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Abstract

The problem we consider in this article is motivated by data placement, in particular data replication
in distributed storage and retrieval systems. We are given a set V of v servers along with b files (data,
documents). Each file is replicated on exactly k servers. A placement consists in finding a family of b
subsets of V (representing the files) called blocks, each of size k. Each server has some probability to
fail and we want to find a placement which minimizes the variance of the number of available files. It
was conjectured that there always exists an optimal placement (with variance better than that of any
other placement for any value of the probability of failure). We show that the conjecture is true, if there
exists a well balanced design, that is a family of blocks, each of size k, such that each j-element subset
of V , 1 ≤ j ≤ k, belongs to the same or almost the same number of blocks (difference at most one). The
existence of well balanced designs is a difficult problem as it contains as a subproblem the existence of
Steiner systems. We completely solve the case k = 2 and give bounds and constructions for k = 3 and
some values of v and b.

1 Introduction

The problem we consider in this article is motivated by data placement in particular data replication in
distributed storage and retrieval systems (see [1, 2, 3, 13]). We use here the terminology of design and graph
theory (so the notations are somewhat different from the papers mentioned above). We are given a set V
of v servers along with b files (data, documents). Each file is replicated (placed) on exactly k servers. The
set of servers containing file i is therefore a subset of size k, which will be called a block and denoted Bi. A
placement consists of giving a family F of blocks Bi, 1 ≤ i ≤ b.

A server is available (on-line) with some probability δ and so unavailable (offline, failed) with the prob-
ability 1 − δ. The file i is said to be available if one of the servers containing it is available or equivalently
the file is unavailable if all the servers containing it are unavailable. In [2, 3, 13] the authors studied the
random variable Λ, the number of available files and they proved that the mean is E(Λ) = b(1− (1− δ)k);
so this mean is independent of the placement. However they proved that the variance of Λ depends on the
placement and showed (see [13]) that minimizing the variance corresponds to minimizing the polynomial

P (F , x) =
∑k
j=0 vjx

j where x = 1
1−δ (so x ≥ 1) and vj denotes the number of ordered pairs of blocks

intersecting in exactly j elements. So we can summarize our problem as follows:

∗Funded by ANR project Stint under reference ANR-13-BS02-0007 and ANR program “Investments for the Future” under
reference ANR-11-LABX-0031-01
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Problem: Let v, k, b be given positive integers and x be a real number, x ≥ 1; find a placement
that is a family F of b blocks, each of size k, on a set of v elements, which minimizes the poly-
nomial P (F , x) =

∑k
j=0 vjx

j, where vj denotes the number of ordered pairs of blocks intersecting
in exactly j elements. Such a placement will be called optimal for the value x.

In [13] the following conjecture is proposed:

Conjecture 1 For any v, k, b there exists a family F∗ which is optimal for all the values of x ≥ 1 (that is
P (F∗, x) ≤ P (F , x) for any F and any x ≥ 1).

Note that for x = 1, we have P (F , 1) = b(b− 1) as the value is the number of ordered pairs of blocks. So
we can restrict to the case x > 1. Note also that all the coefficients are even; indeed if B and B′ intersect in
j elements, then so do B′ and B. So, we could have considered only (non ordered) pairs of blocks, in which
case the polynomial will have been one half of that for ordered pairs.

Before stating our results let us give some examples. Let v = 4, b = 4, k = 2. We can consider different
placements:

• Family F1: B1 = B2 = B3 = B4 = {1, 2}; then P (F1, x) = 12x2

• Family F2: B1 = B2 = {1, 2}, B3 = B4 = {3, 4}; then P (F2, x) = 4x2 + 8

• Family F3: B1 = {1, 2}, B2 = {1, 3}, B3 = {1, 4}, B4 = {2, 3}; then P (F3, x) = 10x+ 2

• Family F4: B1 = {1, 2}, B2 = {2, 3}, B3 = {3, 4}, B4 = {1, 4}; then P (F4, x) = 8x+ 4.

For any x ≥ 1, P (F4, x) ≤ P (Fi, x) and it can be proven that indeed F4 is an optimal family for
any x ≥ 1. Note that depending on the values of x, F2 can be better (or worse) than F3. For x ≤ 3

2 ,
P (F2, x) ≤ P (F3, x) (for example for x = 5

4 , P (F2,
5
4 ) = 14 + 1

4 and P (F3,
5
4 ) = 14 + 1

2 ). But for x ≥ 3
2 ,

P (F2, x) ≥ P (F3, x) (for example for x = 2, P (F2, 2) = 24 and P (F3, 2) = 22).
Let now v = 5, b = 3, and k = 3. We claim that the family F∗ consisting of the three blocks {1, 2, 3},

{1, 2, 4}, and {3, 4, 5} is optimal for all x ≥ 1. We have P (F∗, x) = 2x2 +4x. Let F be any other family with
a polynomial P (F , x) = a3x

3 + a2x
2 + a1x+ a0. As v = 5, there can never be two disjoint blocks; so a0 = 0.

Furthermore we always have a3+a2+a1 = b(b−1) = 6. So P (F , x)−P (F∗, x) = (x−1)(a3x
2+(a3+a2−2)x).

If a3 ≥ 2 (that is at least one block repeated), then P (F , x)−P (F∗, x) > 0 for any x > 1. If a3 = 0, among
3 blocks necessarily two of them have a pair in common and so a2 ≥ 2 and P (F , x) − P (F∗, x) ≥ 0 for all
x ≥ 1.

2 Our results

For a family F let λFx1,...,xj
(or shortly λx1,...,xj

) denote the number of blocks of the family containing the
j-element subset {x1, . . . , xj}. A family F is j-balanced if the λx1,...,xj

are all equal or almost equal, that
is, if for any two j-element subsets {x1, . . . , xj} and {y1, . . . , yj}, |λx1,...,xj − λy1,...,yj | ≤ 1. Furthermore, a
family F is well balanced if it is j-balanced for 1 ≤ j ≤ k, where k is the size of the blocks.

We first show in Section 3 that P (F , x) = Σkj=1Σx1,...,xj
λ2x1,...,xj

(x − 1)j − bxk + b2. The form of the
above polynomial enables us to prove in Section 3 that a well balanced family is also optimal and therefore
Conjecture 1 is proven for the values of b, for which there exists a well balanced family.

The rest of the paper is devoted to the construction of well balanced families and so optimal ones. We
consider first the case k = 2 (Section 4) where such families are easy to construct for any b. The cases k > 2,
are much more complicated. Starting with k = 3, there are values of v and b for which there do not exist
well balanced families (Propositions 6 and 7 of Section 5). In section 6 we develop some tools based on
design theory in particular on Steiner Triple Systems (see the handbook [8] for details) to construct some
well balanced families.

Note that the problem of constructing well balanced families contains as a subproblem the question of
the existence of Steiner systems. Recall that a t-Steiner system (or (v, k, λ) t-design) is a family of blocks
such that each t-element subset appears in exactly λ blocks (see [8, 7]). In that case it is well-known that

also, for 1 ≤ j ≤ t each j-element subset appears in exactly λj blocks, where λj = λ
(v−j
t−j)

(k−j
t−j)

. So a t-design is
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j-balanced for all j, 1 ≤ j ≤ t. In particular, if t = k − 1 and the blocks are repeated the same or almost
the same number of times, then a k-Steiner System is also well balanced. As an example, a Steiner Triple
System (STS) consists of a family of triples, such that each pair of elements appears in exactly one triple. In
that case each element appears in v−1

2 triples and no triple is repeated. Therefore, an STS is a well balanced

family. It is well-known that an STS exists if and only if v ≡ 1 or 3 (mod 6) and then b = v(v−1)
6 . That

gives some sporadic values for which there exist well balanced families.
The results obtained in a preliminary version of this article ([4]) lead us to conjecture that the values

excluded by Propositions 6 and 7 are the only ones for which there do not exist well balanced families
(Conjecture 2). This conjecture has been recently proved to be true in [19]. We show in Section 6, that
well balanced families exist for any b for the values of v ≡ 3 (mod 6) for which there exist a large number
of disjoint Kirkman triple systems (see [15, 16]). We also develop various tools and use them to verify
Conjecture 2 for small values of v. More detailed constructions for v = 6t + 4 can be found in [4]. Finally,
in Section 7, we present some results for values of k > 3.

3 Properties of P (F , x) and well balanced families

Recall that λx1,...,xj
denotes the number of blocks of the family containing the j-element subset {x1, . . . , xj}.

By convention λ∅ = b. In this section, we express the polynomial P (F , x) in function of λx1,...,xj and deduce
the optimality of well balanced families.

Proposition 1 P (F , x) =
∑k
j=0

∑
x1,...,xj

λx1,...,xj
(λx1,...,xj

− 1)(x− 1)j.

Proof. P (F , x) =
∑k
h=0 vhx

h. Let us write P (F , x) =
∑k
j=0 µj(x − 1)j . Using xh = (x − 1 + 1)h =∑h

j=0

(
h
j

)
(x− 1)j , we get µj =

∑k
h=j

(
h
j

)
vh.

We claim that µj =
∑
x1,...,xj

λx1,...,xj (λx1,...,xj − 1).

Indeed λx1,...,xj (λx1,...,xj − 1) counts the number of ordered pairs of blocks which contain x1, . . . , xj . This
number is the sum of the ordered pairs of blocks which intersect in exactly the j elements x1, . . . , xj , plus
those intersecting in exactly j + 1 elements containing x1, . . . , xj , plus more generally those intersecting in
exactly in h elements containing x1, . . . , xj , where, j ≤ h ≤ k. When we sum on all the possible j-element
subsets to obtain

∑
x1,...,xj

λx1,...,xj
(λx1,...,xj

− 1) , we therefore get:

• the number of ordered pairs of blocks intersecting in exactly j elements, that is vj

• plus the number of ordered pairs of blocks intersecting in exactly j + 1 elements, which are counted(
j+1
j

)
times. Indeed, if the intersection of two blocks is {x1, . . . , xj+1} they are counted for all the

j-element subsets included in {x1, . . . , xj+1} which are in number
(
j+1
j

)
. Therefore we have

(
j+1
j

)
vj+1

such ordered pairs of blocks.

