
HAL Id: hal-01225665
https://inria.hal.science/hal-01225665

Submitted on 6 Nov 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Orchestrating Masses of Sensors: A Design-Driven
Development Approach

Milan Kabáč, Charles Consel

To cite this version:
Milan Kabáč, Charles Consel. Orchestrating Masses of Sensors: A Design-Driven Development
Approach. 14th International Conference on Generative Programming: Concepts & Experience
(GPCE’15), Oct 2015, Pittsburgh, Pennsylvania, United States. �10.1145/2814204.2814226�. �hal-
01225665�

https://inria.hal.science/hal-01225665
https://hal.archives-ouvertes.fr


Orchestrating Masses of Sensors:
A Design-Driven Development Approach

Milan Kabáč
Inria Bordeaux, France
milan.kabac@inria.fr

Charles Consel
Inria Bordeaux & University of Bordeaux, France

charles.consel@inria.fr

Abstract
This paper proposes a design-driven development approach that
is dedicated to the domain of orchestration of masses of sensors.
The developer declares what an application does using a domain-
specific language (DSL). Our compiler processes domain-specific
declarations to generate a customized programming framework that
guides and supports the programming phase.

Categories and Subject Descriptors D.2.11 [Software Engineer-
ing]: Software Architectures—domain-specific architectures, lan-
guages, patterns

Keywords Generative programming, domain-specific languages,
programming frameworks, sensors, pervasive computing

1. Introduction
Masses of sensors are being deployed at the scale of metropolitan
areas, country-wide transportation infrastructures, and campuses of
buildings. Examples include smart parking lots across entire cities
that can direct drivers to available parking spaces, and pollution
sensors that are distributed over a city to measure pollution levels
and warn frail persons. In this context, the key challenge is to
harness the potential benefits of such infrastructures by providing
users with innovative and useful services. To achieve this goal,
developing software is a crucial activity that enables exploring
the scope of potential services, anticipating and responding to
users’ needs. Developing applications that orchestrate masses of
objects raises major challenges because of the scale at which this
orchestration takes place. Let us introduce the main challenges by
reviewing the typical conceptual phases of an application in this
domain, namely service discovery, data gathering and actuating.
Service discovery. In contrast with standard service discovery that
addresses individual objects, masses of sensors demand a high-level
approach to designating subsets of interest. Specifically, selecting
objects of interest among a myriad of objects should be tamed by
application-specific abstractions that provide meaningful constructs
for grouping sensors. For example, an application may need to
manipulate parking spaces at the level of lots or districts. The de-
veloper should be able to directly express these application-specific
concepts. Beyond expressiveness, when considering masses of sen-

sors, the scalability of a service discovery mechanism is critical to
making an orchestrating application usable. In this context, exploit-
ing information about the application behavior is essential to reduce
the cost of such activites as service discovery and data gathering,
as shown by various works [6, 7]. Furthermore, it has been shown
that a mismatch between the application behavior and the network
routing algorithms can result in poor performance [6].
Data gathering. Delivery models used to gather data must accom-
modate masses of sources. For example, applications may require
data to be pushed from any number of CO2 sensors located in un-
derground parking lots, when a given air pollution level is reached.
Delivery models have a direct impact on the structure and the logic
of an application. Besides, making explicit the delivery models used
by an application can be valuable information to ensure an optimal
routing structure of the underlying sensor network [7].
Actuating. Processing data may result in taking actions by actuating
devices. For example, computing the number of available spaces
in parking lots allows to periodically update this number on the
entrance screen of each lot.

1.1 Our Approach
To address the challenges examined earlier, we propose a software
development approach that covers all the phases of an orchestrating
application. To do so, we introduce a domain-specific language
dedicated to designing orchestrating applications. Design declara-
tions are then processed to support and guide the programmer using
generative programming. This strategy allows to abstract over the
characteristics of the sensor network.
Domain-specific design language. To cope with the many dimen-
sions of the orchestration of masses of sensors, we introduce a de-
sign language that is dedicated to this domain, allowing the devel-
oper to declare what an application does, prior to programming
it. This design language, named DiaSwarm, consists of constructs
dedicated to manipulating objects at a large scale. For example, it
provides high-level constructs to declare delivery models of sensors
at design time.
Design-specific programming frameworks. We have developed a
compiler for DiaSwarm that produces programming support cus-
tomized with respect to a given DiaSwarm design. This program-
ming support takes the form of a programming framework [4]. For
example, the DiaSwarm compiler generates code that gathers data
from sensors with declared delivery models, allowing the developer
to concentrate on what to do once the data is gathered.

