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Institut du Cerveau et de la Moelle Épinière, ICM, F-75013, Paris, France

Mainak Jas MAINAKJAS@GMAIL.COM
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Institut du Cerveau et de la Moelle Épinière, ICM, F-75013, Paris, France

Abstract

Recent findings in clinical neuroscience have
emphasized electroencephalography (EEG) as a
tool to discriminate different disorders of con-
sciousness (DOC) such as the vegetative and
the minimally conscious state. Here we present
an automated approach to computing EEG-
measures of consciousness and guiding clini-
cal diagnostics of DOC. Our approach capital-
izes the automated extraction of statistically val-
idated EEG-measures quantifying biomarkers of
consciousness and filing a database thereof. In
a second step, statistical models trained on the
database of EEG-measures are then used to pre-
dict an incoming patient’s state of conscious-
ness. For each new patient, the results of the
EEG and the predictions are automatically sum-
marized and deployed to the clinician in form
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of a self-contained HTML-report, which sup-
ports interactive visualization and navigation. To
validate our approach, we replicated previous
findings on EEG-measures of consciousness and
quantified the robustness of the EEG-measures to
loss of temporal and spatial information. Our re-
sults suggest that the EEG-measures can be suc-
cessfully employed in a wide range of practical
contexts to measure a patients degree of con-
sciousness.

1. An automated scalable approach to
measure and predict consciousness in
clinical settings

Advances in contemporary medicine have as consequence
that increasingly more patients survive catastrophic brain
injuries but remain in disordered consciousness condi-
tions, such as the vegetative (VS) or the minimally con-
scious state (MCS). Recent brain imaging and neurophys-
iological studies have enhanced the scientific understand-
ing of these conditions, but also emphasize novel diag-
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nostic challenges (Laureys & Schiff, 2012). The distinc-
tion of MCS from VS patients can be elusive even for
trained physicians. For example, non-standardized behav-
ioral evaluations can lead to misclassifications of up to 40%
(Schnakers et al., 2009), which in turn can lead to erroneous
pain-management, prognosis evaluation and even misin-
formed end-of-life decisions. Furthermore, for a small
proportion of patients that are correctly classified as VS
(by means of their behavioral responses), functional neu-
roimaging suggests preserved consciousness (Owen et al.,
2006). This poses challenges on multiple, interdisciplinary
levels. One such challenge is related to incorporating sci-
entific findings on neural correlates of consciousness into
the clinical and diagnostic practice. Over the last decade,
abundant electrophysiological signatures of consciousness
have been proposed. Recently, a systematic analysis of
electroencephalography (EEG) measures has been put for-
ward by Sitt et al. (2014). A set of measures has been
identified that allows to differentiate patients in a vegeta-
tive state from those in a minimally conscious or conscious
state. These measures quantify putative biomarkers of con-
sciousness such as low-frequency brain-rhythms, stimulus-
related synchronization of EEG signals (evoked responses),
information sharing between electrodes and signal com-
plexity. Importantly, previous multivariate classification
analyses suggested that these EEG-measures capture com-
plementary information as they yield superior classification
performance when combined. This poses the question of
how such advanced analysis of the EEG recordings can be
used in practice to facilitate clinical diagnostics.

1.1. A system for guiding clinical diagnostics of
consciousness disorders

Here we implemented an automated solution to clinical di-
agnostics of disorders of consciousness (DOC) based on
statistical analysis of clinical EEG. Its goal is to estimate
an undiagnosed patient’s degree of consciousness based
on the EEG-measures described in Sitt et al. (2014) and
to efficiently communicate the EEG-analysis together with
the diagnostic prediction. For this purpose we developed
a flexible and scalable data analysis workflow that au-
tomates processing of EEG recordings, the extraction of
EEG-measures and the communication of results (cf. fig-
ure 1 for an illustration of the workflow). The solution that
we present here is purely based on open source software
and is scalable on multiple levels.

For example, by taking advantage of the Python language
and its parallel processing libraries such as joblib1, multi-
ple CPU-cores can be used to carry out numerical compu-
tations. Previously, the only available option to compute

1https://pythonhosted.org/joblib/
parallel.html

the EEG-measures proposed by Sitt et al. (2014) consisted
in using local computers and required licenses for commer-
cial software. Moreover, our solution has built-in support
for Amazon web services (AWS), which allows to carry out
computations in parallel across subjects. With 20 virtual
workstations of which each is equipped with 4 CPU-cores
for example, the computation time can be cut down by a
factor of 80. Currently, for a single recording, all EEG-
measures can be computed in about 30 minutes. These
benchmarks are particularly relevant for the practical pur-
pose of the system. The current implementation facilitates
the computation of reference models that are estimated on
EEG-measures from hundreds of clinical recordings to pre-
dict unseen patients.

