. Sos, Sign(Delta_sign*sign((a30*b01)+(a31*b11)+(a32*b21))))

. Sos, Sign(Delta_sign*sign((a30*b02)+(a31*b12)+(a32*b22)))) sos(p3, NEGATIVE) end_sos } [1] Aurenhammer Minkowski-type thms. and least-squares clustering, Algorithmica, vol.2, issue.201, 1998.

A. Botella, B. Lévy, and G. Caumon, Indirect hex-dominant mesh generation using a matching tetrahedra method, Proc. 33rd Gocad Meeting, 2013.

G. Caumon, G. Laurent, J. Pellerin, N. Cherpeau, F. Lallier et al., Current bottlenecks in geomodeling workflows and ways forward, Closing the Gap: Advances in Applied Geomodeling for Hydrocarbon Reservoirs, pp.43-52, 2013.

H. Edelsbrunner and E. P. Mücke, Simulation of simplicity, ACM TRANS. GRAPH, vol.9, issue.1, 1990.

B. Lévy, 2 semi-discrete optimal transport in 3d, ESAIM Math. Modeling and Analysis, 2014.

B. Lévy and Y. Liu, Lp centroidal voronoi tesselation and its applications, SIGGRAPH conference proceedings )Patent pending -FR, 2010.

Q. Mérigot, A Multiscale Approach to Optimal Transport, Computer Graphics Forum, vol.40, issue.2, pp.1583-1592, 2011.
DOI : 10.1111/j.1467-8659.2011.02032.x

R. Merland, B. Lévy, and G. Caumon, Voronoi Grids Conformal to 3D Structural Features, ECMOR XIII, 13th European Conference on the Mathematics of Oil Recovery, 2012.
DOI : 10.3997/2214-4609.20143224

P. Meyer, FPG: A code generator, Real Numbers and Computers, pp.47-60, 2008.
URL : https://hal.archives-ouvertes.fr/inria-00344297

J. F. Nash, The Imbedding Problem for Riemannian Manifolds, The Annals of Mathematics, vol.63, issue.1, pp.20-63, 1956.
DOI : 10.2307/1969989

J. Pellerin, B. Lévy, and G. Caumon, oct " 2012. A voronoi-based hybrid meshing method, International Meshing Roundtable

J. Pellerin, B. Lévy, G. Caumon, and A. Botella, Automatic surface remeshing of 3D structural models at specified resolution: A method based on Voronoi diagrams, Computers & Geosciences, vol.62, pp.103-116, 2014.
DOI : 10.1016/j.cageo.2013.09.008

URL : https://hal.archives-ouvertes.fr/hal-01105039

. Shewchuk, Adaptive precision floating-point arithmetic, Discrete & Computational Geometry, vol.18, issue.3, 1997.

C. Villani, Optimal transport : old and new. Grundlehren der math. Wissenschaften, 2009.
DOI : 10.1007/978-3-540-71050-9