1.2 Our Contributions

DiaSwarm. We introduce a design language dedicated to the do-
main of orchestrating masses of objects. This language provides
high-level, declarative constructs that allow a developer to deal with
masses of objects at design time, prior to programming applications.



Compiler. We have developed a compiler that generates program-
ming frameworks dedicated to DiaSwarm designs. These program-
ming frameworks provide high-level support to the developer, while
ensuring that programming is driven by the design.

2. DiaSwarm
Our presentation of DiaSwarm focuses on the aspects pertaining to
orchestrating objects in the large. The other aspects are inspired by a
design language, named DiaSpec, dedicated to traditional pervasive
computing environments (e.g., homes, offices) and introduced by
Cassou et al. [3].

2.1 Working Example
Throughout this paper, we illustrate our approach using a parking
management system, whose purpose is to monitor the occupancy
of parking lots and regulate the flow of traffic to direct cars to
available parking spaces. The working example is inspired by
existing smart city projects [1]. In our scenario, we envision an
infrastructure capable of monitoring the availability of parking
spaces. Sensors measure magnetic field variations to determine
whether a parking space is occupied by a car. They are encapsulated
inside a waterproof casing, buried underground, and emit their status
at regular intervals. The application gathers values from these
sensors and provides drivers with the number of available parking
spaces for a given parking lot by displaying this information on a
screen at the entrance of the lot. In addition, the application suggests
parking lots to drivers entering the city in an attempt to optimize
the flow of traffic. In this case, suggestions are being broadcast to
drivers via panels located at the entrances to the city. Furthermore,
the application processes sensor data acquired over a period of 24
hours to determine the average occupancy of a parking lot. Parking
managers are kept informed about the occupancy level of a parking
lot via messages (e.g., email, text messages).

2.2 Device Declarations
An infrastructure relies on numerous objects that allow applications
to determine the current state of the environment and to execute
actions accordingly. We refer to these elementary building blocks
as devices, whether they are hardware (e.g., sensors) or software
(e.g., web services). A device declares its ability to sense the state
of the environment as a source. Also, a device may have an action
facet that comprises a set of operations that can alter the current
state of the environment. Device properties (e.g., id, location, etc.)
allow device instances to be distinguished from each other; they are
called attributes and are defined at deployment time. Finally, device
declarations offer inheritance, promoting the reusability of sources,
actions and attributes. Figure 1 shows device declarations for the
parking management system. Line 1 declares the PresenceSensor
device, which consists of an attribute (line 2), defining the location
of the parking space it is associated with. This device only declares
one source of information (line 3): a boolean value indicating
whether a car is present at the space associated with a sensor. Two
actuators are defined in lines 5 and 7. Each class of actuator defines
a location attribute specific to its purpose (i.e., parking lot and city
entrance). Both share a method to display information (update
– line 4). Likewise, the Messenger actuator (line 9) declares a
method (sendMessage – line 9) to provide parking managers with
information about parking lots.

2.3 Application Design
In our target domain, applications can be seen as interacting with an
external environment to measure its state via sensors and modify it
via actuators. For such a domain, the application logic is naturally
expressed with a Sense/Compute/Control (SCC) paradigm, depicted

1 device PresenceSensor
2 { attribute parkingLot as ParkingLotEnum;
3 source presence as Boolean; }
4 device DisplayPanel { update(status as String); }
5 device ParkingEntrancePanel extends DisplayPanel
6 { attribute location as ParkingLotEnum; }
7 device CityEntrancePanel extends DisplayPanel
8 { attribute location as CityEntranceEnum; }
9 device Messenger { sendMessage(message as String); }

10 enumeration ParkingLotEnum { A22, B16, D6,...}
11 enumeration CityEntranceEnum { NORTH_EAST_14Y, SOUTH_EAST_1A,...}

Figure 1. Device declarations.

Environment

act on

sensed by

context
data

raw data

orders

Contexts

Controllers

Sources

Actions

Devices

Figure 2. The Sense/Compute/Control paradigm.

in Figure 2. The SCC paradigm, promoted by Taylor et al. [8], is
general enough for orchestrating objects both in the small and in
the large. Consequently, this aspect of DiaSwarm reuses the way
DiaSpec declares the design of an application [2]. Specifically, a de-
sign consists of (1) declarations of components and devices and (2)
descriptions how they interact with each other, forming an acyclic,
directed graph from sensors to actuators. DiaSpec introduces two
types of components: contexts and controllers. Context compo-
nents interact with device sources; they receive raw data from the
devices, via their sources. They refine (e.g., filter, aggregate) this
data into application values, possibly interacting with other context
components. When the environment needs to be acted on, a con-
text component declares an interaction with controller components.
These components are invoked with refined values and determine
what and how actuators are to be invoked.