This not only facilitates more frequent updates of these ref-
erence models, which may be required for research pur-
poses. It also lowers the maintenance burdens, i.e., of
detecting and fixing software bugs. To communicate re-
sults efficiently, we devised an HTML-report tool that em-
beds images together with the requisite Java-script code en-
abling interactive navigation. This self-contained feature
promotes automated dispatch of summary-reports to clini-
cians or operators, hence, facilitates review and interpreta-
tion.

This approach thus minimizes manual interaction or inter-
vention by the operator to produce and review findings and
is therefore expected to reduce errors. To the best of our
knowledge this solution is novel and constitutes the first
automated workflow for diagnostics of DOC patients. The
following sections detail the implementation strategy and
present a validation of the proposed solution based on the
analysis of clinical EEG data from DOC patients.

1.2. Implementation details

1.2.1. SOFTWARE

Our software solution is based on open source technolo-
gies and is written in Python, C, and bash shell scripts.
The computation of the EEG-measures described in Sitt
et al. (2014) was implemented in Python, taking advan-
tage of the Numpy and Scipy libraries for fast matrix cal-
culus and scientific computing (Jones et al., 2001). Some
performance critical computations have been deferred to
code written in C, accompanied by Python bindings. Bash
scripts are then used to handle distributed computing and
distributing jobs using GNU-parallel (Tange, 2011). For
general data-processing and visualization the open source
software package MNE is used (Gramfort et al., 2013;
2014) The report-technology has meanwhile been made
publicly available as part of the MNE package. For unsu-
pervised learning and classification, the scikit-learn library
for machine learning is used (Pedregosa et al., 2011).

https://pythonhosted.org/joblib/parallel.html
https://pythonhosted.org/joblib/parallel.html
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Figure 1. Overview on the automated approach to measurement and diagnostics of consciousness. Panel (A) and (B) illustrate group
results for a subset of EEG-measures for different groups of patients suffering from disorders of consciousness (DOC), i.e., vegetative
state (VS), minimally conscious state (MCS) and conscious (CS). Panel (A) depicts univariate area under the curve (AUC) scores
for mean values across channels. From top to bottom, permutation entropy (PE), complexity measure (K), the wSMI connectivity,
normalized alpha-band power, the classification score for the global and the local auditory novelty task, respectively, and the contingent
negative variation (CNV). Different colors and different sizes refer to contrasts of interest and significance thresholds, respectively. Big
circles refer to false discovery-rate (FDR) corrected p-values. The computation of the EEG-measures was implemented after Sitt et al.
(2014), supplementary materials. Panel (B) depicts related topographies for a subset of the measures shown in panel (B). The outermost
column shows a non-parametric statistical map based on a Wilcoxon rank sum test where white, gray and black areas indicate uncorrected
p-values greater than 0.05, smaller than 0.05 or smaller than 0.01 respectively. Panel (C) illustrates the overall workflow. EEG data are
entered into the system by the operator, the automated pipeline is launched on a web-server, summary reports are dispatched to the
operator. Panel (D) shows a screenshot of a diagnostic report that presents the estimated probability of the patient being in a minimally
conscious state.
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1.2.2. EEG-RECORDINGS AND PROCESSING

For development and validation analyses, the data reported
in Sitt et al. (2014) were used. Subjects were stimulated us-
ing the auditory Local-Global protocol (Bekinschtein et al.,
2009). In this protocol, subjects were presented with a se-
ries of sounds that contains regularities at two different hi-
erarchical levels, a local level defined by short-term and
global level defined by long-term regularities. The devi-
ations from these regularities evoke distinct event-related
potentials that are useful to evaluate the cognitive state of
the patient. EEG recordings were sampled at 250 Hz with a
256-electrode geodesic sensor net (EGI) referenced to the
vertex. Recordings were band-pass filtered (from 0.5 to
45Hz using a 12 order FFT-based Butterfly filter). Data
were then epoched from −200ms to +1336ms relative to
the onset of the first sound.

The following parameters reflect default settings of our
software solution and do not depend on the validation
dataset. Trials were excluded based on their amplitude
range with a rejection threshold at 100mV . Trials were
subsequently baseline corrected over the first 200 ms win-
dow preceding the onset of the first sound. Electrodes with
a rejection rate superior to 20% across trials were rejected
and were interpolated using a spherical spline interpolation.
To remove remaining artifacts, the FastICA (Hyvärinen
et al., 2004) algorithm for Independent Component Anal-
ysis (ICA) was used in concert with the ADJUST proce-
dure for identifying artefact-related EEG signal compo-
nents (Mognon et al., 2011). Subsequently, data were re-
referenced using an average reference. All data were pro-
cessed in Python 2.7 using the open source software pack-
age MNE (Gramfort et al., 2013; 2014). Figure 2 gives an
overview about the single data processing steps.