• plus more generally, for h, j ≤ h ≤ k we count
(
h
j

)
vh ordered pairs of blocks intersecting in exactly h

elements; indeed if the intersection of two blocks is {x1, . . . , xh} they are counted for all the j-element
subsets included in {x1, . . . , xh}, that is

(
h
j

)
times.

Therefore we get exactly µj which is the left-hand side of the equation of the claim.
�

We will use the following equality intensively∑
x1,...,xj

λx1,...,xj
= b

(
k

j

)
. (1)

It follows from the fact that a given block B is counted once in all the λx1,...,xj
such that {x1, . . . , xj} ⊂ B

and we have
(
k
j

)
such j-element subsets.

Theorem 1 P (F , x) =
∑k
j=1

∑
x1,...,xj

λ2x1,...,xj
(x− 1)j − bxk + b2.
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Proof. Using Equation 1, we get
∑k
j=0

∑
x1,...,xj

λx1,...,xj (x−1)j =
∑k
j=0 b

(
k
j

)
(x−1)j = b(x−1+1)k = bxk.

Replacing in the expression of P (F , x) given in Proposition 1 and using the fact that λ2∅ = b2 we obtain the
theorem. �

Proposition 2
∑
x1,...,xj

λ2x1,...,xj
is minimized when F is j-balanced.

Proof. As by Equation 1,
∑
x1,...,xj

λx1,...,xj
is the constant b

(
k
j

)
, then

∑
x1,...,xj

λ2x1,...,xj
is minimized when

all the λx1,...,xj are equal to r = b
(
k
j

)/(
v
j

)
if this value is an integer or are equal either to brc or dre otherwise.

This is equivalent to say that F is j-balanced. �

So, we can state our main theorem:

Theorem 2 If F∗ is well balanced, then F∗ is optimal, that is, P (F∗, x) ≤ P (F , x) for any F and any
x ≥ 1.

Proof. If F∗ is well balanced, then all the coefficients of the polynomial as expressed in the Theorem 1 are
minimized and so F∗ is optimal. �

Note that for a j-balanced family, the coefficient of (x−1)j in the polynomial P (F , x) is easy to compute.
Let b

(
k
j

)
= q
(
v
j

)
+ r, with r <

(
v
j

)
. Then we have r values of the λx1,...,xj equal to q + 1 and

(
v
j

)
− r equal to

q. So,
∑
x1,...,xj

λ2x1,...,xj
=
(
v
j

)
q2 + 2qr + r.

When b =
(
v
k

)
, the family consisting of all the possible k-element subsets is well balanced and will be

called a complete family. Furthermore, for any j, the values of the λx1,...,xj are all equal to λj =
(
v−j
k−j
)
.

By taking h copies we get also a well balanced family for b = h
(
v
k

)
.

Proposition 3 Let v and k be given and let b′ = h
(
v
k

)
+ b with b <

(
v
k

)
. Then, there exists a well balanced

family F ′ for b′ if and only if there exists a well balanced family F for b.

Proof. If we have a well balanced family F for some b ≤
(
v
k

)
we can construct a well balanced family F ′

for b′ = h
(
v
k

)
+ b by adding h complete families to F . Conversely if we have a well balanced family F ′ for

b′ = h
(
v
k

)
+ b, each k-element subset is repeated h or h+ 1 times and so by deleting h copies of each block,

we can deduce a well balanced family for b. �

The next proposition generalizes this idea to optimal families.

Proposition 4 Let v and k be given and let b′ = h
(
v
k

)
+ b with b ≤

(
v
k

)
. If there exists an optimal family for

b′, then there exists an optimal family for b and furthermore the optimal family for b′ consists of the optimal
family for b plus h complete families.

Proof. Suppose there exists an optimal family F ′ for b′. This family is necessarily k-balanced. Indeed
suppose it is not the case and let F ′′ be a k-balanced family (such a family can be easily constructed by
taking among the

(
v
k

)
subsets of size k, b of them repeated h + 1 times and the other

(
v
k

)
− b repeated h

times). But, the coefficient of xk in P (F ′′, x) will be strictly less than that of P (F ′, x) and so for x large
enough P (F ′′, x) < P (F ′, x) contradicting the optimality of F ′. So each k-element subset appears exactly h
or h+ 1 times.

Now, deleting h copies of each block we get a family F with b = b′ − h
(
v
k

)
blocks (none of them being

repeated). Note that if λx1,...,xj (resp. λ′x1,...,xj
) denotes the number of blocks of the family F (resp. F ′)

containing {x1, . . . , xj} we have: λ′x1,...,xj
= λx1,...,xj

+ h
(
v−j
k−j
)
. Consider another family G on b blocks and

let G′ be the family on b′ blocks obtained by adding h complete families to G. Let µx1,...,xj (resp. µ′x1,...,xj
)

denote the number of blocks of the family G (resp. G′) containing {x1, . . . , xj}. Then we have: µ′x1,...,xj
=

µx1,...,xj
+ h

(
v−j
k−j
)
. So, by Equation 1,

∑
x1,...,xj

λx1,...,xj
=
∑
x1,...,xj

µx1,...,xj
and

∑
x1,...,xj

λ′x1,...,xj
=∑

x1,...,xj
µ′x1,...,xj

, then
∑
x1,...,xj

λ2x1,...,xj
−
∑
x1,...,xj

µ2
x1,...,xj

=
∑
x1,...,xj

λ′2x1,...,xj
−
∑
x1,...,xj

µ′2x1,...,xj
and

thus P (G′, x) − P (F ′, x) = P (G, x) − P (F , x). Therefore if F is not optimal there exists a family G and
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a value x for which P (G, x) < P (F , x) and for this value of x we have P (G′, x) < P (F ′, x) and F ′ is not
optimal, a contradiction. �

We conjecture that the converse is true: that is starting from an optimal family F for some b ≤
(
v
k

)
,

the family F ′ obtained by adding h complete families is also optimal. This is true, if Conjecture 1 on the
existence of an optimal family for any v, b, k is true, as in that case any optimal family is k-balanced.

In what follows we will restrict ourselves to the case b ≤
(
v
k

)
. In fact the following proposition shows that

we only need to consider the values of b ≤ 1
2

(
v
k

)
.

Proposition 5 Let v and k be given. An optimal family F̄ for b̄ =
(
v
k

)
− b can be obtained from an optimal

family F for b ≤
(
v
k

)
by taking as blocks the k-element subsets which are not blocks of F .

Proof. Let F be an optimal family with b blocks and let F̄ be the family obtained from F by taking as blocks
the k-element subsets which are not blocks of F . F̄ has b̄ =

(
v
k

)
− b blocks. Furthermore, if λ̄x1,...,xj denotes

the number of blocks of the family F̄ containing {x1, . . . , xj}, we have λ̄x1,...,xj
=
(
v−j
k−j
)
−λx1,...,xj

. Consider

another family Ḡ with b̄ blocks and let G be the complementary family obtained from Ḡ by taking as blocks
the k-element subsets which are not blocks of Ḡ; G has b blocks. We also have: µ̄x1,...,xj =

(
v−j
k−j
)
− µx1,...,xj

and so we get P (Ḡ, x)−P (F̄ , x) = P (G, x)−P (F , x). Therefore if F is an optimal family, then F̄ is also an
optimal family. �

4 Case k = 2

Theorem 3 Let k = 2. Then for any v and b there exists a well balanced family.

Proof. In view of Proposition 4, we only need to consider the case b ≤
(
v
2

)
. In the case k = 2 the blocks are

pairs of elements and so the problem consists of designing a simple graph with v vertices and b edges that
is almost regular (the degree of a vertex x being d(x) = b 2bv c or d 2bv e). We distinguish two cases.

• Case v even. Let b = q v2 + r for 0 ≤ r < v
2 . It is well-known that, for v even, the edges of the complete

graph Kv can be partitioned into v−1 perfect matchings (set of v2 disjoint edges covering the vertices).
In that case the family consisting of q perfect matchings plus r edges of the (q+ 1)th perfect matching
forms the required family with b = q v2 +r edges, none of them repeated and with the degree of a vertex
equal to q or q + 1.

• Case v odd. Let b = qv+r for 0 ≤ r < v. It is also well-known that for v odd, the edges of the complete
graph Kv can be partitioned into v−1

2 hamiltonian cycles (cycles containing each vertex exactly once).
In that case consider the family consisting of q hamiltonian cycles plus the following r edges of the
(q + 1)th hamiltonian cycle: if the cycle is x0, x1, . . . , xi, . . . , xv−1 we take the r edges {x2j , x2j+1} for
0 ≤ j ≤ r− 1 (indices being taken modulo v). Then it consists of b = qv+ r edges none of them being
repeated; furthermore the degree of a vertex is 2q or 2q + 1 if r ≤ v−1

2 and 2q + 1 or 2q + 2 otherwise

and so in both cases d(x) = b 2bv c or d 2bv e. �

An algorithm to construct a well balanced family starting from any family.
In some cases related to practical applications, files and servers may be appearing or disappearing over

time, leaving the storage system in an unbalanced situation. Instead of starting over, it might be helpful to
design an algorithm which, starting from some family, constructs an optimal well balanced family. That is
in general a difficult problem; but for k = 2, we can easily design such a procedure.

