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Abstract—Bringing rapid assistance to motorists involved in
a traffic accident is an important service to be provided by
Intelligent Transportation System (ITS). Existing proposals to
automatic accident detection are based on the vehicle’s per-
ception point of view. This paper introduces situational aware-
ness based on the ‘“understanding” of conversational speech of
drivers/passengers using an automatic speech recognition (ASR)
system. Context-aware priority control and congestion control
schemes are presented to ensure coexistence of ASR-triggered
applications and cooperative awareness messages (CAM) in the
IEEE 802.11p system. Finally, application risk analysis and
performance evaluations of ASR and V2X communications are
carried out.

I. INTRODUCTION

The European Parliament launched a so-called emergency
call (eCall) initiative with the purpose to bring rapid assistance
to motorists involved in a collision anywhere in the European
Union. In the same context, the European Telecommunications
Standardisation Institute (ETSI) defined the SOS service, in
which an SOS alarm is transmitted to a service centre in case
of life threatening emergency [1]. The service delay can be
significantly short if the accident is detected automatically
based on e.g., a horizontal tilt sensor embedded in the vehicle.
However, if the car fails to automatically detect the situation,
the driver/passengers have to call an emergency service and
follow the existing standard protocol answering a series of
questions that may require a long delay until an ambulance is
dispatched.

What would be a breakthrough, in the authors’ opinion,
is that the emergency level shall be automatically detected
not only from the vehicle’s point of view but also from the
behaviours of the drivers/passengers, who are in the vehicles,
which are involved in the accident, or in the nearby vehicles.
This paper reports our study on automatic detection and notifi-
cation of emergency and other road situations based on “under-
standing” of conversational speech of drivers/passengers using
an ASR system. In fact, the use of ASR that automatically
recognizes drivers’ command words has been studied for
many years in order to allow drivers to give command and
control through speech (i.e., play music, ask navigation, etc)
while keeping their eyes and hands focused on driving. The
Verbmobil was first defined in 1992 with an eight years
initiative project to apply multilingual speech and language
technology inside cars [2]. However, the majority of the ex-
isting efforts on ASR concentrate on developing a robust

in-vehicle ASR system[3], [4], [5]. In this paper, we aim
to utilise ASR not only for drivers’ comfort but also for
emergency assistance. More specifically, ASRs are designed
to be embedded in vehicles that constantly recognize the
drivers’/passengers’ conversational speech, and classifies the
spoken data into different levels of importance (i.e., daily
conversation or SOS requests). Then, based on the context,
a vehicle to Internet communication is triggered to call the
necessary service.

Since the IEEE 802.11p[6] (and the European standard:
ETSI ITS-G5 [7]) is developed to support various types of ve-
hicular applications [1], it seems logic to study its applicability
to the above-mentioned ASR-triggered communication. The
IEEE 802.11p has been the focus of a great number of R&D
activities, and its applicability to road safety and efficiency
applications have been tested in some projects [8]. The key
weakness of the IEEE 802.11p is the channel congestion
problem, where channel is saturated when the number of the
802.11p-equipped vehicles is large. This problem is obviously
due to the limited resource at the 5.9 GHz band, but also
because all the vehicles are expected to periodically broadcast
CAMSs, which are needed for collision avoidance but tend
to load the wireless channel. Several distributed congestion
control (DCC) algorithms [1], [9] are proposed as a result of
the recent efforts. In this paper, we are interested in studying
the impacts of the IEEE 802.11 priority control and DCC for
coexistence of ASR-messages and CAMs.

The main contributions of this paper are as follows.

o Propose context aware priority control: The priority level
of a data traffic is generally fixed based on the application
type (i.e., video streaming uses VI, email uses BE). In
contrast, this work enables priority setting based on the
importance or urgency of the content of speech message,
in which the “understanding” of speech message is done
automatically using ASR.

e Study the impacts of priority control in channel con-
gestion situation: Priority control is designed to enable
higher communication performance to the data belonging
to higher priority class. However, this study finds that the
priority control mechanism provides a very little impact
when wireless channel is congested, and therefore we
suggest to apply priority control jointly with a DCC in or-
der to achieve an satisfying communication performance.
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Fig. 1: System overview.