Figure 3 presents a graphical view of the parking management
application in the SCC paradigm. The application declares the
PresenceSensor device, which produces presence values via its
presence source to the ParkingAvailability, ParkingUsage-
Pattern and AverageOccupancy contexts. The ParkingAvail-
ability context computes the number of available parking spaces
in parking lots. This information is passed to the ParkingEn-
trancePanel controller; it is in charge of refreshing the number
of available spaces. To do so, this controller component invokes the
update method of the display panel at the entrance of parking lots.

The ParkingSuggestion context provides a list of suggestions
of parking lots, based on the information computed by the Parking-
Availability component and the usage statistics of parking lots,
accumulated by the ParkingUsagePattern component. The list
of suggestions is passed to the CityEntrancePanel controller that
administers display panels located at the entrances of the city. The
AverageOccupancy context calculates the average occupancy of
individual parking lots and passes this information to the Messenger
controller, which notifies parking managers by sending a message
via the Messenger device.

As can be seen in Figure 3, at a high level, the design of
our parking management application does not depend on whether
masses of sensors are involved. However, as we examine this
application further by presenting the declarations of its constituent
components, the need to account for masses of sensors becomes
evident, calling for specific constructs. This situation first arises
when considering how a context can gather data from a large number
of sensors.



update

D
ev
ic
es

(s
o
u
rc
es
)

C
o
n
te
xt
s

D
ev
ic
es

(a
ct
io
n
s)

C
o
n
tr
o
lle
rs

ParkingEntrance
PanelController

Parking
EntrancePanel

CityEntrance
PanelController

Messenger
Controller

Update

CityEntrance
Panel

presence

Presence
Sensor

update

CityEntrance
Panel

Update

CityEntrance
Panel

sendMessage

Messenger

Parking
Suggestion

Parking
UsagePattern

Parking
Availability

Average
Occupancy

Figure 3. Graphical view of the parking management application.

Data gathering. Because of the nature of our domain, context
components mostly gather information from objects at a large
scale. To cope with this dimension, our declarative approach
provides three data delivery models, inspired by the domain of
wireless sensor networks [9], namely periodic, event-driven and
query-driven.

Let us illustrate these three data delivery models with our work-
ing example and its DiaSwarm declarations given in Figure 4. A
context is declared with the keyword context, as illustrated in line 1
with the declaration of the ParkingAvailability context, whose
output type is a sequence of values of type Availability. Next,
line 2 defines how this context component interacts with its input
sensor, namely, PresenceSensor. Specifically, the data delivery
model for this context is defined as periodic. Indeed, recall that
presence sensors are assumed to send their status periodically. Thus,
our declaration specifies that the ParkingAvailability context
must be activated following a periodic model, every 10 minutes (i.e.,
<10 min> with presence values). However, the application and the
myriad of presence sensors are managed independently. This means
that values from the presence sensors are gathered at the sensors’
pace, and values are pushed to the application at the application’s
pace, specified by the context declaration. If the context is faster
than the sensors, it will be activated with the same values. If it is too
slow, it will miss values. This latter case is illustrated by the Par-
kingUsagePattern that collects parking space occupancy every
hour (line 7), as opposed to every 10 minutes, because usage pat-
terns can be determined from coarser-grained information. Finally,
the AverageOccupancy context determines the average occupancy
of a parking lot by processing sensor data acquired over 24 hours
(line 15).

DiaSwarm also offers two other delivery models: event-driven
and query-driven. They are denoted by when provided and when
required activation conditions, respectively. The ParkingSugges-
tion context requires data from the ParkingAvailability and
ParkingUsagePattern contexts to produce a list of suggestions of
parking lots. This list is computed when the ParkingAvailabil-
ity context outputs a result (see line 19). In fact, all components
declared as interacting with the ParkingAvailability context will
be invoked whenever it produces a value. How the ParkingAvail-
ability context produces values is declared in line 4: always
publish. This construct specifies that the context must publish an
output to subscribed components whenever it is activated (i.e., every
10 minutes). The second input to the ParkingSuggestion context

1 context ParkingAvailability as Availability[] {
2 when periodic presence from PresenceSensor <10 min>
3 grouped by parkingLot
4 always publish;
5 }
6 context ParkingUsagePattern as UsagePattern[] {
7 when periodic presence from PresenceSensor <1 hr>
8 grouped by parkingLot
9 no publish;