Let v and b be given and k = 2 and consider any family F ; we will transform it into a well balanced
family with the same parameters. First let us construct a 2-balanced family. Suppose, F is not 2-balanced;
so there exist two edges (blocks) {x, y} and {z, t} with λx,y ≥ λz,t + 2. Then, delete from F one edge {x, y}
and add one edge {z, t}. Repeating this procedure we end up after a finite number of steps with a family
such that for any pair of edges {x, y} and {z, t} |λx,y−λz,t| ≤ 1, that is a 2-balanced family. Now let us show
how to construct a well balanced family from a 2-balanced one. Let F be a 2-balanced family with λx,y = λ
or λ− 1; suppose it is not 1-balanced; then there exist two vertices x and z with d(x) ≥ d(z) + 2. So there
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exists a vertex y 6= x, z with λx,y ≥ λz,y+1; otherwise d(x) =
∑
y 6=x,z λx,y+λx,z ≤

∑
y 6=x,z λz,y+λx,z = d(z)

a contradiction. Thus, λx,y = λ and λz,y = λ − 1. Deleting from F one edge {x, y} and adding one edge
{z, y}, we still get a 2-balanced family F ′ (λ′x,y = λ− 1 and λ′z,y = λ); but we have reduced the gap between
the degrees of x and z, as d′(x) = d(x)− 1 and d′(z) = d(z) + 1, while the other degrees remain unchanged.
Repeating this procedure we end up after a finite number of steps with a 1-balanced and 2-balanced, so a
well balanced family.

5 Case k = 3: Impossible configurations

For k = 3, there are values of v and b for which there do not exist well balanced families. In this section,
we identify several such sets of parameters. Then, in Section 6, we proceed towards the construction of well
balanced families for some other cases.

Consider for instance v = 4 and b = 2. There are 6 possible different pairs {x, y} and 6 pairs in the two
blocks, so if there exists a 2-balanced family, then λx,y = 1 for all {x, y}. But this is impossible as v− 1 = 3
and there cannot exist a partition of the edges of K4 into triples (non existence of a (4, 3, 1)-design). The
argument is generalized in the following proposition:

Proposition 6 Let k = 3, v be even and λ be odd. If λ v(v−1)2 − v
2 < 3b < λ v(v−1)2 + v

2 , then there does not
exist a 2-balanced family.

Proof. Note that the number of possible pairs is v(v−1)
2 . By Equation 1,

∑
x,y λx,y = 3b. We distinguish

three cases:

• 3b = λ v(v−1)2 . In that case a 2-balanced family will verify λx,y = λ for all pairs {x, y} and then we
should have λx = λ v−12 which is impossible as λ is odd and v is even (non existence of a (v, 3, λ)-design
for v even and λ odd).

• 3b < λ v(v−1)2 . In that case we cannot have all the λx,y ≥ λ. So we have one of the λx,y ≤ λ− 1 and if
the family is 2-balanced all the λx,y ≤ λ. But, then λx ≤ λ v−12 and as λ(v− 1) is odd, λx ≤ λ v−12 −

1
2 .

Using Equation 1, 3b =
∑
x λx ≤ λ v(v−1)2 − v

2 . Therefore, there does not exist a 2-balanced family if

λ v(v−1)2 − v
2 < 3b < λ v(v−1)2 .

• 3b > λ v(v−1)2 . In that case we cannot have all the λx,y ≤ λ. So we have one of the λx,y ≥ λ+ 1 and if
the family is 2-balanced all the λx,y ≥ λ. But, then λx ≥ λ v−12 and as λ(v− 1) is odd, λx ≥ λ v−12 + 1

2 .

Using Equation 1, 3b =
∑
x λx ≥ λ v(v−1)2 + v

2 . Therefore there does not exist a 2-balanced family if

λ v(v−1)2 < 3b < λv(v−1)2 + v
2 . �

For example, there do not exist well balanced families for k = 3 and {v = 6; b ≡ 5 (mod 10)}; {v =
8; b ≡ 9, 10, 27, 28, 29, 46, 47 (mod 56)}; {v = 10; b ≡ 14, 15, 16 (mod 30)}; {v = 12; b ≡ 21, 22, 23 (mod 44)};
{v = 16; b ≡ 38, 39, 40, 41, 42 (mod 80)}.

Proposition 7 Let k = 3. If λ v(v−1)6 is not an integer, then there does not exist a well balanced family for

b = bλ v(v−1)6 c and b′ = dλ v(v−1)6 e.

Proof. Let b = bλ v(v−1)6 c. If λ v(v−1)6 is not an integer, then 3b = λ v(v−1)2 − ε where ε = 1 or 2. By

Equation 1, 3b =
∑
x λx and so if F is 1-balanced λx = λ(v−1)

2 except for ε vertices for which the value is one
less. Similarly by Equation 1, 3b =

∑
x,y λx,y and so if F is 2-balanced λx,y = λ except for ε pairs appearing

λ− 1 times. But for an x0 with λx0 = λ(v−1)
2 − 1, we have λ(v− 1)− 2 pairs containing it (2 pairs per block

containing it) and so two pairs appear λ− 1 times. If ε = 2 we have another vertex x′0 with λx′0 = λ(v−1)
2 − 1

and altogether at least 3 pairs appear λ−1 times (only the pair {x0, x′0} can be counted twice). So, we have,
in all cases, at least ε+ 1 pairs appearing λ− 1 times, contradicting the fact that if F is 2-balanced only ε
pairs appear λ− 1 times.

The proof for b′ = dλ v(v−1)6 e is similar. In that case 3b′ = λ v(v−1)2 + ε where ε = 1 or 2. If F is

1-balanced λx = λ(v−1)
2 except for ε vertices for which the value is one more. If F is 2-balanced λx,y = λ
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except for ε pairs appearing λ+ 1 times. The argument applied for the vertex x0 (or both x0 and x′0), with

λx0 = λ(v−1)
2 + 1 gives at least ε+ 1 pairs appearing λ+ 1 times, a contradiction. �

Proposition 7 applies for v ≡ 5 (mod 6) and λ 6≡ 0 (mod 3); for example there do not exist well balanced
families for {v = 5; b ≡ 3, 4, 6, 7 (mod 10)} or {v = 11; b ≡ 18, 19, 36, 37 (mod 55)}. It applies also for v ≡ 2
(mod 6) and λ 6≡ 0 (mod 3); for λ odd it is included in Proposition 6, but for λ even we get new values of
non existence of well balanced families for {v = 8; b ≡ 18, 19, 37, 38 (mod 56)}.

6 Case k = 3: Construction of well balanced families

6.1 Summary of the results

In a preliminary version of this article ([4]) we developed some tools based on design theory in particular
on Steiner Triple Systems (see the handbook [8] for details) to construct some well balanced families. The
results obtained lead us to conjecture that the values excluded by Propositions 6 and 7 are the only ones for
which there do not exist well balanced families.

Conjecture 2 Let k = 3, there exists a well balanced family for the values of v and b different from those
excluded by Propositions 6 and 7.

In what follows we will construct well balanced families for b ≤
(
v
3

)
that have no repeated blocks; indeed

due to Proposition 3, it gives all the values of the form b+ h
(
v
3

)
.

Our results are only partial and rely on the existence of some unknown combinatorial objects. Recently
C. Colbourn informed us that a complete solution has been found (see [19]). It relies, among other results,
on a lemma (similar to what we did for the case k = 2 in the algorithmic part), which shows that given a
3-balanced (no repeated blocks) and 2-balanced family one can construct a well balanced family (that is also
1-balanced). In particular the lemma gives that, if v ≡ 1 or 3 (mod 6), then there exists a well balanced
family for any b (showing the validity of the conjecture for these values). We give in what follows a sketch
of our results as the tools used might be interesting and the ideas can motivate some research in this area.
In particular, we show how they can be applied to solve the conjecture for small values of v.

6.2 STS and KTS (Steiner Triple Systems and Kirkman Triple Systems)

Recall that a (v, 3, 1) Steiner Triple System (STS(v) shortly) is defined as a family of triples (blocks of size
3), such that every pair of elements belongs to exactly one block (λx,y = 1). So it is 2-balanced (and also
3-balanced); it is well-known that every vertex belongs to exactly v−1

2 blocks and therefore it is well balanced.

Such a design exists if and only if v ≡ 1 or 3 (mod 6). In that case b = v(v−1)
6 .

For example, for v = 7, the blocks of a (7, 3, 1)-design are Bi = {i, i + 1, i + 3}, 0 ≤ i ≤ 6, the numbers
being taken modulo 7. For v = 9, we provide below two STS(9). Those are actually disjoint Kirkman triple
systems (see the definition below).

Example 1 Two disjoint Kirkman Triple Systems for v = 9:

KA : {0, 7, 8} {0, 2, 5} {0, 3, 4} {0, 1, 6} KB : {1, 7, 8} {1, 3, 6} {1, 4, 5} {0, 1, 2}
{1, 2, 4} {1, 3, 8} {1, 5, 7} {2, 3, 7} {2, 3, 5} {2, 4, 8} {2, 6, 7} {3, 4, 7}
{3, 5, 6} {4, 6, 7} {2, 6, 8} {4, 5, 8} {0, 4, 6} {0, 5, 7} {0, 3, 8} {5, 6, 8}

Using directly Steiner Triple Systems provides some sporadic values of v and b for which there exist well
balanced families. We can get more values of b by considering more than one STS(v); but we have to ensure
that the family is 3-balanced (that is no block is repeated). Fortunately the answer can be obtained due to
the existence of families of disjoint STS(v) (see Theorem 4 below). Two STS(v) are said to be disjoint if
they have no triple in common. A set of v − 2 disjoint STS(v) is called a large set of disjoint STS(v) and
briefly denoted by LSTS(v). An LSTS(v) can be viewed as a partition of the complete family of

(
v
3

)
triples

into STS(v). In 1850, Cayley showed that there are only two disjoint STS(7) and so there is no LSTS(7).
The same year Kirkman showed that there exists an LSTS(9). Such an LSTS(9) is given by taking as first
STS(9) the KA of Example 1; the 6 other STS(9) are obtained from the first one by developing modulo 7
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(that is applying the automorphism fixing 7 and 8 and mapping i to i+ 1). For example, the second STS(9)
is obtained by adding 1 to each number (7 and 8 are invariant and 6 + 1 = 0 (mod 7)) and is given in
Example 1 as KB .

