H. Abbasi, J. Lofstead, F. Zheng, K. Schwan, M. Wolf et al., Extending I/O through high performance data services, 2009 IEEE International Conference on Cluster Computing and Workshops, 2009.
DOI : 10.1109/CLUSTR.2009.5289167

I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludascher et al., Kepler: an extensible system for design and execution of scientific workflows, Proceedings. 16th International Conference on Scientific and Statistical Database Management, 2004., pp.423-424, 2004.
DOI : 10.1109/SSDM.2004.1311241

T. G. Armstrong, J. M. Wozniak, M. Wilde, and I. T. Foster, Compiler Techniques for Massively Scalable Implicit Task Parallelism, SC14: International Conference for High Performance Computing, Networking, Storage and Analysis, 2014.
DOI : 10.1109/SC.2014.30

D. Beazley, Automated scientific software scripting with SWIG, Future Generation Computer Systems, vol.19, issue.5, pp.599-609, 2003.
DOI : 10.1016/S0167-739X(02)00171-1

J. Biddiscombe, J. Soumagne, G. Oger, D. Guibert, and J. Piccinali, Parallel Computational Steering and Analysis for HPC Applications using a ParaView Interface and the HDF5 DSM Virtual File Driver, Eurographics Symposium on Parallel Graphics and Visualization. The Eurographics Association, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00651814

M. Dorier, G. Antoniu, F. Cappello, M. Snir, and L. Orf, Damaris: How to Efficiently Leverage Multicore Parallelism to Achieve Scalable, Jitter-free I/O, 2012 IEEE International Conference on Cluster Computing, 2012.
DOI : 10.1109/CLUSTER.2012.26

URL : https://hal.archives-ouvertes.fr/hal-00715252

M. Dorier, R. Sisneros, T. Roberto, G. Peterka, B. Antoniu et al., Damaris/Viz: A nonintrusive, adaptable and user-friendly in situ visualization framework, 2013 IEEE Symposium on Large-Scale Data Analysis and Visualization (LDAV), 2013.
DOI : 10.1109/LDAV.2013.6675160

URL : https://hal.archives-ouvertes.fr/hal-00859603

M. Dreher, M. Piuzzi, T. Ahmed, C. Matthieu, M. Baaden et al., Interactive Molecular Dynamics: Scaling up to Large Systems, International Conference on Computational Science, 2013.
DOI : 10.1016/j.procs.2013.05.165

URL : https://hal.archives-ouvertes.fr/hal-00809024

M. Dreher, J. Prevoteau-jonquet, M. Trellet, M. Piuzzi, M. Baaden et al., ExaViz: a flexible framework to analyse, steer and interact with molecular dynamics simulations, Faraday Discuss., vol.18, issue.6, pp.119-142, 2014.
DOI : 10.1039/C3FD00142C

URL : https://hal.archives-ouvertes.fr/hal-00942627

M. Dreher and B. Raffin, A Flexible Framework for Asynchronous in Situ and in Transit Analytics for Scientific Simulations, 2014 14th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, pp.277-286, 2014.
DOI : 10.1109/CCGrid.2014.92

URL : https://hal.archives-ouvertes.fr/hal-00941413

F. R. Duro, J. G. Blas, F. Isaila, J. Carretero, J. M. Wozniak et al., Exploiting Data Locality in Swift/T Workflows using Hercules, Proc. NESUS Workshop, 2014.

N. Fabian, K. Moreland, D. Thompson, A. Bauer, P. Marion et al., The ParaView Coprocessing Library: A scalable, general purpose in situ visualization library, 2011 IEEE Symposium on Large Data Analysis and Visualization, 2011.
DOI : 10.1109/LDAV.2011.6092322

J. Goecks, A. Nekrutenko, and J. Taylor, Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences, Genome Biology, vol.11, issue.8, p.86, 2010.
DOI : 10.1186/gb-2010-11-8-r86

M. Hereld, M. E. Papka, and V. Vishwanath, Toward Simulation-Time Data Analysis and I/O Acceleration on Leadership-Class Systems, Proceeding of the IEEE Symposium on Large-Scale Data Analysis and Visualization (LDAV '11), 2011.

R. V. Kassick, F. Z. Boito, P. Navaux, and Y. Denneulin, Investigating I/O approaches to improve performance and scalability of the Ocean-Land-Atmosphere Model, Presentation at the Seventh Workshop of the Joint INRIA, 2012.

E. L. Lusk, S. C. Pieper, and R. M. Butler, More Scalability, Less Pain: A Simple Programming Model and its Implementation for Extreme Computing, SciDAC Review, vol.17, 2010.

