Geometry on the Utility Space

Abstract : We study the geometrical properties of the utility space (the space of expected utilities over a finite set of options), which is commonly used to model the preferences of an agent in a situation of uncertainty. We focus on the case where the model is neutral with respect to the available options, i.e. treats them, a priori, as being symmetrical from one another. Specifically, we prove that the only Riemannian metric that respects the geometrical properties and the natural symmetries of the utility space is the round metric. This canonical metric allows to define a uniform probability over the utility space and to naturally generalize the Impartial Culture to a model with expected utilities.
Type de document :
Communication dans un congrès
Fourth International Conference on Algorithmic Decision Theory, Sep 2015, Lexington, United States. pp.16, 2015, Fourth International Conference on Algorithmic Decision Theory. 〈10.1007/978-3-319-23114-3_12〉
Liste complète des métadonnées

Littérature citée [17 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01222871
Contributeur : Fabien Mathieu <>
Soumis le : vendredi 30 octobre 2015 - 19:06:22
Dernière modification le : vendredi 31 août 2018 - 09:12:06
Document(s) archivé(s) le : vendredi 28 avril 2017 - 05:58:16

Fichiers

geometry_on_the_utility_space....
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Collections

Relations

Citation

François Durand, Benoît Kloeckner, Fabien Mathieu, Ludovic Noirie. Geometry on the Utility Space. Fourth International Conference on Algorithmic Decision Theory, Sep 2015, Lexington, United States. pp.16, 2015, Fourth International Conference on Algorithmic Decision Theory. 〈10.1007/978-3-319-23114-3_12〉. 〈hal-01222871〉

Partager

Métriques

Consultations de la notice

265

Téléchargements de fichiers

133