Note that our EEG-processing workflow is not confined to
a specific EEG-vendor and does not require task-related
EEG-recordings.

Notable changes as of July 2015

Adaptive outlier detection To automate detection and re-
pair of bad EEG data segments, we developed an adaptive
outlier detection procedure. This procedure first selects bad
electrodes where more than 50 % of the epochs have a
peak-to-peak amplitude higher than 100 µV . The second
step consists on computing the variance of each individ-
ual channel and its corresponding z-score across all chan-
nels. Channels with a z-score greater than 4 are discarded.
This operation is repeated four times. The remaining data
is then analysed at the epoch level: epochs with more than
10% of the channels outside the 100 µV peak-to-peak am-
plitude range are then discarded. Finally, the second step
is repeated, but with the standard deviation of the channels

filtered with a 4th order Butterworh high-pass filter at 25
Hz. In order to use the same set of electrodes for every pa-
tients, electrodes marked as “bad” by the outlier algorithm
are interpolated using a spherical spline interpolation (Per-
rin et al., 1989). Data was finally re-referenced using an
average reference and baseline corrected over the first 200
ms window preceding the onset of the first sound.

Independent Component Analysis By the time of the
construction of the pipeline in 2015, no accurate automated
procedure for selection of ICAcomponents has been avail-
able. While semi-automated procedures can be used at
scale in smaller dataset where manual checking and cor-
rection is feasible, the situation is quite different in larger
datasets where exhaustive quality checks are expensive in
terms of human processing time. In particular, when not
correcting wrong labeled ICA components, there is a sub-
stantial risk of removing signal of interest. After some ex-
perimentation, we therefore decided to refrain from using
ICA in this pipeline.

2. Validation of EEG-measures of
consciousness

To validate the extraction of the EEG-measures against the
reference implementation, we replicated the main analysis
from Sitt et al. (2014) on univariate classification (cf. fig-
ures 1 and 2, supplement) and we validated the multivari-
ate classification against alternative algorithms and imple-
mentations (cf. Figure 3, supplement). We further profiled
the EEG-measures by evaluating their discriminative per-
formance as information was removed from the input data.
For this purpose, the original data from Sitt et al. (2014)
were used. We considered a subset of patient recordings
comprising 69 samples of MCS and 76 samples of VS pa-
tients. To emulate the impact of different sensor geometry,
the spatial coverage and acquisition settings, the data were
spatially (number of sensors) and temporally (sampling fre-
quency) subsampled. Results were then recomputed on the
subsampled data and compared to the full data. Classifica-
tion was based on a support vector machine with an area
under the curve (AUC) performance metric. A filter-based
feature selection (best k features as defined by univariate
F-statistic) and the regularization parameter (C) were tuned
using a grid search with 10 fold stratified cross-validation
that was repeated 5 times. Figure 3 depicts measure-wise
(average across sensors) central tendencies and dispersion
across all subsampled datasets. For details on the compu-
tation of the univariate AUC scores, see the supplementary
materials.

It can be observed that certain types of measures, for ex-
ample the wSMI connectivity measure (King et al., 2013)
or evoked response measures, such as the contingent nega-
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Figure 2. Schematic EEG data-processing workflow. The proce-
dure comprises two complementary routines, depicted by blue
and red connecting arrows between the steps. Directly after acqui-
sition, data are converted in to the FIFF file format (cf. Gramfort
et al. (2013; 2014)). Subsequently, the EEG data are cleaned from
environmental noise, intrinsic and physiological artifacts. This
is achieved by peak-to-peak amplitude rejection of contaminated
data segments and removal of artifact signal components as es-
timated from Independent Component Analysis (ICA). Data are
then segmented according to task-related events or fixed-length
epochs (resting state) and stored to disk. In the next step rele-
vant EEG-measures are computed and stored to disk together with
meta-data and added to the database. Visual summaries of the re-
sults are saved into an HTML report. Fed with EEG-measures
from the database, a statistical model is employed to estimate the
probability of each diagnostic class. Visual summaries of the pa-
tient’s measured EEG-measures and the probability estimates are
deployed in form of a second HTML report. The entire procedure
is scalable and can be executed locally or remotely on multiple
workers in a distributed fashion.

