have tipped over and this motion would not have been

achieved.

E. Generation of the 10-minute dance movement

The generic task sequence can be applied to automatically

treat several sequences. From the choreography designed for

the robot, three typical execution patterns are detailed below.

1) Double-Support Motion: The simplest case consists

in moving the whole body fast while keeping both feet in

double support. Even though some parts of the body move

fast and might generate undesired angular moments, the

proposed method keeps the robot balance by automatically

compensating with the appropriate control. A task can be

added only when specifically requested by the choreographer,

but there is no task for the CoM. Fig. 7 shows an example

of this motion.

2) Single-Support Motion: A second type of motion con-

sists in moving the body while keeping a single leg in contact

with the ground. Like for the yoga, the CoM is driven by a

task following an artificial pattern for both reaching a stable

single-support position and going back to a double-support

stance. An example is shown in Fig. 8 where the robot first

moves its arms and then raises the left leg.

3) Dynamic Walk: Finally, we consider the case where

the movement implies to walk while moving the upper body

at the same time. As previously, the footprints (positions and

timings) are extracted from the demonstration by grouping

clusters of points on the foot trajectories. The footprints are

used to compute a walking trajectory for both the feet and the
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Fig. 10: Desired and obtained joint trajectories for the right and left
shoulders

CoM using a walking pattern generator [8]. The CoM task is

added as the top-priority task, while a task is added to drive

the position of the flying foot during each step. Eventually,

additional tasks are added to improve the hand or the head

placements depending on the choreography.

The hands produce an important momentum, especially

when the choreography imposes some movements that are

contrary to the natural walking motion. The momentum

is however corrected by the whole-body inverse-dynamics

scheme and does not disturb the balance. Fig. 9 shows an

example of this type of motion. Fig. 10 shows the captured

and experimental joint trajectories of two typical joints (at the

shoulders). It can be observed that the trajectories obtained

with the dynamic control follow closely the desired ones, but

the control also acts as a ‘low pass filter’. This attenuation

can be controlled by changing the gain of the task. If the

gain is larger, the joints move faster and the trajectory is

closer to the desired one.

F. Public Performance

The Festival of Shared Knowledge (Novela Festival) is

held in Toulouse every year since 2009 and is organized by

the city council. It constitutes one of the main cultural events

of the city and aims at presenting the research of the several

universities and laboratories of the city to the public. In this

framework, the ‘robotic dance’ was presented. Tests of the

whole dance sequence were initially made in the robotics

room at LAAS-CNRS assuming a completely flat ground.

We needed three men-month for 10 minutes of performance

while simultaneously producing some of the fundamental

developments. The final presentation of the robotic dance

took place at a concert hall in the city center of Toulouse:

the dancers were HRP-2 together with a hip-hop dancer. The

night of the main presentation, the motion was performed

without the security lifter and only using the power cable in

front of more than a thousand people who came to see the

show. Videos of the performance (summary and complete)

are available5.

5http://projects.laas.fr/gepetto/novela/videos

IV. DISCUSSION

The objective of this article is to show the maturity of

OSID for generating complex whole-body movements on

real robots by the first real-size proof of concept on a real

humanoid. Our specific OSID method is based on hierar-

chical quadratic programming with the best performances of

the state of the art, providing real-time resolution, inequality

enforcement and hierarchical resolution. The demonstrated

motion is based on motion capture, which is a very efficient

way to program the robot. But OSID can work in other

general ways, for example by specifying a task sequence

or by adjusting a movement coming from a motion planner

(some in-lab movements that show other advantages of the

proposed method such as multiple-contact movements, over

existing methods can be found in [24] and [6]). The context

of the dance was also a good opportunity to show the

capabilities of OSID to handle large angular momentum

variations and small linear momentum variations (the large

CoM movements being handled by a WPG).

The realization of a long demonstration is always the

opportunity to gain some insights from the integration

process. The first key point is the interest of OSID with

respect to the usual IK that we generally used for generating

humanoid movements. OSID straightforwardly handled the

dynamic variations coming from the artificial unbalanced

dance movements while IK typically involves many trial-and-

error iterations to choose the variation control parameters

(gains and others). We also found that motion capture is a

very efficient tool, already widely used in computer anima-

tion, but with less use in robotics. Motion capture provides

a very intuitive solution to shape a reference movement

that is particularly suitable for anthropomorphic structures.

Finally, from an applicative point of view, we noticed a

very high and not-so-expected enthusiasm of the public in

the robot spectacle, showing the big application of robotics

in the leisure industry, which is less documented than the

potentiality of robotics in manufacturing or services.