II. ASR ENABLED ITS SERVICES USING V2X
COMMUNICATIONS SYSTEMS
A. Overall System Design
The target system is illustrated in Fig. 1. As specified by the

ETSI ITS standards, all vehicles periodically generate CAM
packets, which contain the position and moving direction of
the vehicles. Vehicles are also equipped with ASR systems that
constantly recognises speech drivers/passengers conversational
speech and then classifies the spoken data into different levels
of importance. Here, we defined four level of importance: (1)
basic conversation such as hotel or restaurant reservation; (2)
road-related conversation such as traffic-jam, navigation, etc;
(3) sickness-related conversation that require to contact doctor
or medicament; (4) accident-related conversation that may
require an emergency call. After that, it creates data packets
(we call ASR message) containing conversation messages and
the tag of the importance level. This tag classification of
conversation message correspond to the ITS applications of
(1) point of interest (POI), (2) traffic efficiency (3) remote
medical support and diagnosis, and (4) SOS, respectively. An
ASR message is then sent to a RSU, which will further send
the message to the target destination server over the Internet.
In the following subsections, we detail the ASR and V2X
communication systems.

B. ASR System
Given feature vectors of the speech signals Sg

[x1, 22, ..., zT], the state-of-the-art of statistical speech recog-
nition task is to find a word sequence Wy = [wy, w3, ..., W]
that maximizes the conditional probability P(Ws|Ss):

Wg = argmax P(Wg|Sg) = argmax P(Sg|Ws)P(Ws). (1)
Ws WS

Here, P(Wg) is called a language model (LM and represents
a priori probability for the word sequence independent of the

speech input signal, while P(Sg|Wy) is called an acoustic
model (AM) and represents the likelihood that the speech
signals of the source language were generated by the model.

The speech features are extracted every 10 ms with 25 ms
width using a widely known front-end mel-frequency cepstral
coefficients (MFCC). To incorporate the temporal structures
and dependencies, several adjacent frames of MFCCs are
stacked into one single super vector, which then reduced to
an optimum dimensions by applying a linear discriminant
analysis (LDA). After that, the resulting features are further
de-correlated using maximum likelihood linear transforma-
tion (MLLT)[10], which is also known as global semi-tied

covariance (STC)[11] transform. Moreover, speaker adaptive
training (SAT) [12] is performed using a single feature-space
maximum likelihood linear regression (fMLLR) [11] transform
estimated per speaker.

Acoustic models are trained on the features describe above.
Here, we applied two kinds of acoustic models: (1) Hidden
Markov Model/Gaussian Mixture Model (HMM/GMM) which
is a standard context-dependent cross-word triphone with
a three-state HMM topology. The HMM units are derived
from 39 phonemes of English, and they were trained with
GMM output probability; and (2) Hidden Markov Model/Deep
Neural Network (HMM/DNN) in which DNN replace the
GMM output probability. DNN used here is based on gen-
eralized maxout networks that uses non-linearity dimension-
reducing of p-norm (adopted from [13]). For language model,
we applied a standard n-grams language modelling approach,
where N — 1 words are used as context to predict the next
word. Here, we built trigram language models with Witten
Bell smoothing [14]. Our decoding algorithms use weighted
finite state transducers (WFSTs)[15].

Based on ASR outputs, we classifies the content into
four importance levels as described in Section II-A. Here,
classification is done simply based on a predefined critical
words. In consequence, if those critical words are failed to be
recognized, then ASR may put the data to a wrong importance
level.