tive variation (CNV) exhibit more performance variability
across data inputs. In contrast, information theory mea-
sures, e.g., PE, K and low frequency cortical oscillations
show little variability, e.g., α, θ and δ. These findings
were expected as the connectivity measures naturally ben-
efit from higher spatial sampling density, whereas α power
can be computed on single favorably located sensors. This
latter finding extends previously reported results (Sitt et al.,
2014). Not only are low-frequency oscillations among the

Discriminative performance of EEG-measures across subsampled data

Figure 3. Univariate evaluation of discriminative performance of
different EEG-measures as spatial and temporal information is re-
moved from the data. New datasets were derived from temporally
and spatially subsampling the original data. To generate a set of
realistic electrode nets the original number of electrodes (256)
was progressively subdivided by two and remaining electrodes
were manually selected. They were chosen such that the result-
ing electrode net was spatially symmetric and included a subset
of standard locations described by the international 10-20 system.
In total, 6 electrode nets (256 to 8 electrodes) were compared at
250Hz and 125Hz temporal sampling frequency. The boxplots
summarize each EEG-measure individually depicting the central
tendency and dispersion of area under the curve (AUC) scores
across the datasets. The red lines represent the median, the red
squares the mean. The results suggest that certain EEG-measures
were more robust across varying density of information in the in-
put data. Note that AUC scores below 0.5 indicate a negative
relationship between the respective EEG-measure and the target-
category. Acronyms for EEG-measures are explained in the sup-
plementary materials (cf. Table 1). A multuvariate comparison is
depicted in figure 4
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most robust predictors of consciousness, their computation
is also highly robust across different sensor configurations
and temporal sampling rates. This is of high practical rele-
vance, as it may inform practitioners about reasonable low
cost choices for the assessment of consciousness. For in-
stance, the low frequency brain rhythms can be reliably
extracted from a few electrodes only using a low tempo-
ral sampling frequency. This finding may have practical
implication when single measures have to be selected for
fast ambulant screening based on low-density EEG. Like-
wise, these measures remain robust at reduced sampling
rates which may be helpful for mobile EEG acquisition se-
tups with limited recording capacity such as for long term
recordings.
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Figure 4. Multivariate evaluation of discriminative performance
of different EEG-variables as spatial and temporal information is
removed from the data. The points represent cross-validated area
under the curve (AUC) scores separately for temporally and spa-
tially subsampled versions of the data. The x-axis depicts differ-
ent electrode nets, including 256, 128, 64, 32, 16 and 8 electrodes.
Lines represent different sampling frequencies, i.e., 250Hz and
125Hz. Areas represent the standard deviation of the score. The
overall pattern suggests that spatiotemporal subsampling does not
notably affect the classification performance.

Additional insights can be obtained from comparing cross-
validated classification performance based on multivari-
ate inputs including all the EEG-measures. Figure 4 de-
picts such scores for each subsampled version of the in-
put data. The findings show considerable overlapping es-
timation variance across folds for each dataset, suggest-
ing that for multivariate classification the availability of
high-density sampling is not particularly relevant. In other
words, regular clinical EEG-setups that commonly include
between 32 and 64 channels are sufficient to acquire data
from which reliable EEG-measures can be computed.

To summarize, the experiments provide novel insights re-

garding the stability, or reliability, of the EEG-measures.
The univariate results (cf. Figure 3) highlight certain types
of measures that are more robust to loss of information than
others. In contrast, the multivariate results (cf. Figure 4)
demonstrate that removing temporal and spatial informa-
tion does not relevantly decrease predictive performance
when all information is fed into a statistical model.

3. Conclusion
In the present work we presented an integrated scalable
solution for measuring, predicting and guiding clinical di-
agnostics of disorders of consciousness (DOC). This ap-
proach promotes a translation from neuroscience findings
and data science technologies to clinical practice. The val-
idation analyses not only suggest a successful implementa-
tion of the EEG-measures reported in (Sitt et al., 2014) but
also extend our understanding of their practical properties
such as their dependency on particular acquisitions setups.
Future enhancement in classification and diagnostics are
expected from incorporating additional samples (clinical
EEG-recordings) and a prediction of the patient’s recovery
into the proposed system. Similarly, it should be easily ad-
justable to other physiological and pathological conditions
in which an evaluation of the subject’s degree of conscious-
ness is relevant. This would at least include anesthesia and
sleep. Our solution, this way, promotes a diagnostic prac-
tice emphasizing brain-circuits disorders (Insel & Cuthbert,
2015).
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Parkkonen, L, and Hämäläinen, M. MEG and EEG data
analysis with MNE-Python. Frontiers in Neuroscience, 7
(267), 2013. ISSN 1662-453X. doi: 10.3389/fnins.2013.
00267.

