A. Boularias, J. Kober, and J. Peters, Relative entropy inverse reinforcement learning, Proc. of AISTATS, 2011.

L. Breiman, J. Friedman, R. Olshen, and C. Stone, Classification and regression trees, 1984.

S. Chandramohan, M. Geist, F. Lefèvre, and O. Pietquin, User simulation in dialogue systems using inverse reinforcement learning, Proceedings of the 12th Annual Conference of the International Speech Communication Association, pp.1025-1028, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00652446

T. M. Cover and P. E. Hart, Nearest neighbor pattern classification, IEEE Transactions on Information Theory, vol.13, issue.1, pp.21-27, 1967.
DOI : 10.1109/TIT.1967.1053964

T. Evgeniou, M. Pontil, and T. Poggio, Regularization networks and support vector machines, Advances in Computational Mathematics, vol.13, issue.1, pp.1-50, 2000.
DOI : 10.1023/A:1018946025316

E. Klein, M. Geist, B. Piot, and O. Pietquin, Inverse reinforcement learning through structured classification, Proc. of NIPS, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00778624

R. Niewiadomski, S. Pammi, A. Sharma, J. Hofmann, R. T. Tracey et al., Visual laughter synthesis: Initial approaches, Proceedings of the Interdisciplinary Workshop on Laughter and other Non-Verbal Vocalisations, pp.10-11, 2012.

R. Niewiadomski, J. Hofmann, T. Urbain, T. Platt, J. Wagner et al., Laugh-aware virtual agent and its impact on user amusement, Proc. of AAMAS, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00869751

O. Pietquin and T. Dutoit, A probabilistic framework for dialog simulation and optimal strategy learning, IEEE Transactions on Audio, Speech and Language Processing, vol.14, issue.2, pp.589-599, 2006.
DOI : 10.1109/TSA.2005.855836

URL : https://hal.archives-ouvertes.fr/hal-00207952

O. Pietquin and H. Hastie, A survey on metrics for the evaluation of user simulations, The Knowledge Engineering Review, vol.11, issue.01, pp.59-73, 2013.
DOI : 10.1016/j.csl.2009.03.002

URL : https://hal.archives-ouvertes.fr/hal-00771654

B. Piot, M. Geist, and O. Pietquin, Learning from Demonstrations: Is It Worth Estimating a Reward Function?, Proc. of ECML, 2013.
DOI : 10.1007/978-3-642-40988-2_2

URL : https://hal.archives-ouvertes.fr/hal-00916938

B. Piot, M. Geist, and O. Pietquin, Boosted and rewardregularized classification for apprenticeship learning, Proc. of AAMAS, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01107837

B. Piot, O. Pietquin, and M. Geist, Predicting when to laugh with structured classification, Proc. of Interspeech, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01104739

D. Pomerleau, Alvinn: An autonomous land vehicle in a neural network, 1989.

M. Puterman, Markov decision processes: Discrete stochastic dynamic programming, 1994.
DOI : 10.1002/9780470316887

N. Ratliff, J. Bagnell, and M. Zinkevich, Maximum margin planning, Proceedings of the 23rd international conference on Machine learning , ICML '06, 2006.
DOI : 10.1145/1143844.1143936

N. Ratliff, J. Bagnell, and S. Srinivasa, Imitation learning for locomotion and manipulation, 2007 7th IEEE-RAS International Conference on Humanoid Robots, 2007.
DOI : 10.1109/ICHR.2007.4813899

S. Ross and J. Bagnell, Efficient reductions for imitation learning, Proc. of AISTATS, 2010.

S. Russell, Learning agents for uncertain environments, Proc. of COLT, 1998.

M. Schröder, E. Bevacqua, R. Cowie, F. Eyben, H. Gunes et al., Building Autonomous Sensitive Artificial Listeners, IEEE Transactions on Affective Computing, vol.3, issue.2, pp.165-183, 2012.
DOI : 10.1109/T-AFFC.2011.34

U. Syed and R. Schapire, A reduction from apprenticeship learning to classification, Proc. of NIPS, 2010.

B. Taskar, V. Chatalbashev, D. Koller, and C. Guestrin, Learning structured prediction models, Proceedings of the 22nd international conference on Machine learning , ICML '05, 2005.
DOI : 10.1145/1102351.1102464

A. Tikhonov and V. Arsenin, Methods for solving ill-posed problems, Nauka, vol.15, 1979.

J. Urbain, H. Cakmak, and T. Dutoit, Evaluation of HMMbased laughter synthesis, Proceedings of the 38th International Conference on Acoustics, Speech, and Signal Processing, pp.7835-7839, 2013.

V. Vapnik, Statistical learning theory, 1998.