The pair WPG (to handle the horizon of linear momentum)

and OSID (to handle local variations of the dynamics) is

very efficient. The inability of OSID to handle alone the

balance of the robot due to its intrinsic instantaneous nature

is sometimes not clear for the users, but the use of motion

capture is a good opportunity to emphasize it. This aspect

would be handled by a whole-body MPC, which is not yet

available due to many scientific and technical aspects. For

the deployment of well identified movements, the proposed

method is satisfactory; but in order to reach total autonomy

of humanoid robots, coupling the WPG with the OSID is

problematic and MPC remains a desirable goal.

Finally, the HRP-2 platform has also shown some lim-

itations during the dance execution by its lack of sensor

feedback related to dynamic effects perception. For instance,

there is no skin to perceive the deformations of the me-

chanical structure or feel the transition from friction to

sliding at the contact point, no accelerometers to perceive

vibrations through the mechanical structure (assumed rigid,



but oscillating in practice), no joint torque sensors, and no

temperature probes to perceive if the motors are overheating.

The OSID control handled the effects of the dynamics in

feed-forward, while feedback dynamic control still remains

to be established. The only feedback loop was came from

the commercial “stabilizer” of HRP-2, which controls the

movements of the flexible parts of the feet by feedback of

the ankle force-torque sensors but in exchange imposes some

strong limitations. For instance, the bended knees observed

throughout the demonstration are a limitation of the stabilizer

and not of the OSID approach. The feedback control of

the the dynamic effects is, before going to MPC, the next

challenge of humanoid movements.
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APPENDIX I

BALANCE SIZE RATIO

On flat ground, it is possible to compare the intrinsic

balance of two humanoid robots of different size (e.g.

Nao and HRP-2) in single support by comparing the ratio

between their soil size and their legs length. The ZMP can

be computed as in (5) where the variation of the angular

momentum is usually omitted. Assuming a rectangular feet

of size (Sw, Sl), the robot is dynamically unbalanced if

(zx, zy) goes over the limits imposed by the dimensions of

the feet. If we assume a rigid transformation between the

waist and the CoM as in [8], and as (5) is characterized by

the height of the CoM, ignoring σ̇, then it is possible to

compare two humanoid robots by comparing their following

balance ratios:

bw =
Sw

l
, bl =

Sl

l
(6)

where l is the length of the robot legs at a straight position.

For example, bl = 0.53 for a small robot like NAO (Sl ≈
0.16m, l ≈ 0.3m), and bl = 0.34 for a human-sized robot

like H7 (Sl ≈ 0.23m, l ≈ 0.68m) which is similar in size

to HRP-2.

APPENDIX II

SOME CLASSICAL TASKS

We quickly describe the tasks used to drive the motion

generation. For each task, the reference behavior ë∗ can be

based on a proportional derivative (PD) control law as:

ë∗ = −Kpe−Kv ė (7)

with Kp > 0 and Kv = 2
√

Kp. This control law imposes an

exponential decay of the task tending to zero. Some examples

of tasks using this principle are:

1) Placement Task (6D): It is used for the position and

orientation of one body of the robot whose attached frame

is usually named an operational point. The first part of the

task defines the position error as the difference between the

current and the desired position: ep = x − x∗. The second

part defines the attitude error as eo = rθ ⊖ rθ∗, where rθ

is the angle-axis representation of the orientation and ⊖ is

a suitable difference group operator of SO(3). For instance,

if R and R∗ are the current and desired rotation matrices,

the error matrix can be defined as Re = R−1R∗ or Re =
(R∗)−1R and the attitude error is identified with the axis-

angle representation of Re.

2) CoM Task (3D): It comprises the error between the

current position of the CoM and the desired one, so that

ecom = c− c∗. The control might involve the three position

components or only some subset of them.

3) Posture Task: It follows the joints evolution and is

expressed as e = qk − q∗k, where qk is the vector containing

the angular values for the joints to be controlled, and q∗k is

the desired configuration for those joints [13].

If Kp in (7) is increased, PD tasks allow to achieve the target

faster but without time guarantees. To explicitly specify time

constraints, an interpolation task updated in every iteration

can be used [5]. For joint angle limits, constraints are

imposed by a set of linear inequalities on the joint angular

positions [24]. Using the Taylor expansion of the joint

position q, the task for joint limits is defined as [19]:

q ≤ q +∆T q̇ +
1

2
∆T 2q̈ ≤ q (8)

where q and q represent the lower and upper angular joint

limit values, respectively, and ∆T is the control loop period.

From (8), the inequality constraint for q̈ is straightforward. A

similar constraint can be used to enforce collision avoidance

or to keep an object within the field of view.
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