Due to the efforts of many authors the following theorem completely settles the existence of LSTS(v).

Theorem 4 ([15, 16, 18] (see [14] for a simple proof)) For v ≡ 1 or 3 (mod 6), v > 7, there exists an
LSTS(v).

Proposition 8 Let k = 3, and v ≡ 1 or 3 (mod 6), v > 7, then there exists a well balanced family for any

b multiple of v(v−1)
6 .

Proof. Let b = hv(v−1)6 ; b ≤
(
v
3

)
or equivalently, h ≤ v − 2. According to Theorem 4, there exists an

LSTS(v), formed of v − 2 disjoint STS(v). Then, the family consisting of any h disjoint STS(v), extracted
from the LSTS(v), is well balanced (with λx,y = h and λx = h v−12 ). For b ≥

(
v
3

)
the result follows by using

Proposition 3. �

When v = 6t + 3, there exist STS(v) which have a stronger property. The triples of the STS(v) can
themselves be partitioned into 3t+ 1 classes, called parallel classes, where a parallel class consists of 2t+ 1
blocks forming a partition of the v elements. Such an STS(v) is called resolvable or a Kirkman Triple System
(briefly KTS(v)). Example 1 gives two KTS(9) where the 4 parallel classes correspond to the 4 columns. It
is well-known that a KTS(v) exists for any v ≡ 3 (mod 6) [17].

In our next constructions, we will need families of disjoint STS(v) containing a KTS(v). The existence
of mixed STS/KTS structures has not been specifically studied in the literature and we propose some
conjectures about them (Conjectures 3, 4, and 5). However we can use results on families of disjoint KTS,
which have indeed been studied for a long time. A set of v − 2 disjoint KTS(v) is called a large set of
disjoint KTS(v) and briefly denoted by LKTS(v). As mentioned previously, Kirkman showed in 1850 that
an LKTS(9) exists and in 1974, Denniston found an LKTS(15). For v = 9, the LSTS(9) described above, is
in fact an LKTS(9) as the resolvabilty is conserved by automorphisms. An example of a KTS(15) denoted
KA is given in Example 2 in appendix. Developing modulo 13, that is, applying the automorphism fixing
13 and 14 and mapping i to i+ 1, we get 13 disjoint KTS(15) and so an LKTS(15). Example 2 shows also
KB = KA + 1.

Since then, many people have done some research on their existence. The most recent paper is [20] where
the reader can find other references. The results to date are summarized in the following theorem:

Theorem 5 [20, Theorems 1.1 and 3.3]

(a) For any integer r ∈ {1, 7, 11, 13, 17, 35, 53, 67, 91, 123} ∪ {22p+125q : p, q ≥ 1}, there exists an LKTS(v)
for v = 3a5br

∏s
i=1(2 · 13ni + 1)

∏t
j=1(2 · 7mj + 1), a, ni,mj ≥ 1 (1 ≤ i ≤ s, 1 ≤ j ≤ t), b, s, t ≥ 0 and

further a+ s+ t ≥ 2 if b ≥ 1 and r 6= 1.

(b) There exists an LKTS(3v) for v =
∏s
i=1(2qni

i + 1)
∏t
j=1(4mj − 1) where s + t ≥ 1, ni,mj ≥ 1,

qi ≡ 7 (mod 12) and qi is a prime power.

6.3 Case v = 6t+ 3

As written above, a full solution for that case has been given in [19]. However, we propose here a simple and
explicit construction which gives the answer for v = 6t+ 3, when there exist families of disjoint STS(v), at
least one of them being a KTS(v).

Proposition 9 Let k = 3 and v = 6t + 3. If there exists a family of 3t + 1 disjoint STS(v), one of them
being a KTS(v), then there exists a well balanced family for any b.

Proof. By Propositions 3 and 5, we can suppose b ≤ 1
2

(
v
3

)
= (2t+ 1)(3t+ 1) 6t+1

2 . Let the number of blocks
be b = q(2t + 1)(3t + 1) + r(2t + 1) + s with 0 ≤ q ≤ 3t; 0 ≤ r < 3t + 1; 0 ≤ s < 2t + 1. Then a well
balanced family for b consists of q disjoint STS(v) taken from the family avoiding the singled-out KTS(v),
plus r parallel classes of the KTS(v) and s triples of the (r + 1)th parallel class of this KTS(v). Indeed, by
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assumption on the family, all the triples are disjoint and so λx,y,z = 0 or 1. In each STS(v) a pair of elements
appears exactly once; so λx,y = q or q + 1 (exactly q if r = 0, s = 0). In each parallel class of the KTS(v),
each vertex appears exactly once; so λx = (3t+ 1)q+ r or (3t+ 1)q+ r+ 1 (exactly (3t+ 1)q+ r if s = 0). �

Proposition 9 can be applied when there exists an LKTS(v). There is no need to have a structure as
strong as this, but only 3t + 1 disjoint STS, with one of them being a KTS. We conjecture that such a
structure always exists for v = 6t+ 3; this conjecture will imply Conjecture 2 for v ≡ 3 (mod 6).

Conjecture 3 For v = 6t+ 3, there exist 3t+ 1 disjoint STS(v) one of them being a KTS(v).

The following stronger conjecture is also interesting.

Conjecture 4 For v = 6t+ 3, there exist an LSTS(v) such that one of its STS(v) is a KTS(v).

6.4 Constructions for v = 6t+ 4

In this section we present briefly construction techniques for the case v = 6t+ 4 (see [4] for more details and
other constructions). We illustrate them for v = 10 (Proposition 11) and for v = 16 (Proposition 12, proved
in the appendix) verifying Conjecture 2 for these values.

6.4.1 Splitting Process: Construction A

The following construction applies to a family containing a KTS(6t+ 3) and adds 2(2t+ 1) blocks to it. It
consists in “splitting” triples using an extra element.

Construction A. Consider a parallel class of a KTS(6t+ 3) and a new element α (= 6t+ 4) and replace
each of the 2t+ 1 triples {xj , yj , uj} of this class (1 ≤ j ≤ 2t+ 1) with the 3 triples {xj , yj , α}, {xj , uj , α},
and {yj , uj , α}.

For example take the KTS(9) KA. We replace the first class consisting of the 3 blocks {0, 7, 8}, {1, 2, 4},
{3, 5, 6} with the 9 blocks {0, 7, α}, {0, 8, α}, {7, 8, α}, {1, 2, α}, {1, 4, α}, {2, 4, α}, {3, 5, α}, {3, 6, α},
{5, 6, α}. We keep the other blocks of KA unchanged and add the triples of KB and so get a well bal-
anced family for v = 10 and b = 30, where each element appears exactly 9 times and each pair appears
exactly twice.

Proposition 10 Let k = 3 and v = 6t + 4. If there exist, for p ≤ 3t + 1, min(2p, 6t) disjoint STS(6t + 3)
one of them being a KTS(6t+ 3), then there exists a well balanced family for b2p = 2p(3t+ 2)(2t+ 1).

Proof. We apply Construction A for p classes of the KTS KA by adding a new element α. As the classes
are taken in the same KTS, α appears in 3p(2t + 1) disjoint triples; so λα = 3p(2t + 1). Furthermore each
pair {α, x} appears exactly 2p times; so λα,x = 2p. Then, for 1 ≤ p ≤ 3t, we add to this modified KA,
(2p − 1) STS(6t + 3), that exist by hypothesis. Any x 6= α appears 3t + 1 times in each of these STS and
3t+ 1 + p times in the modified KA; so, λx = 2p(3t+ 1) + p = 3p(2t+ 1). Each pair {x, y} (x 6= α, y 6= α)
appears exactly once in the modified KA and in each of the other 2p− 1 STS; so, λx,y = 2p. Therefore the
family constructed is well balanced. For p = 3t+ 1, the result was already known, as the family obtained is
a complete family with b6t+2 = (6t + 2)(3t + 2)(2t + 1) =

(
6t+4
3

)
. So only 2p = 6t disjoint STS(6t + 3) are

needed. �

6.4.2 Addition Process: Construction B

We can extend Proposition 10 to get well balanced families for more values of b either by deleting or adding
blocks. We just present here the addition process for the case v = 10 and v = 16. For the general case, we
need the existence of a second disjoint KTS(6t+ 3) KB and of other disjoint STS (which is ensured if there
exists an LKTS(v) which is the case for v = 9 and 15). We conjecture that such a structure always exists.

Conjecture 5 For v = 6t+ 3, there exists an LSTS(v) such that two of its STS(v) are KTS(v).
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We start with the well balanced family obtained in Construction A for b2p by using KA and by choosing
the other 2p− 1 STS(6t+ 3) to be different from KB and do repetitions of the following construction B.

Construction B. Choose a class C of KB , replace a block {x, y, z} with the block {x, y, α} and add
some of the other 2t blocks of this class. This construction can be combined with Construction A as long as
{x, y} is not a pair appearing in a modified block of KA (otherwise the block {x, y, α} will be repeated).