10

11 when required;
12 }
13 context AverageOccupancy as ParkingOccupancy[] {
14 when periodic presence from PresenceSensor <10 min>
15 grouped by parkingLot every <24 hr>
16 always publish;
17 }
18 context ParkingSuggestion as ParkingLotEnum[] {
19 when provided ParkingAvailability
20 get ParkingUsagePattern
21 always publish;
22 }
23 controller ParkingEntrancePanelController {
24 when provided ParkingAvailability
25 do udpate on ParkingEntrancePanel;
26 }
27 controller CityEntrancePanelController {
28 when provided ParkingSuggestion
29 do update on CityEntrancePanel;
30 }
31 controller MessengerController {
32 when provided AverageOccupancy
33 do sendMessage on Messenger;
34 }
35 structure Availability {
36 parkingLot as ParkingLotEnum; count as Integer;}
37 structure UsagePattern {
38 parkingLot as ParkingLotEnum; level as UsagePatternEnum;}
39 structure ParkingOccupancy {
40 parkingLot as ParkingLotEnum; occupancy as Float;}
41 enumeration UsagePatternEnum { HIGH, MODERATE, LOW }

Figure 4. The design of the parking management application.

is the ParkingUsagePattern context. The interaction with this
context is query-driven, as denoted by the declaration get used in
line 20. In fact, the ParkingUsagePattern context never publishes
values (see line 9). It is assumed that its clients request values from
it. This activation condition is expressed by the when required
declaration.
Service discovery at design time. Discovering in the large requires
high-level constructs that are application-tailored. To achieve this
goal, we propose discovery constructs that leverage application-
specific design concepts. Specifically, DiaSwarm offers the
grouped by construct parameterized by an attribute. For exam-
ple, in line 3, the ParkingAvailability context requires grouping
presence statuses in parking spaces by parking lot, enabling avail-
ability to be computed for each lot.

Note that in DiaSwarm, service discovery is part of the design
phase, contrasting with existing service discovery that are part of
the programming phase [10]. This is a key feature to achieve
scalability, as discussed later. Furthermore, because our service
discovery approach is global (i.e., not specific to individual sensors),
it abstracts over sensor failures; this aspect is delegated to an
underlying middleware layer.
Actuating. The declaration of a controller component begins with
the controller keyword followed by its name. A controller is ac-
tivated exclusively by the when provided condition. For example,
the ParkingEntrancePanel controller (line 23) is activated by the
ParkingAvailability context (line 24), causing the update ac-
tion to be triggered on the ParkingEntrancePanel device (line 25).



3. Programming Framework
DiaSwarm designs are processed by a compiler that generates cus-
tomized programming frameworks, currently written in Java. These
frameworks provide domain-specific functionalities, including ser-
vice discovery, data gathering and component interaction. To con-
nect the design phase to the programming phase, the DiaSwarm
compiler generates an abstract class for each component declara-
tion. The application logic is implemented by subclassing each
abstract class, which in turn requires the abstract methods to be im-
plemented by filling these placeholders with code. The support for
devices is examined in our previous work [3].

3.1 Context Components
We start by examining the implementation of the ParkingAvail-
ability context component, shown in Figure 5. The developer ex-
tends the generated AbstractParkingAvailability class with the
ParkingAvailability class. This subclassing requires the devel-
oper to implement a callback method (i.e., onPeriodicPresence)
that receives the data gathered from the presence sensors, in confor-
mance with the DiaSwarm declaration. Because of the grouped by
directive, the callback method receives a list of parking spaces
indexed by the parkingLot attribute. This directive is com-
piled into a map, which holds entries of the <ParkingLotEnum,
List<Boolean>> key-value type (line 5), allowing the developer to
focus on the data treatment. This treatment is performed by a for
loop (line 8) over this map. Each iteration processes the parking
spaces of a given parking lot. Each entry holds a list of values, indi-
cating the availability of individual parking spaces in a parking lot.
In our example, we simply count the number of available parking
spaces for each parking lot (line 11). Our example implementation
of ParkingAvailability returns a list of counts of available park-
ing spaces, indexed by parking lot identifiers, which matches the
type of the component declaration. As can be noted, our generative
approach allows the developer to abstract over how sensed data are
gathered. In particular, the onPeriodicPresence method can be
implemented without knowing the frequency at which sensors emit
measurements, and how many sensors are involved.