C. V2X Communications System

Solutions including IP mobility management and fast han-
dover[16] are necessary for delivering data from a vehicle
to a server, which is in the Internet. The main interest of this
work is, however, coexistence of ASR messages, which belong
to different classes, and CAMs. ASR messages tagged with
different importance level by the ASR system require transmis-
sions to different service centres: POI, traffic efficiency, medi-
cal support, and SOS. We assume that the server addresses are
known at the vehicles thank to service announcements made by
RSUs[1]. Due to the different quality requirements of different
classes, it seems necessary to consider prioritisation to ASR
messages and CAMs. Note that, although, we can expect to
transmit the packets of e.g., SOS in the control channel (CCH)
and the packets of e.g., POI in the service channel (SCH),
due to the possibility of vehicles being equipped with single
interfaces, we consider transmissions of ASR messages and
CAMs in the same frequency channel.



Since wireless channel is much more lossy than that of the
wired systems, we focus on the V2X wireless communication
with priority and congestion control schemes:

o Priority control
The IEEE 802.11p provides differentiated channel access
to four access classes (ACs): VO, VI, BE, and BK, which
operate with different settings to Contention Window
size and Arbitrary Inter-Frame Space [6]. However, in the
existing communication systems, packet classification to
different ACs is made in a static manner often based on
the application type (e.g., video streaming uses VI class
and email uses BE). In contrast, we present two priority
control strategies that exploit the context awareness of
the ASR system:

1) Adaptive priority control: Each ASR message with
four different important levels is mapped directly to
the four ACs in their order of the importance (i.e.,
accident-related is mapped to VO, basic conversation
is mapped to BK). The decision is done in each
message basis.

2) High-class priority control: If one ASR message
is considered to possibly include an SOS alarm,
then all ASR messages will belong to the highest
priority level: VO. The decision is at one time for
all messages.

In any of the above-cases, CAMs are transmitted in BE.
« Congestion control

Since ASR messages share the channel resource with
CAMs, even if they sent on a high-priority AC, we believe
that it is important to consider channel congestion. ETSI
introduced Reactive DCC algorithm, in which each node
monitors the channel load (CL: channel busyness ratio)
and controls the CAM rate following a parameter table,
which maps CL and CAM generation interval [7]. In[9],
[17], it is shown that Reactive DCC creates channel load
oscillation, which largely degrades the communication
performance. In[17], we introduced a simple extension
of Reactive DCC, Asynchronous Reactive DCC, which
stabilises the channel load state based on randomised
interval setting. To this end, in this paper, we apply
Asynchronous Reactive DCC to CAMs and evaluate its
impact on the V2X communication performance.

D. ITS Services

To measure the reliability of ASR-based ITS services,
we define the overall expected (average) loss function that
measures losses incurred in transmitting a message based on
both ASR and V2X communication systems:

E[L] = ZZ/ij[PASR(%Ck)me(fC)}dfC, (2)
Fodp,

where Ly is a loss function of an action that recognize and
transmit speech message x with importance level j, while in

the truth condition C speech message x belongs to impor-

tance level k. [ Pasgr(x,Cy) is the error probability, where
R;

ASR classifies Cj, into the decision region R;. [ Pyaox(z) is
R;
the transmission error of x, which has the importance level of

7 (we assume that ASR and V2X errors are independent).

Obviously, Lj; = 0if k = j. Now we consider two types of
critical errors: (1) “False positive” in which a non emergency
message (e.g., basic daily conversation) is incorrectly recog-
nized by the ASR as an emergency message and transmitted
by the communication system to the SOS server. In this case,
an SOS service may be activated but not used; (2) “False
negative” in which an SOS request is incorrectly recognized
by the ASR as a non-emergency conversation, or it is correctly
recognized but the communication system failed to transmit to
the SOS server. In this case, no emergency service is provided
to the drivers/passengers, who need a treatment, resulting in a
possible death. The consequences of the above-mentioned two
errors are dramatically different; the loss function of the false
negative should be set to a significantly larger value compared
to that of the false positive.