For v = 10, we use the two disjoint KTS(9) KA and KB given in Example 1. We do Construction A
with p classes of KA, getting a solution for b2p = 30p. We first add the blocks of the 4th class of KB . Now,
λα is 1 behind the rest. Then we replace the block {x1, y1, z1} = {0, 6, 4} of the first class C1 of KB with
{0, 6, α} and add this modified block and the two other blocks {1, 7, 8} and {2, 3, 5}. Now λα and λ4 are 1
behind the rest. Note that the pair {x1, y1} = {0, 6} appears in the block {0, 1, 6} of the 4th class of KA

(class CA). Therefore we will not modify this class in Construction A. We have z1 = 4, which appears in
the block {4, 5, 8} of the 4th class of KA. So, we choose x2 = 8 and replace the block {x2, y2, z2} = {8, 4, 2}
of the second class C2 of KB with {4, 8, α} and add the two other blocks {1, 3, 6} and {0, 5, 7}; here z2 = 2.
Note that the pair {x2, y2} = {4, 8} appears in the block {4, 5, 8} of the 4th class CA of KA. At that point
we have got well balanced families for 30p ≤ b ≤ 30p+ 9, for p = 0, 1, 2, 3. We cannot go further when p = 3.

For p < 3 we get a solution for b = 30p+ 10 as follows. We add to the solution obtained for b = 30p: the
blocks of the first class C1 of KB replacing the block {x1, y1, z1} = {0, 6, 4} by {0, 6, α}; the blocks of the
second class C2 of KB replacing the block {x2, y2, z2} = {8, 4, 2} by {4, 8, α}; the blocks of the third class
C3 of KB replacing the block {x3, y3, z3} = {2, 7, 6} by {2, 7, α} (here z3 = y1 = 6). Note that we are lucky,
as the pairs {x1, y1} = {0, 6}, {x2, y2} = {4, 8} appear in the unmodified 4th class CA of KA, but also the
pair {2, 7} (in the triple {2, 3, 7}). Furthermore, we add the block {z1, z2, z3} = {2, 4, 6}, which appears in
the STS KC = KA + 4, different from KA (it is obtained by adding 4 to {0, 2, 5}). That works as p < 3
and so we can choose the 2p STS(6t + 3) used in the proof of Proposition 10 to be KA and 2p − 1 STSs
different from KC . Note that all the λx are equal. Finally, we can add the blocks of the 4th class of KB to
get solutions b2p = 30p+ 11 ≤ b ≤ 30p+ 13 = b2p + 13.

Construction B has allowed us to cover values of b such that b2p = 30p ≤ b ≤ 30p + 13 = b2p + 13 with
p = 0, 1, 2, or 30p ≤ b ≤ 30p+ 9 with p = 3, and by complementation the values 30p′− 9 ≤ b ≤ 30p′ and, for
p′ ≥ 1, 30p′ − 13 ≤ b ≤ 30p′.

In summary, we get all the values except b ≡ 14, 15, 16 (mod 30), which we know by Proposition 6 no
well balanced family can exist and b = 17, 18, 19, 20 (and b = 100, 101, 102, 103), for which we will prove the
existence of a well balanced family later (Construction C).

6.4.3 Construction C

We take the blocks of an STS(v), v ≡ 1 or 3 (mod 6). We choose v+1
2 pairs {xi, yi} (0 ≤ i ≤ v−1

2 ) covering
all the elements. So, as v is odd, each element is covered once, except one x0 which is covered twice. Then,

we add the v+1
2 blocks {xi, yi, α}. Doing so we get a well balanced family for v + 1 and b = v(v−1)

6 + v+1
2 ;

indeed λx = v+1
2 except λx0

= v+1
2 + 1 and λx,y = 1 except for the v+1

2 chosen pairs and {x0, α} for which
the value is 2. Then we can continue adding h disjoint blocks (1 ≤ h ≤ v

3 ) as long as they are not in the
STS(v), do not contain x0 and do not contain one of the pairs for which the value λx,y = 2. We can continue
the process as long as we keep the balance.

More generally, when v + 1 = 6t+ 4, we apply Construction C starting with some STS(v) and choosing
the v+1

2 = 3t + 2 covering pairs in a small number of classes (only 2 if possible) of another KTS(6t + 3).
Then we can add the h blocks of a non used class replacing the block {x0, y0, z0} containing the x0 which is
repeated twice by the block {α, y0, z0}. We get all the values of b such that (3t+ 1)(2t+ 1) + 3t+ 2 ≤ b ≤
(3t + 1)(2t + 1) + 5t + 3 = (6t + 4)(t + 1). Note that we have, for b = (6t + 4)(t + 1): λx = 3(t + 1) and
λx,y = 1 or 2. We can also mix Construction C with Construction A as long as the pairs containing α are
not in a modified class of KA. We can then continue adding a new class with a block modified and so on
like we did in Construction B.

Let us now show how Construction C gives the missing values b ∈ {17, 18, 19, 20} for v = 10.
We choose as first STS(9) KA and pick the pairs in the KTS KB given in Example 1. We add the triples

{1, 8, α}, {3, 5, α}, {0, 6, α}, obtained with pairs appearing in the first class of KB . We also add {2, 4, α},
{0, 7, α} using pairs appearing in the second class of KB . We get a well balanced family for b = 12 + 5 = 17.
Here λx = 5 except λ0 = 6, as 0 appears in two added blocks; λx,y = 1 except for the 6 pairs {1, 8}, {3, 5},
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{0, 6}, {2, 4}, {0, 7}, and {0, α}. Then, we can add the 2 blocks of the 3rd class {1, 4, 5} and {2, 6, 7} and
the block {3, 8, α}. Therefore we get the missing values 17 ≤ b ≤ 20. Note that for b = 20, λx = 6 and
λx,y = 1 or 2, as a pair appears in exactly one block of KB .

So, we have completely solved the case v = 10, as summarized in the following proposition:

Proposition 11 For v = 10 conjecture 2 is verified; that is there exists a well balanced family for all b,
except b ≡ 14, 15, 16 (mod 30) for which such a family cannot exist.

We also completely solve the case v = 16. The proof of Proposition 12 is given in Appendix 1.

Proposition 12 For v = 16, Conjecture 2 is verified; that is there exists a well balanced family for all b
except b ≡ 38, 39, 40, 41, 42 (mod 80) for which such a family cannot exist.

6.5 Other tools

We can also obtain results for other congruences of v.

Proposition 13 Let k = 3 and v = 6t > 6 (resp. v = 6t + 2). There exists a well balanced family for
b = ht(6t− 2) (resp. b = ht(6t+ 2)).

Proof. Take, as v + 1 ≡ 1 or 3 (mod 6), the blocks of a set of h disjoint STS(v + 1) and delete all the hv2
blocks containing the element v + 1. �

We can extend this construction to other values. As an example, consider v = 8 and b = 12. We start
with the solution obtained before for b = 8 by deleting the blocks containing element 8 in KTS(9) KA of
Example 1. Note that λx,y = 1 except for the 4 pairs {0, 7}, {1, 3}, {2, 6}, {4, 5} which are missing. We can
add now 4 blocks taken from another KTS(9), for example KB of Example 1, containing these pairs; namely
the blocks {0, 5, 7}, {1, 3, 6}, {2, 6, 7}, {1, 4, 5}.

We can also use, instead of triple systems, packing or covering with triples. For example, it is known
(see [9]), that when v ≡ 5 (mod 6), Kv −H, where H is a 2-regular graph can be decomposed into triples
when the number of edges is a multiple of 3. In particular, if we take a cycle H = C3h+1, 3h + 1 ≤ v, we

get a well balanced family for b = v(v−1)−6h−2
6 . We get more values by taking decompositions of λKv −H,

where H is a 2-regular graph (see [5, 6], but one needs to check that there are no repeated triples). Similarly
(see [10]), for v ≡ 5 (mod 6), Kv + H, where H is a 2-regular graph can be decomposed into triples if the
number of edges is a multiple of 3. In particular if we take H = C3h′+2, 3h′ + 2 ≤ v we get a well balanced

family for b = v(v−1)+6h′+4
6 . For example, for v = 11 we get a well balanced family for b = 15, 16, 17 and

b = 20, 21, 22.

Proposition 14 Let k = 3 and v = 6t + 5. Then there exists a well balanced family for b = v(v−1)−6h−2
6

with 3h+ 1 ≤ v and b = v(v−1)+6h′+4
6 with 3h′ + 2 ≤ v.

Similarly, when v ≡ 0, 2 (mod 6), Kv minus a perfect matching can be decomposed into triples (delete

one vertex from an STS(v+1)) and so we get a well balanced family for b = v(v−2)
6 and when v ≡ 0 (mod 6),

Kv plus a perfect matching can be decomposed into triples and so we get a well balanced family for b = v2

6 .

6.6 Small values of v

We can apply the preceding techniques and other tools to deal with the small values of v, verifying Conjec-
ture 2 for v ≤ 11. We give the proofs and technical details in Appendix 2.

Proposition 15 Let k = 3, for v ≤ 11, there exists a well balanced family for the values of v and b different
from that excluded by Propositions 6 and 7. In particular for v = 7, 9 there exists a well balanced family for
any b.
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7 Case k > 3

We can generalize Proposition 6 in different ways. The first one concerns the non existence of 2-balanced
families.

Proposition 16 Let λ(v − 1) = q(k − 1) + r with 0 < r ≤ k − 2. If λv(v − 1) − rv < k(k − 1)b <
λv(v − 1) + (k − 1− r)v, then there does not exist a 2-balanced family.

Proof. Note that the number of possible pairs is v(v−1)
2 and that a block contains k(k−1)

2 pairs. We distinguish
3 cases.

• k(k − 1)b = λv(v − 1). In that case a 2-balanced family will verify λx,y = λ for all pairs {x, y} and
then we should have λx = λ v−1k−1 which is impossible as r 6= 0 (non existence of a (v, k, λ)-design).