3.2 Controller Components
The role of a controller component is to trigger actions on devices to
alter the current state of the environment. Similar to a context, a con-
troller is implemented by subclassing the generated abstract class,
as illustrated in Figure 6. The generated abstract class Abstract-
ParkingEntrancePanel ensures that the ParkingEntrancePanel
controller receives data from the ParkingAvailability context in
conformance with design declarations. As a result, the ParkingEn-
trancePanel controller will be notified via the onParkingAvail-
ability callback method (line 4) whenever the ParkingAvail-
ability context publishes the availability of parking lots. The
onParkingAvailability method is implemented by overriding
the generated abstract method. The arguments passed to the call-
back method comprise context data (parkingAvailability) and
the discover object. This object is set by the programming frame-
work according to which actuators (and operations) were declared
as interacting with this controller component. As shown in line 9,
the discover object is used to access the display panel of each
parking lot. To do so, the discover object returns a collection of
proxies, wrapped inside a composite object, following the compos-
ite design pattern [5]. A proxy provides a means to invoke a remote
device, without the need to manage distributed systems details.

4. Conclusion and Future Work
We have presented DiaSwarm, a design language dedicated to
the domain of applications orchestrating masses of sensors. We

1 public class ParkingAvailability
2 extends AbstractParkingAvailability {
3 @Override
4 protected List<Availability> onPeriodicPresence(
5 Map<ParkingLotEnum, List<Boolean>> presenceByParkingLot) {
6 List<Availability> availabilityList =
7 new ArrayList<Availability>();
8 for(Entry<ParkingLotEnum, List<Boolean>> parkingLot :

presenceByParkingLot.entrySet()) {
9 int sum = 0;

10 for (Boolean presence : parkingLot.getValue())
11 { if (!presence) sum++; }
12 availabilityList.add(
13 new Availability(parkingLot.getKey(), sum);
14 } return availabilityList;
15 }}

Figure 5. ParkingAvailability context implementation.

1 public class ParkingEntrancePanelController extends
2 AbstractParkingEntrancePanelController {
3 @Override
4 protected void onParkingAvailability(Discover discover,
5 ParkingAvailabilityValue parkingAvailability) {
6 for(Availability availability :
7 parkingAvailability.getValue()) {
8 String status = getStatus(availability);
9 discover.parkingEntrancePanels().whereLocation(

10 availability.getParkingLot()).update(status);
11 }}}

Figure 6. ParkingEntrancePanel controller implementation.

have introduced domain-specific declarations that express the key
aspects of such applications: service discovery, data gathering, and
actuating. We have illustrated our approach with a working example
that exercised the salient features of our language. In the future, we
plan to investigate how design declarations can be used to expose
parallelism to implement efficient strategies for processing large
amounts of data collected from sensors.

References
[1] Libelium. Smart City project in Santander to mon-

itor Parking Free Slots. http://www.libelium.com

/smart_santander_parking_smart_city.
[2] D. Cassou, E. Balland, C. Consel, and J. Lawall. Leveraging Software

Architectures to Guide and Verify the Development of Sense/Compute/-
Control Applications. In ICSE ’11, 2011.

[3] D. Cassou, J. Bruneau, C. Consel, and E. Balland. Towards a Tool-
based Development Methodology for Pervasive Computing Applica-
tions. IEEE TSE, 38(6):1445–1463, 2012.

[4] M. Fayad and D. C. Schmidt. Object-oriented application frameworks.
Commun. ACM, 40(10):32–38, 1997.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley
Longman Publishing Co., Inc., 1995.

[6] J. Heidemann, F. Silva, and D. Estrin. Matching data dissemination
algorithms to application requirements. In SenSys ’03, 2003.

[7] X. Liu, Q. Huang, and Y. Zhang. Balancing push and pull for
efficient information discovery in large-scale sensor networks. IEEE
Transactions on Mobile Computing, 6(3):241–251, 2007.

[8] R. N. Taylor, N. Medvidovic, and E. M. Dashofy. Software
Architecture: Foundations, Theory, and Practice. Wiley Publishing,
2009.

[9] S. Tilak, N. B. Abu-Ghazaleh, and W. Heinzelman. A Taxonomy of
Wireless Micro-Sensor Network Models. SIGMOBILE Mob. Comput.
Commun. Rev., 6(2):28–36, 2002.

[10] F. Zhu, M. W. Mutka, and L. M. Ni. Service Discovery in Pervasive
Computing Environments. IEEE Pervasive Computing, 4(4):81–90,
2005.

http://www.libelium.com/smart_santander_parking_smart_city
http://www.libelium.com/smart_santander_parking_smart_city

	Introduction
	Our Approach
	Our Contributions

	DiaSwarm
	Working Example
	Device Declarations
	Application Design

	Programming Framework
	Context Components
	Controller Components

	Conclusion and Future Work