III. PERFORMANCE EVALUATION
A. ASR Performance

We applied the state-of-the-art ASR technologies described
in Section II-B based on Kaldi speech recognition toolkit [18].
Our original ASR engine [19] was basically trained for general
purpose using TED-LIUM corpus [20]. It is a speech data
corpus made from open-domain spontaneous speech of TED
Talks', including audio talks and their transcriptions available
on the TED website. In total, there are 774 audio talks which
consists of about 118 speech hours. For language model,
we use cantab Language model [21] consisting 155M tokens
entropy from 150K word vocabulary that extracted from 1
billion word of google n-gram?. We call these models as “base-
AM” and “base-LM”, respectively.

As topic-dependent modeling has proven to be an effective
way of improving the quality of models, we also utilize the
ATR basic travel expression corpus (BTEC) that has served
as the primary source for developing broad coverage speech
translation systems[22]. The sentences were collected by
bilingual travel experts from Japanese/English sentence pairs
in travel domain phrasebooks that covers travel conversation,
including medical sickness or accident related conversation.
In total, there are about 400 speakers where each speaker
utter about 400 sentences. It includes also several accents of
English: United States, Australian, and British. We call these
models as “adapt-AM” and “adapt-LM”, respectively.

The test data is selected from BTEC test set which consist
of 2400 utterances (there are about 8 speakers where each
speaker utter about 300 sentences) covering four level of
importance described in Section II. The sentence examples of
each level of importance are shown in Table I. To investigate
the impact of the ASR quality on ITS applications, we simulate
various feature extractions, AM and LM set-up as described
in TableIl. The ASR word accuracy and the tag classifier
accuracy are shown in Fig. 2. As expected, the better speech

Uhttp://www.ted.com/talks
Zhttps:/code.google.com/p/1-billion-word-language-modeling-benchmark/
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TABLE I: Example of ASR messages on 4 priority level.

Level ASR messages
1 How much does it cost to get to the restaurant by taxi?
2 How many hours before we arrive in Tokyo?
3 I feel sick.
4 There’s been a traffic accident. Someone has been injured.

TABLE II: Simulation of various quality of ASR systems.

ASR systems Feat AM LM
ASR1 MFCC-deltas Base-AM Base-LM
ASR2 LDA-MLLT Base-AM Base-LM
ASR3 LDA-MLLT Base-AM Adapt-LM
ASR4 LDA-MLLT Base-AM (DNN) Adapt-LM
ASR5 LDA-MLLT-SAT Base-AM Adapt-LM
ASR6 LDA-MLLT-SAT Base-AM (DNN) Adapt-LM
ASR7 LDA-MLLT-SAT | Adapt-AM (DNN) | Adapt-LM

feature representation is used, the better the ASR accuracy,
and the topic-adapted model gives significant improvement
compared to general purpose model (base-AM and base-
LM). Nevertheless, the AM1 with 57.5% word accuracy is
surprisingly able to reach 88.6% tag accuracy. However, in the
current evaluations, the errors are considered as equivalent. In
Section III-C, we will discuss risk analysis, where the errors
have different impacts on ITS services.
B. V2X Communication Performances

The packet delivery ratio (PDR) and end-to-end delay
performances of the ASR traffic are evaluated using the NS3
network simulator (version 3.21), which includes the TCP/IP
protocol stuck and the IEEE 802.11p. CAM and ASR message
generators and the DCC algorithm are implemented to the
NS3. Simulations are carried out for a scenario and parameters
suggested by ETSI[7]. Specifically, vehicles are uniformly
distributed on a highway with length of 1000 meters. RSUs
are installed in the middle line (between two directions). If no
DCC is applied, the CAM generation interval is 0.1 seconds.
The rest of the simulation parameters are listed in Table III.
The ASR system (see Fig.l1) converts spoken data to text

TABLE III: Simulation parameters for V2X communication.