• k(k−1)b < λv(v−1). In that case, we cannot have all the λx,y ≥ λ. So we have one of the λx,y ≤ λ−1
and if the family is 2-balanced all the λx,y ≤ λ. But, then λx ≤ λ v−1k−1 and according to the definition

of r, λx ≤ λ v−1k−1 −
r

k−1 . Using Equation 1, kb =
∑
x λx ≤ λ v(v−1)k−1 −

rv
k−1 . Therefore there does not

exist a 2-balanced family if λv(v − 1)− rv < k(k − 1)b < λv(v − 1).

• The case λv(v− 1) < k(k− 1)b < λv(v− 1) + (k− 1− r)v can be handled exactly as the preceding one.
�

We can also generalize Proposition 6 to ensure the non existence of p-balanced families p > 2. We give
the result for p = 3.

Proposition 17 Let λ3(v − 2) = q(k − 2) + r with 0 < r ≤ k − 3. If λ3v(v − 1)(v − 2) − rv(v − 1) <
k(k − 1)(k − 2)b < λ3v(v − 1)(v − 2) + (k − 2− r)v(v − 1), then there does not exist a 3-balanced family.

Proof. Note that the number of possible triples is v(v−1)(v−2)
6 and that a block contains k(k−1)(k−2)

6 triples.
We distinguish 3 cases.

• k(k − 1)(k − 2)b = λ3v(v − 1)(v − 2). In that case a 3-balanced family will verify λx,y,z = λ3 for all
triples {x, y, z} and then we should have λx,y = λ3

v−2
k−2 which is impossible as r 6= 0 (non existence of

a (v, k, λ3) 3-design).

• k(k − 1)(k − 2)b < λ3v(v − 1)(v − 2). In that case we cannot have all the λx,y,z ≥ λ3. So we have
one of the λx,y,z ≤ λ3 − 1 and if the family is 3-balanced all the λx,y,z ≤ λ3. But, then λx,y ≤ λ3

v−2
k−2

and according to the definition of r, λx,y ≤ λ3
v−2
k−2 −

r
k−2 . Using Equation 1, k(k−1)

2 b =
∑
xy λx,y ≤

λ3
v(v−1)(v−2)

2(k−2) − rv(v−1)
2(k−2) . Therefore there does not exist a 3-balanced family if λ3v(v−1)(v−2)−rv(v−

1) < k(k − 1)(k − 2)b < λ3v(v − 1)(v − 2).

• The case λ3v(v− 1)(v− 2) < k(k− 1)(k− 2)b < λ3v(v− 1)(v− 2) + (k− 2− r)v(v− 1) can be handled
exactly as the preceding one.

�

We could also get a similar result for a 3-balanced family by using the values of λx but the result is in
fact a consequence of Propositions 16 and 17.

Consider for example k = 4 and v = 9. By Proposition 16, with λ = 1 there does not exist a 2-balanced
family for b = 5, 6 and with λ = 2 for b = 12, 13; and more generally for b ≡ 5, 6, 12, 13 (mod 18). By
Proposition 17, with λ3 = 1 there does no exist a 3-balanced family for b = 19, 20, 21, 22, 23 and with λ3 = 3
for b = 61, 62, 63, 64, 65 and more generally for b ≡ 19, 20, 21, 22, 23 (mod 42).

On the constructive side we have seen in Section 2 that a (v, k, λ)(k− 1)-design is a well balanced family.
Recall that a (v, k, λ) t-design is a family of blocks of size k such that each t-element subset appears in exactly
λ blocks. When t = k − 1 and λ = 1 a (v, k, 1) (k − 1)-design is also called a Steiner System S(k − 1, k, n).
For k = 3 we have the classical STS(v).

For k = 4 it has been proved that a (v, 4, 1) 3-design also called a quadruple system SQS(v) exists if and
only if v ≡ 2 or 4 (mod 6) [12]. For larger values of λ see for example Table 4.37 on page 82 of [8]. For k ≥ 5
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only few Steiner systems are known (see Chapter II.5 of [8]), such as the (12, 6, 1) 5-design and the (11, 5, 1)
4-design obtained by deleting an element, the (24, 6, 1) 5-design and the (23, 5, 1) 4-design.

Similar techniques as those used for k = 3 can be used for small values of v to obtain well balanced
families for k = 4. We can also use resolvable designs. For k = 4 and v ≡ 4 or 8 (mod 12), there exist
resolvable Kirkman Quadruple Systems, that is (v, 4, 1) 3-design such that the quadruples can themselves be

partitioned into (v−1)(v−2)
6 parallel classes, each consisting of v4 blocks forming a partition of the v elements.

We can also use disjoint SQS(v). Two SQS(v) are said to be disjoint if they have no quadruple in common.
Similarly to STS(v), a set of v−3 disjoint SQS(v) is called a large set of disjoint SQS(v) and briefly denoted
by LSQS(v). Unfortunately no such system has been shown to exist. However in [11] v−5 disjoint quadruple
systems have been exhibited when v = 5 · 2p.

Finally, it will be nice to prove a lemma analogous to that used for k = 2 in Section 4 and k = 3 (see [19]),
showing that one can modify a 4 and 3 and 2-balanced family to obtain a well balanced family and more
generally that one can modify a 4 and 3-balanced family to obtain a well balanced family.

8 Conclusion

In this article we attack a conjecture (Conjecture 1) coming from a data placement problem. In this process,
we introduce a new class of combinatorial objects, called well balanced families, which generalize classical
designs. We give constructions of well balanced families of triples and propose Conjecture 2 which has been
recently proved to be true. In some cases direct constructions will follow from some conjectures on disjoint
Steiner Triple Systems which are of interest in themselves (Conjectures 3, 4, 5) and we hope that this paper
will motivate new research in design theory.
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of advice which helped to improve the paper. We thank also the editor J. Dinitz for his handling of the
article jointly with [19].
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Appendix 1: case v = 16 (proof of Proposition 12)

For v = 16 we will use the two disjoint KTS(15) of Example 2, denoted respectively KA and KB . Recall
that an LKTS(15) is obtained by developing KA modulo 13, that is, applying the automorphism fixing 13
and 14 and mapping i to i+ 1, therefore getting 13 disjoint KTS(15).

Example 2 Two disjoint Kirkman Triple Systems for v = 15:

KA : {0, 1, 9} {0, 2, 7} {0, 3, 11} {0, 4, 6} {0, 5, 8} {0, 10, 12} {1, 4, 5}
{2, 4, 12} {3, 4, 8} {1, 7, 12} {1, 8, 11} {1, 2, 3} {3, 5, 9} {2, 6, 11}
{5, 10, 11} {5, 6, 12} {6, 8, 10} {2, 9, 10} {6, 7, 9} {4, 7, 11} {3, 7, 10}
{7, 8, 13} {9, 11, 13} {2, 5, 13} {3, 12, 13} {4, 10, 13} {1, 6, 13} {8, 9, 12}
{3, 6, 14} {1, 10, 14} {4, 9, 14} {5, 7, 14} {11, 12, 14} {2, 8, 14} {0, 13, 14}

KB : {1, 2, 10} {1, 3, 8} {1, 4, 12} {1, 5, 7} {1, 6, 9} {0, 1, 11} {2, 5, 6}
{0, 3, 5} {4, 5, 9} {0, 2, 8} {2, 9, 12} {2, 3, 4} {4, 6, 10} {3, 7, 12}
{6, 11, 12} {0, 6, 7} {7, 9, 11} {3, 10, 11} {7, 8, 10} {5, 8, 12} {4, 8, 11}
{8, 9, 13} {10, 12, 13} {3, 6, 13} {0, 4, 13} {5, 11, 13} {2, 7, 13} {0, 9, 10}
{4, 7, 14} {2, 11, 14} {5, 10, 14} {6, 8, 14} {0, 12, 14} {3, 9, 14} {1, 13, 14}
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Construction B. We start with the solution obtained for b = 80p in the proof of Proposition 10 by
using Construction A with the new element α. We suppose here that the 7th class of KA is not modified
in construction A. We first add the blocks of the third class of KB . Now λα is 1 behind the rest. Then we
apply Construction B, by replacing the block {8, 9, 13} of the first class of KB by {8, 9, α} (x1 = 8, y1 = 9,
and z1 = 13) and adding the other blocks of this class. Now λα and λ13 are 1 behind the rest. Then we add
the blocks of the 4th class of KB replacing the block {0, 4, 13} by {0, 13, α} (x2 = 0, z2 = 4). So we get a
well balanced family for 80p ≤ b ≤ 80p+ 15 for p ≤ 6. For p = 6 we cannot get further.

For p < 6, we get a solution for b = 80p+ 16 as follows. We start with the solution obtained for b = 80p.
We add the blocks of the first class of KB replacing the block {8, 9, 13} by {8, 9, α}; the blocks of the 4th
class of KB replacing the block {0, 4, 13} by {0, 13, α}; the blocks of the second class of KB replacing the
block {4, 5, 9} by {4, 5, α}, (x3 = 5, z3 = 9). Note that the pairs {8, 9}, {0, 13}, {4, 5} are in the same class
of KA, namely the 7th class. Finally, we add the block {z1, z2, z3} = {4, 9, 13} which appears in the KTS
KA + 3 as translated from the block {1, 6, 13} (recall that 13 is invariant).

Furthermore we can add the blocks of the third class of KB to obtain a well balanced family for 80p+17 ≤
b ≤ 80p+ 21 for p < 6.