Gramfort, A, Luessi, M, Larson, E, Engemann, D,
Strohmeier, D, Brodbeck, C, Parkkonen, L, and
Hämäläinen, M. MNE software for processing MEG and
EEG data. Neuroimage, 86(0):446 – 460, 2014. ISSN

http://www.pnas.org/content/early/2009/01/21/0809667106.abstract
http://www.pnas.org/content/early/2009/01/21/0809667106.abstract


Automated measurement and prediction of consciousness

1053-8119. doi: http://dx.doi.org/10.1016/j.neuroimage.
2013.10.027.

Hyvärinen, Aapo, Karhunen, Juha, and Oja, Erkki. Inde-
pendent component analysis, volume 46. John Wiley &
Sons, 2004.

Insel, Thomas R. and Cuthbert, Bruce N. Brain
disorders? precisely. Science, 348(6234):499–
500, 2015. doi: 10.1126/science.aab2358. URL
http://www.sciencemag.org/content/
348/6234/499.short.

Jones, Eric, Oliphant, Travis, Peterson, Pearu, et al.
SciPy: Open source scientific tools for Python, 2001.
URL http://www.scipy.org/. [Online; accessed
2015-05-01].

King, Jean-Rmi, Sitt, JacoboD., Faugeras, Frdric, Ro-
haut, Benjamin, ElKaroui, Imen, Cohen, Laurent,
Naccache, Lionel, and Dehaene, Stanislas. In-
formation sharing in the brain indexes conscious-
ness in noncommunicative patients. Current Bi-
ology, 23(19):1914 – 1919, 2013. ISSN 0960-
9822. doi: http://dx.doi.org/10.1016/j.cub.2013.07.
075. URL http://www.sciencedirect.com/
science/article/pii/S0960982213009366.

Laureys, Steven and Schiff, Nicholas D. Coma and con-
sciousness: paradigms (re) framed by neuroimaging.
Neuroimage, 61(2):478–491, 2012.

Mognon, Andrea, Jovicich, Jorge, Bruzzone, Lorenzo, and
Buiatti, Marco. Adjust: An automatic eeg artifact de-
tector based on the joint use of spatial and temporal fea-
tures. Psychophysiology, 48(2):229–240, 2011.

Owen, Adrian M, Coleman, Martin R, Boly, Melanie,
Davis, Matthew H, Laureys, Steven, and Pickard,
John D. Detecting awareness in the vegetative state. Sci-
ence, 313(5792):1402–1402, 2006.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cour-
napeau, D., Brucher, M., Perrot, M., and Duchesnay, E.
Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 12:2825–2830, 2011.

Perrin, F., Pernier, J., Bertrand, O., and Echallier, J.F.
Spherical splines for scalp potential and current density
mapping. Electroencephalography and Clinical Neuro-
physiology, 72(2):184 – 187, 1989. ISSN 0013-4694.
doi: https://doi.org/10.1016/0013-4694(89)90180-6.
URL http://www.sciencedirect.com/
science/article/pii/0013469489901806.

Schnakers, Caroline, Vanhaudenhuyse, Audrey, Giacino,
Joseph, Ventura, Manfredi, Boly, Melanie, Majerus,
Steve, Moonen, Gustave, and Laureys, Steven. Diagnos-
tic accuracy of the vegetative and minimally conscious
state: clinical consensus versus standardized neurobe-
havioral assessment. BMC neurology, 9(1):35, 2009.

Sitt, J D, King, J-R, El Karoui, I, Rohaut, B, Faugeras, F,
Gramfort, A, Cohen, L, Sigman, M, Dehaene, S, and
Naccache, L. Large scale screening of neural signatures
of consciousness in patients in a vegetative or minimally
conscious state. Brain, 137(8):2258–2270, 2014.

Tange, O. Gnu parallel - the command-line power tool.
;login: The USENIX Magazine, 36(1):42–47, Feb 2011.
URL http://www.gnu.org/s/parallel.

http://www.sciencemag.org/content/348/6234/499.short
http://www.sciencemag.org/content/348/6234/499.short
http://www.scipy.org/
http://www.sciencedirect.com/science/article/pii/S0960982213009366
http://www.sciencedirect.com/science/article/pii/S0960982213009366
http://www.sciencedirect.com/science/article/pii/0013469489901806
http://www.sciencedirect.com/science/article/pii/0013469489901806
http://www.gnu.org/s/parallel