300 seconds
3-lanes/2-directions
[15, 60] m
200 m
LogDisance, exponent 2
IEEE 802.11p (6Mbps)

Simulation time
Highway structure
Inter-car distance
RSU inter-location
Fading model
Wireless access technology

Transmission power 23 dBm
Modulation scheme QPSK 1/2
ASR/CAM data size 200/400 Bytes
ASR packet interval 5 seconds

data and assigns importance levels to each text (sentence).
The ASR message generator implemented in NS3 reads the
text files, generates packets, and sends with priority labels
following High-class or Adaptive priority control strategies
(See SectionII-C). 1 out of 10 vehicles are randomly selected
to create an ASR data that consists of 50 packets (sentences).
The ASR messages are routed to the service centres via
the RSU, which corresponds to the strongest receive signal
strength.

Figures 3 and 4 are the simulation results for different inter-
car distances obtained without and with DCC, respectively.
Note that due to the space constraint, we do not show CAM
results. The detailed evaluations on CAM performances under
DCC can be found in[17].

From Fig.3, we first notice rather obvious results for
Adaptive priority control: the packets sent at higher priority
achieve better performance. On the other hand, what is less
obvious is that High-class priority control provides always
better performance than any of the ACs of Adaptive strategy,
even that of the VO class (Adaptive-VO). The reason can be
explained as follows. In High-class strategy, all ASR messages
are sent in the VO class, thus only VO and BE (CAMs)
classes compete for channel access and hence the VO (ASR)
packets get a very good change to succeed thank to the large
differentiation between VO and BE classes [6]. On the other



hand, in Adaptive strategy, since ASR packets are classified
to 4 ACs, all the ACs participate to competition, reducing the
success probability of the individual ACs due to the small
differentiation between neighbouring ACs (BK and BE, BE
and VI, and VI and VO).

Figure 4 compare the performances when DCC is applied.
The figure clearly shows the importance of congestion control:
the performances of all the ACs is sufficiently high regardless
of the priority control strategies.

C. Risk Analysis of ITS Services

Figure 5 depicts the overall expected loss given the worse
and the best ASR systems (ASR1 and ASR?7) for the scenarios
where the inter-car distance is 15, 30, and 60 m, and with
or without DCC. As can be expected, the denser the traffic
is the higher the expected loss regardless the performance
of ASR system. Considering ASR performance, the conse-
quences of two possible ASR errors (described in Section II-D)
are dramatically different. Hence the loss penalty set to the
false negative is 1000 times greater than that set to the false
positive (see Section II-D). Figure 5 reveals that the significant
difference in word accuracy give a significant impact in the
expected loss. ASR1 (base-AM and base-LM) with 57.5%
word accuracy provide very high risk, conceivably because it
failed to recognise many critical words. The optimum results
are provided by ASR7 (adapted-AM and adapted-LM) with
92.3% word accuracy which can provide nearly zero risk when
priority control and DCC are performed.
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Fig. 5: Expected loss of ITS applications

IV. CONCLUSION

This paper presents our work on context-awareness and
priority control in V2X communications exploiting automatic
speech recognition (ASR) system. Drivers/passengers conver-
sation are converted to text data and classified to different ac-
cess categories (ACs) based on the importance of the content.
Coexistence issue of ASR traffic and CAMs is studied; in order
to ensure the quality of the ASR traffic, context-aware priority
control and distributed congestion control (DCC) schemes are
jointly applied. The simulation results reveal the feasibility
of context-aware priority control as well as the importance
of DCC. The application risk analysis shows that ASR7
(adapted-AM and adapted-LM) scheme, which has 92.3%
word accuracy, can provide nearly zero risk, when a priority
control and DCC are applied for the V2X communication.

However the present studies were confined to relatively con-
trolled data sets. In real condition, drivers/passengers may only
chat about SOS among themselves, without an intention to

request an ITS service. Therefore, in our future work, it would
worthwhile to investigate robust classification techniques to
define importance level of ASR messages, that could consider
and differentiate drivers/passengers intention.
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