At that point we use a variant of Construction B; indeed instead of choosing the pair {x4, y4} in a class
of KB different from one already used, we can choose it in a modified class and add all the blocks of another
class to keep the balance. More precisely, we replace the block {3, 10, 11} of the 4th class by {3, 10, α}
(z4 = 11). At that point λ11 is one behind the rest. Then we add the blocks of the 5th class of KB , but
starting with the block containing 11. At that point λ11 and λα are one behind the rest. We now replace
{6, 11, 12} of the first class by {6, 11, α} (z5 = 12). The advantage is that the pairs {3, 10} and {6, 11} are
still in the 7th class of KA. So we get a well balanced family for all 80p ≤ b ≤ 80p+ 26 (we have to choose
in KA not to modify the 7th class in Construction A). At that point λ11 and λ12 are one behind the rest.
Then we can add the block {z4, z5, z6} = {3, 11, 12} which appears in KA + 8 as translated from the block
{8, 3, 4}. So now λ3 is one ahead of the rest. We can then replace the block {3, 7, 12} of the 7th class of KB

by {7, 12, α} (z6 = 3) and then add all the other blocks of the 7th class of KB . We should not modify in KA

the class containing {7, 12} namely the 3rd one. That is possible; indeed, as p ≤ 5, we can leave 2 classes
unmodified in KA (the 3rd and 7th). Finally we add the blocks of the 6th class of KB .

In summary we get a well balanced family for 80p ≤ b ≤ 80p + 37 for 0 ≤ p ≤ 5 and for p = 6, only
480 ≤ b ≤ 495. Using Proposition 5 and the fact that

(
16
3

)
= 560 we get also the values 65 ≤ b ≤ 80 and

for p′ ≥ 2, 80p′ − 37 ≤ b ≤ 80p′. So, we get all the values except b ≡ 38, 39, 40, 41, 42 (mod 80), for which
we know by Proposition 6 that no well balanced family can exist, and 43 ≤ b ≤ 64 (and 496 ≤ b ≤ 517) for
which we will use Construction C.

Construction C. We use the Construction C by choosing the STS(15) KA and by picking the pairs in
the KTS KB . We add the triples {0, 5, α}, {11, 12, α}, {8, 9, α} and {4, 7, α} obtained with pairs appearing
in the first class of KB . We also add {1, 3, α}, {0, 6, α}, {10, 13, α} and {2, 14, α} with pairs appearing in
the second class of KB . We get a well balanced family for b = 35 + 8 = 43. Here λx = 8 except λ0 = 9,
as 0 appears in two pairs. Then, we can add the blocks of the 4th class replacing {0, 4, 13} with {4, 13, α}
and so we get the missing values 43 ≤ b ≤ 48. Note that for b = 48, λx = 9 and λx,y = 1 or 2 as a
pair appears exactly in one block of KB . We then add the blocks of the 3rd class of KB ,with {7, 9, 11}
replaced by {7, 11, α}. Then we add the blocks of the 5th class with {2, 3, 4} replaced by {2, 3, α} starting
with the block containing 9. We add the block {4, 5, 9} which appears in the second class of KB which has
not been modified. Finally we add the blocks of the 6th class with first {5, 8, 12} replaced by {8, 12, α}.
Note that λx = 12 and no pairs appears 3 times as each element appears with α once or twice (case of
0, 2, 3, 4, 7, 8, 11, 12, 13). Therefore, we get all the values 43 ≤ b ≤ 64. So we have completely solved the case
v = 16.

Appendix 2: Small cases (proof of Proposition 15)

The case v = 9 was settled in Proposition 9 and v = 10 in Proposition 11. For the other values, by
Proposition 3 and Proposition 5 we can consider only the values of b ≤ 1

2

(
v
3

)
.

v = 5. For v = 5, as
(
5
3

)
= 10 we have to consider only the values of b ≤ 5.
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We have well balanced families for b = 1 (one block) and b = 2 (two blocks {1, 2, 3} and {1, 4, 5}), but not
for b = 3 as we have seen in the example of the introduction (see also Proposition 7). However there exists
an optimal solution {1, 2, 3}, {1, 2, 4}, {3, 4, 5} 1-balanced but not 2-balanced (λ1,2 = 2 but λ1,5 = λ2,5 = 0).
By Proposition 7, there is no well balanced solution for b = 4; an optimal one consists of the blocks {1, 2, 3},
{1, 2, 4}, {1, 3, 5}, {3, 4, 5}. For b = 5 there exists a well balanced solution with λx = 3 and λx,y = 1 or 2
and consisting of the 5 blocks {1, 2, 3}, {1, 2, 4}, {1, 3, 5}, {3, 4, 5}, {2, 4, 5}.

v = 6. For v = 6, as
(
6
3

)
= 20 we need to consider only the values of b ≤ 10.

For b = 5 (and so b = 15), there does not exist a well balanced family (Proposition 6). An optimal solution
F∗ consists of the 5 blocks: {1, 2, 3}, {1, 2, 4}, {1, 5, 6}, {2, 5, 6}, {3, 4, 5} (λx = 2 or 3 and λ1,2 = λ5,6 = 2 but
λ3,6 = λ4,6 = 0) with P (F∗, x) = 4x2 + 16x as associated polynomial. The proof is obtained by inspection
of the different possible cases. Proposition 4 in [13] also allows us to conclude directly for this case.

For the other values of b, we can construct well balanced families as follows. Let B1 = {1, 2, 3}, B2 =
{4, 5, 6}; C1 = {1, 2, 4}, C2 = {1, 3, 5}, C3 = {2, 3, 6}; D1 = {1, 4, 6}, D2 = {2, 5, 6}, D3 = {3, 4, 5} and
C ′1 = {1, 2, 5}, C ′2 = {1, 3, 6}, C ′3 = {2, 3, 4}. Note that the Ci and C ′i (resp. Di) intersect B1 (resp. B2) in
three different pairs and B2 (resp. B1) in 3 different elements. Solutions are obtained by taking: for b = 1,
B1; for b = 2, B1, B2; for b = 3, C1, C2, C3; for b = 4, C1, C2, C3, B2; for b = 6, C1, C2, C3, D1, D2, D3;
for b = 7, C1, C2, C3, D1, D2, D3, B1; for b = 8, C1, C2, C3, D1, D2, D3, B1, B2; for b = 9, C1, C2, C3,
D1, D2, D3, C ′1, C ′2, C ′3; for b = 10, C1, C2, C3, D1, D2, D3, C ′1, C ′2, C ′3, B2.

v = 7. For v = 7, as
(
7
3

)
= 35, we have to consider only the values of b ≤ 17. Kirkman proved that

there exist two disjoint STS(7). The first one consists of the 7 blocks Ci = {i, i+ 1, i+ 3}, for 0 ≤ i ≤ 6 and
the second one of the 7 blocks Di = {i, i + 2, i + 3}, for 0 ≤ i ≤ 6 (indices modulo 7). Let B1 = {1, 2, 3},
B2 = {4, 5, 6}, B3 = {0, 1, 4}, B4 = {0, 2, 5}, B5 = {0, 3, 6}. Note that these 5 blocks are disjoint from the
blocks Ci and Di. For b = j, 1 ≤ j ≤ 5, take the blocks Bi, 1 ≤ i ≤ j. For b = 7 take the first STS(7) (that
is all the Ci). For b = 6 delete one block from the STS(7). For b = 7 + j, 1 ≤ j ≤ 5 add to the STS(7)
the blocks Bi, 1 ≤ i ≤ j. For b = 14 take the two disjoint STS(7) (that is all the Ci and Di). For b = 13
delete one block from one STS(7). For b = 14 + j, 1 ≤ j ≤ 5 add to the two disjoint STS(7) the blocks Bi,
1 ≤ i ≤ j.

v = 8. For v = 8, as
(
8
3

)
= 56 we have to consider only the values of b ≤ 28. By Proposition 6 and 7

there do not exist well balanced families for b = 9, 10, 18, 19, 27, 28. For the other values let us construct a
well balanced family.

Cases 1 ≤ b ≤ 8. By Proposition 13, we have a solution for b = 8, consisting of the 8 blocks obtained by
deleting element 8 in the KTS(9) KA (see Section 6.4) namely: B1 = {1, 2, 4}, B2 = {3, 5, 6}, B3 = {0, 2, 5},
B4 = {4, 6, 7}, B5 = {0, 3, 4}, B6 = {1, 5, 7}, B7 = {0, 1, 6}, B8 = {2, 3, 7}. For b = 2q, q = 1, 2, 3, we have a
well balanced family by taking the blocks Bj , 1 ≤ j ≤ 2q. For b = 3 (resp. b = 5) add to B1, B2 (resp. B1,
B2, B3, B4) the block {0, 1, 7}. For b = 7 take the blocks Bj , 1 ≤ j ≤ 7.

Cases 11 ≤ b ≤ 17 and b = 20. We apply Construction C starting from the STS(7) with the 7 blocks
Ci = {i, i + 1, i + 3}, for 0 ≤ i ≤ 6 (values modulo 7) and adding a new element α = 7. For b = 11, we
consider the 4 covering pairs {0, 1}, {2, 3}, {4, 5}, {0, 6} and add to the STS(7), the 4 blocks E1 = {0, 1, α},
E2 = {2, 3, α}, E3 = {4, 5, α}, E4 = {0, 6, α}. Note that λx = 4 except λ0 = 5 and λx,y = 1 except for
the covering pairs {0, 1}, {2, 3}, {4, 5}, {0, 6}, and {0, α}. Then we can add successively E5 = {1, 3, 5},
E6 = {2, 4, 6}. At that point λx = 5, except λα = 4 and λx,y ≤ 2. We can still add E7 = {1, 2, α},
E8 = {0, 3, 4}, E9 = {5, 6, α}, and E10 = {0, 2, 5} getting solutions for 11 ≤ b ≤ 17. For b = 20 we add
furthermore the 3 blocks E11 = {1, 4, 6}, E12 = {3, 6, α}, E13 = {0, 4, α}. One can note that all these blocks
are disjoint from those of the STS.

