Non-parametric identification of geological models

Abstract : Many problems to be solved in geophysical processing can be expressed in terms of identiication of spatial geological models : given a function F applied to a geological model G, producing a result R, the problem is to find G such that F(G) = R* , where R* is the expected result : a seismogram, a pressure curve, a seismic cross-section etc. The presented research deals with the joint use of evolutionary algorithms and Voronoi diagrams to address some non-parametric instances of identification problems in geophysics, i.e. without a priori hypothesis about the geometrical layout of possible solutions. In this paper, a first application in velocity determination for seismic imaging demonstrates the ability of this approach to identify both the geometry and the velocities of the underground from experimental seismograms.
Type de document :
Communication dans un congrès
IEEE Congress on Evolutionary Computation, May 1998, Anchorage, United States. IEEE Press, pp.136-141, 1998, Evolutionary Computation Proceedings, 1998. IEEE World Congress on Computational Intelligence. 〈10.1109/ICEC.1998.699490 〉
Liste complète des métadonnées

Littérature citée [16 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01225301
Contributeur : Marc Schoenauer <>
Soumis le : vendredi 6 novembre 2015 - 08:56:56
Dernière modification le : mardi 15 mai 2018 - 14:50:03
Document(s) archivé(s) le : lundi 8 février 2016 - 12:50:43

Fichier

nonParam-CEC98.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Marc Schoenauer, Andreas Ehinger, Bertrand Braunschweig. Non-parametric identification of geological models. IEEE Congress on Evolutionary Computation, May 1998, Anchorage, United States. IEEE Press, pp.136-141, 1998, Evolutionary Computation Proceedings, 1998. IEEE World Congress on Computational Intelligence. 〈10.1109/ICEC.1998.699490 〉. 〈hal-01225301〉

Partager

Métriques

Consultations de la notice

189

Téléchargements de fichiers

33