Discrete asymptotic equations for long wave propagation

S Bellec 1 M Colin 1 Mario Ricchiuto 1
1 CARDAMOM - Certified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts
IMB - Institut de Mathématiques de Bordeaux, Inria Bordeaux - Sud-Ouest
Abstract : In this paper, we present a new systematic method to obtain some discrete numerical models for incompressible free-surface flows. The method consists in first discretizing the Euler equations with respect to one variable, keeping the other ones unchanged and then performing an asymptotic analysis on the resulting system. For the sake of simplicity, we choose to illustrate this method in the context of the Peregrine asymptotic regime, that is we propose an alternative numerical scheme for the so-called Peregrine equations. We then study the linear dispersion characteristics of our new scheme and present several numerical experiments to measure the relevance of the method.
Liste complète des métadonnées

Littérature citée [17 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01224157
Contributeur : Mario Ricchiuto <>
Soumis le : mercredi 4 novembre 2015 - 11:02:49
Dernière modification le : jeudi 11 janvier 2018 - 06:27:21
Document(s) archivé(s) le : vendredi 5 février 2016 - 10:37:02

Fichier

RR8806.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01224157, version 1

Collections

Citation

S Bellec, M Colin, Mario Ricchiuto. Discrete asymptotic equations for long wave propagation. [Research Report] RR-8806, Inria Bordeaux Sud-Ouest. 2015, pp.29. 〈hal-01224157〉

Partager

Métriques

Consultations de la notice

434

Téléchargements de fichiers

113