Cases 21 ≤ b ≤ 26. We will use again Construction C, starting with the two disjoint STS(7) with blocks
Ci = {i, i+ 1, i+ 3}, for 0 ≤ i ≤ 6 and the second one with blocks Di = {i, i+ 2, i+ 3}, for 0 ≤ i ≤ 6 (indices
modulo 7). Add the 7 blocks Fi = {i, i + 1, α}, 0 ≤ i ≤ 6. We get a solution for b = 21. Note that λx = 8
except λα = 7 and λx,y = 2 except for the pairs {i, i + 1} for which it is 3. Then add the blocks {0, 4, α},
{2, 6, α}, {1, 3, 5} (at that point for b = 24, λx = 9) and {0, 2, 5}, {1, 4, 6}.

v = 11. We only need to consider b ≤ b
(
11
3

)
/2c = 82. By Proposition 7 there are no solutions for

b = 18, 19, 36, 37, 73, 74. Solutions for all the other values will be constructed below.
Cases 1 ≤ b ≤ 10. We take the following blocks (in given order): {0, 1, 2}, {3, 4, 5}, {6, 7, 8}, {0, 9, 10},

{2, 5, 8}, {3, 6, 9}, {4, 7, 10}, {1, 5, 9}, {1, 8, 10}, and {2, 4, 6}.
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Case b = 11. A solution is obtained with all blocks of the form {i, i+ 1, i+ 3} (mod 11) for 0 ≤ i ≤ 10.
Cases 12 ≤ b ≤ 17 and b = 20, 21. Solutions for 12 ≤ b ≤ 17 are obtained using the results of Section 6.5.

However to be complete, we give here explicit solutions. The number of edges in any K11 −C4 −C3 −C3 is
55 - 10 = 45 hence a multiple of 3. The graph can therefore be decomposed into 15 K3. For instance with
C4 = (1, 2, 3, 4, 1) and C3 = {5, 6, 9} and {7, 8, 10}, one such decomposition is {0, 1, 7}, {0, 2, 5}, {0, 3, 10},
{0, 4, 9}, {0, 6, 8}, {1, 3, 6}, {1, 5, 10}, {1, 8, 9}, {2, 4, 8}, {2, 6, 7}, {2, 9, 10}, {3, 5, 8}, {3, 7, 9}, {4, 5, 7}, and
{4, 6, 10}. It provides a solution for b = 15. Removing successively blocks {0, 1, 7}, {2, 9, 10} and {3, 5, 8}
yields solutions for b = 14, 13 and 12. Solutions for b = 16 and b = 17 are obtained by adding back the blocks
{5, 6, 9} and {7, 8, 10} to the solution for b = 15. Adding the three blocks {1, 2, 4}, {3, 4, 7}, and {2, 3, 9},
then block {0, 1, 5}, gives solutions for b = 20 and 21. In fact, for b = 20, this solution is a K3-covering of
K11 + C5, where the 5-cycle is (2, 4, 7, 3, 9).

For larger values of b, we adapt the constructions introduced in Section 6.4. We will use the two disjoint
KTS(9) KA and KB of Example 1 as given at the beginning of Section 6.2.

KA : {0, 7, 8} {0, 2, 5} {0, 3, 4} {0, 1, 6} KB : {1, 7, 8} {1, 3, 6} {1, 4, 5} {0, 1, 2}
{1, 2, 4} {1, 3, 8} {1, 5, 7} {2, 3, 7} {2, 3, 5} {2, 4, 8} {2, 6, 7} {3, 4, 7}
{3, 5, 6} {4, 6, 7} {2, 6, 8} {4, 5, 8} {0, 4, 6} {0, 5, 7} {0, 3, 8} {5, 6, 8}

Note that each column forms a parallel class of the system. Together here b = 24, λx = 8 and λxy = 2.
Cases 22 ≤ b ≤ 33. We use a construction similar to Construction C. We start with KB and add the

following 10 blocks: {1, 7, α}, {1, 8, β}, {2, 3, α}, {2, 5, β}, {0, 4, α}, {0, 6, β}, {5, 6, α}, {3, 4, β}, {α, β, 7} and
{α, β, 8} (α = 9, β = 10). That gives a solution for b = 22. Here λx = 6 and λx,y = 1 or 2 (11 pairs). We use
the solution to construct solutions for some other values of b: (i) adding the block(s) {0, 1, 5}, {2, 4, 7}, and
{3, 6, 8} gives the solutions for b = 23, 24, and 25 (ii) adding the 4 blocks {0, 1, 5}, {2, 4, 7}, {6, 8, α}, and
{3, 5, β} gives a solution for b = 26, and then adding {1, 4, 6} and {0, 2, 8} results solutions for b = 27, 28.

Consider the solution for b = 25: (i) adding the 4 blocks {4, 6, α}, {5, 8, α}, {1, 2, β}, {0, 3, β}, we have a
solution for b = 29; then adding {3, 5, 7} we obtain a solution for b = 30, and adding {0, 7, 8} a solution for
b = 31 (ii) adding the 7 blocks: {0, 7, 8}, {1, 2, α}, {4, 6, α}, {3, 5, α}, {1, 6, β}, {0, 2, β}, and {3, 7, β} gives
a solution for b = 32. Adding the block {4, 5, 8}, we get a solution for b = 33.

Cases 33 ≤ b ≤ 35 and 38 ≤ b ≤ 44. We use a construction similar to Construction A. We add two new
vertices α and β and replace each block {x, y, z} in the first parallel class of KA with three blocks: {x, y, α},
{x, z, α}, and {y, z, α}, and repeat this operation to the second parallel class of KA with β. There are b = 36
blocks in total now. Now, λx = 10, λα = λβ = 9, and λxy = λxβ = λxα = 2 and λαβ = 0. This solution
is of course not well balanced (as no well balanced design exists for b = 36), but we will use it to construct
solutions for 33 ≤ b ≤ 35 and 38 ≤ b ≤ 44: (i) delete the two blocks {0, 7, α} and {0, 2, β}, and add the block
{0, α, β}. Now, λx,y = 2 except λ0,7, λ0,2, λ7,α, λ2,β , λα,β = 1, and λx = 10 except λ0, λ2, λ7, λα, λβ = 9.
This gives a solution for b = 35. Furthermore, deleting block {1, 3, 6} and then {4, 5, 8} from the solution
for b = 35 gives solutions for b = 34, 33. (ii) adding two blocks {α, β, 0} and {α, β, 3}, we have a solution for
b = 38. Here λx = 10 except λ0, λ3, λα, λβ = 11 and λx,y = 2 except λ0,α, λ0,β , λ3,α, λ3,β = 3. Now adding
blocks {1, 2, 5}, {4, 6, 8}, {3, 6, 7}, {0, 1, 8}, {2, 4, 7}, and {α, β, 5} we have the solutions for 38 ≤ b ≤ 44.

Cases 45 ≤ b ≤ 72 and b = 75, 76. The solution for b = 55 can be obtained from a (11, 3, 3)-design. Here
λxy = 3 and λx = 15. A solution consists of the 5 classes {i, i+ 1, i+ 2}, {i, i+ 2, i+ 4}, {i, i+ 3, i+ 6}, {i, i+
4, i+ 8} {i, i+ 5, i+ 10} (the values are taken modulo 11).

Let us now introduce a device which is useful to quickly identify pairs in proposed solutions. To a
given block {a, b, c} we associate its “difference family”, the (unordered) list made of the three “smallest”
differences between values of a block (a pair {a, b} has two possible differences a− b and b− a modulo 11).
Note that all the blocks of the class obtained by translating a given block, that is the blocks {a+i, b+i, c+i}
(values are taken modulo 11), have the same difference family. The converse is not true; for example blocks
with difference family 123 can be in the class {i, i+ 1, i+ 3} or {i, i+ 2, i+ 3}.

The solution above is then generated by the 5 difference families: 112, 224, 335, 443, 551. Note that each
difference occurs three times. This solution is now used to obtain solutions for the following values of b.

(i) for 45 ≤ b ≤ 54, just deleting some or all of the 10 blocks for b = 10 (note that the difference families
of these blocks are in the following set: 112, 224, 335, and 443),
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(ii) adding the following 10 blocks gives solutions for 56 ≤ b ≤ 65: {0, 1, 3}, {4, 5, 7}, {2, 8, 10}, {5, 6, 9},
{3, 4, 6}, {0, 7, 10}, {1, 2, 9}, {0, 8, 9}, {2, 3, 5}, and {1, 7, 8} as all these blocks have difference families with
no repetition,

(iii) adding a class of 11 blocks with difference family 123, for example the blocks {i, i+ 1, i+ 3} gives a
solution for b = 66.

Finally, observe that the blocks in the solutions for 12 ≤ b ≤ 17 and b = 20, 21, have difference families
different from jj(2j) (1 ≤ j ≤ 5), whereas in the solution for b = 55, only blocks with difference families
jj(2j) are used. Therefore, combining the above solutions with b = 55, we have solutions for 67 ≤ b ≤ 72
and b = 75, 76.

Cases 77 ≤ b ≤ 82. For b = 77, take the following 7 classes: (i, i+ 1, i+ 2), (i, i+ 2, i+ 4), (i, i+ 3, i+ 6),
(i, i + 4, i + 8), (i, i + 5, i + 10), (i, i + 1, i + 3), (i, i + 1, i + 5). The corresponding difference families are
112, 224, 335, 443, 551, 123, 145. Hence λx = 21, λxy = 5 for pairs with difference 1, and 4 for all the pairs
with other differences. Now adding some or all the blocks: {0, 2, 5}, {1, 3, 7}, {4, 6, 9}, {2, 8, 10}, {3, 5, 8}
gives solution for 78 ≤ b ≤ 82.
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