J. Mcfarland, FortWrap web site

F. Shahzad, M. Wittmann, M. Kreutzer, T. Zeiser, G. Hager et al., A SURVEY OF CHECKPOINT/RESTART TECHNIQUES ON DISTRIBUTED MEMORY SYSTEMS, Parallel Processing Letters, vol.23, issue.04, pp.23-2013
DOI : 10.1142/S0129626413400112

S. Van-der-walt, S. C. Colbert, and G. Varoquaux, The NumPy Array: A Structure for Efficient Numerical Computation, Computing in Science & Engineering, vol.13, issue.2, 2011.
DOI : 10.1109/MCSE.2011.37

URL : https://hal.archives-ouvertes.fr/inria-00564007

G. Von-laszewski, I. Foster, J. Gawor, and P. Lane, A Java Commodity Grid Kit. Concurrency and Computation: Practice and Experience, pp.8-9, 2001.

B. Whitlock, J. M. Favre, and J. S. Meredith, Parallel In Situ Coupling of Simulation with a Fully Featured Visualization System, Proceedings of the Eurographics Symposium on Parallel Graphics and Visualization (EGPGV '10). Eurographics Association, 2011.

M. Wilde, M. Hategan, J. M. Wozniak, B. Clifford, D. S. Katz et al., Swift: A language for distributed parallel scripting, Parallel Computing, vol.37, issue.9, 2011.
DOI : 10.1016/j.parco.2011.05.005

J. M. Wozniak, T. G. Armstrong, D. S. Katz, M. Wilde, and I. T. Foster, Toward Computational Experiment Management via Multi-Language Applications, DOE Workshop on Software Productivity for eXtreme scale Science (SWP4XS), 2014.

J. M. Wozniak, T. G. Armstrong, K. C. Maheshwari, D. S. Katz, M. Wilde et al., Toward Interlanguage Parallel Scripting for Distributed-Memory Scientific Computing, 2015 IEEE International Conference on Cluster Computing, 2015.
DOI : 10.1109/CLUSTER.2015.74

J. M. Wozniak, T. G. Armstrong, M. Wilde, D. S. Katz, E. Lusk et al., Swift/T: Scalable Data Flow Programming for Distributed-memory Task-parallel Applications, Proc. CCGrid, 2013.

J. M. Wozniak, T. Peterka, T. G. Armstrong, J. Dinan, E. L. Lusk et al., Dataflow coordination of data-parallel tasks via MPI 3.0, Proceedings of the 20th European MPI Users' Group Meeting on, EuroMPI '13, 2013.
DOI : 10.1145/2488551.2488561

J. M. Wozniak, H. Sharma, T. G. Armstrong, M. Wilde, J. D. Almer et al., Big Data Staging with MPI-IO for Interactive X-ray Science, 2014 IEEE/ACM International Symposium on Big Data Computing, 2014.
DOI : 10.1109/BDC.2014.18

J. M. Wozniak, M. Wilde, and I. T. Foster, Language Features for Scalable Distributed-Memory Dataflow Computing, 2014 Fourth Workshop on Data-Flow Execution Models for Extreme Scale Computing, 2014.
DOI : 10.1109/DFM.2014.17

O. Yildiz, M. Dorier, S. Ibrahim, and G. Antoniu, A performance and energy analysis of I/O management approaches for exascale systems, Proceedings of the sixth international workshop on Data intensive distributed computing, DIDC '14, pp.35-40, 2014.
DOI : 10.1145/2608020.2608026

URL : https://hal.archives-ouvertes.fr/hal-01076522

F. Zhang, M. Parashar, C. Docan, S. Klasky, N. Podhorszki et al., Enabling In-situ Execution of Coupled Scientific Workflow on Multi-core Platform, 2012 IEEE 26th International Parallel and Distributed Processing Symposium, 2012.
DOI : 10.1109/IPDPS.2012.122

Y. Zhao, J. Dobson, I. Foster, L. Moreau, and M. Wilde, A notation and system for expressing and executing cleanly typed workflows on messy scientific data, ACM SIGMOD Record, vol.34, issue.3, 2005.
DOI : 10.1145/1084805.1084813

Y. Zhao, M. Hategan, B. Clifford, I. Foster, G. Von-laszewski et al., Swift: Fast, Reliable, Loosely Coupled Parallel Computation, 2007 IEEE Congress on Services (Services 2007), 2007.
DOI : 10.1109/SERVICES.2007.63

F. Zheng, H. Abbasi, C. Docan, J. Lofstead, Q. Liu et al., PreDatA – preparatory data analytics on peta-scale machines, 2010 IEEE International Symposium on Parallel & Distributed Processing (IPDPS), 2010.
DOI : 10.1109/IPDPS.2010.5470454