F. Alouges, A. Desimone, and A. Lefebvre, Optimal Strokes for Low Reynolds Number Swimmers: An Example, Journal of Nonlinear Science, vol.209, issue.3, pp.277-302, 2008.
DOI : 10.1007/s00332-007-9013-7

A. Agrachev and A. Sarychev, Abnormal sub-Riemannian geodesics: Morse index and rigidity, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, vol.13, issue.6, pp.635-690, 1996.
DOI : 10.1016/S0294-1449(16)30118-4

V. I. Arnol?d, S. M. Guse?-in-zade, and A. N. Varchenko, Singularities of differentiable maps, 1985.

G. K. Batchelor, Slender-body theory for particles of arbitrary cross-section in Stokes flow, Journal of Fluid Mechanics, vol.16, issue.03, pp.419-440, 1970.
DOI : 10.1063/1.1730995

L. E. Becker, S. A. Koehler, and H. A. Stone, On self-propulsion of micro-machines at low Reynolds number: Purcells three-link swimmer, Journal of Fluid Mechanics, vol.490, pp.15-35, 2003.
DOI : 10.1017/S0022112003005184

A. Bella¨?chebella¨?che, The tangent space in sub-Riemannian geometry, J. Math. Sci, vol.35, pp.461-476, 1997.

M. Berger, La taxonomie des courbes, Pour la science, vol.297, pp.56-63, 2002.

P. Bettiol, B. Bonnard, L. Giraldi, P. Martinon, and J. Rouot, 10 The Purcell three-link swimmer: some geometric and numerical aspects related to periodic optimal controls, 2015.
DOI : 10.1515/9783110430394-010

F. Bloch, Nuclear induction, pp.7-8, 1946.

F. Bonnans, D. Giorgi, S. Maindrault, P. Martinon, and V. Grélard, Bocop -A collection of examples, Inria Research Report, vol.8053, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00726992

B. Bonnard, Feedback Equivalence for Nonlinear Systems and the Time Optimal Control Problem, SIAM Journal on Control and Optimization, vol.29, issue.6, pp.1300-1321, 1991.
DOI : 10.1137/0329067

B. Bonnard, J. Caillau, and E. Trélat, Geometric optimal control of elliptic Keplerian orbits, Discrete Contin. Dyn. Syst. Ser. B, vol.5, issue.4, pp.929-956, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00086345

B. Bonnard, J. Caillau, and E. Trélat, Second order optimality conditions in the smooth case and applications in optimal control, ESAIM: Control, Optimisation and Calculus of Variations, vol.13, issue.2, pp.207-236, 2007.
DOI : 10.1051/cocv:2007012

URL : https://hal.archives-ouvertes.fr/hal-00086380

B. Bonnard and M. Chyba, Singular trajectories and their role in control theory, 2003.

B. Bonnard, M. Chyba, A. Jacquemard, and J. Marriott, Algebraic geometric classification of the singular flow in the contrast imaging problem in nuclear magnetic resonance, Mathematical Control and Related Fields, vol.3, issue.4, pp.397-432, 2013.
DOI : 10.3934/mcrf.2013.3.397

URL : https://hal.archives-ouvertes.fr/hal-00939495

B. Bonnard, M. Chyba, and J. Marriott, Singular Trajectories and the Contrast Imaging Problem in Nuclear Magnetic Resonance, SIAM Journal on Control and Optimization, vol.51, issue.2, pp.1325-1349, 2013.
DOI : 10.1137/110833427

URL : https://hal.archives-ouvertes.fr/hal-00939496

B. Bonnard, M. Chyba, J. Rouot, D. Takagi, and R. Zou, A note about the geometric optimal control of the copepod swimmer, 2015.

B. Bonnard, M. Claeys, O. Cots, and P. Martinon, GEOMETRIC NUMERICAL METHODS AND RESULTS IN THE CONTRAST IMAGING PROBLEM IN NUCLEAR MAGNETIC RESONANCE, Mathematical Models and Methods in Applied Sciences, vol.24, issue.01, 2013.
DOI : 10.1142/S0218202513500504

B. Bonnard and O. Cots, GEOMETRIC NUMERICAL METHODS AND RESULTS IN THE CONTRAST IMAGING PROBLEM IN NUCLEAR MAGNETIC RESONANCE, Mathematical Models and Methods in Applied Sciences, vol.24, issue.01, pp.187-212, 2014.
DOI : 10.1142/S0218202513500504

B. Bonnard and I. Kupka, Théorie des singularités de l'application entrée/sortie et optimalité des trajectoiressingulì eres dans leprobì eme du temps minimal, Forum Math, vol.5, issue.2, pp.111-159, 1993.

G. A. Bliss, Lectures on the Calculus of Variations, Univ. of Chicago Press, 1946.

R. W. Brockett, Control Theory and Singular Riemannian Geometry, pp.11-27, 1982.
DOI : 10.1007/978-1-4612-5651-9_2

J. B. Caillau and . B. Daoud, Minimum Time Control of the Restricted Three-Body Problem, SIAM Journal on Control and Optimization, vol.50, issue.6, pp.3178-3202, 2011.
DOI : 10.1137/110847299

URL : https://hal.archives-ouvertes.fr/hal-00599216

E. Cartan, Les syst??mes de Pfaff, ?? cinq variables et les ??quations aux d??riv??es partielles du second ordre, Annales scientifiques de l'??cole normale sup??rieure, vol.27, pp.109-192, 1910.
DOI : 10.24033/asens.618

T. Chambrion, L. Giraldi, and A. Munnier, Optimal strokes for driftless swimmers: A general geometric approach, ESAIM: Control, Optimisation and Calculus of Variations, 2014.
DOI : 10.1051/cocv/2017012

URL : https://hal.archives-ouvertes.fr/hal-00969259

Y. Chitour, F. Jean, and E. Trélat, Genericity results for singular curves, Journal of Differential Geometry, vol.73, issue.1, pp.45-73, 2006.
DOI : 10.4310/jdg/1146680512

URL : https://hal.archives-ouvertes.fr/hal-00086357

O. Cots, Contrôle optimal géométrique: méthodes homotopiques et applications, 2012.

J. A. Dieudonné and J. B. Carrell, Invariant theory, old and new, Advances in Mathematics, vol.4, issue.1, 1971.
DOI : 10.1016/0001-8708(70)90015-0

R. V. Gamkrelidze, Discovery of the Maximum Principle, J. Dynam. Control Systems, vol.5, issue.4, pp.437-451, 1977.
DOI : 10.1007/3-540-29462-7_5

I. M. Gelfand and S. V. Fomin, Calculus of Variations, 1963.

C. Godbillon, Geométrie différentielle et mécanique analytic, 1969.

J. Gregory, Quadratic form theory and differential equations, Mathematics in Science and Engineering, vol.152, 1980.

G. J. Hancock, The Self-Propulsion of Microscopic Organisms through Liquids, Proc. R. Soc. Lond. A, pp.96-121, 1953.
DOI : 10.1098/rspa.1953.0048

J. Happel and H. Brenner, Low Reynolds number hydrodynamics with special applications to particulate media, N.J, 1965.

H. Hermes, Lie Algebras of Vector Fields and Local Approximation of Attainable Sets, SIAM Journal on Control and Optimization, vol.16, issue.5, pp.715-727, 1978.
DOI : 10.1137/0316047

F. Jean, Control of Nonholonomic Systems: from Sub-Riemannian Geometry to Motion Planning, SpringerBriefs in Mathematics, 2014.
DOI : 10.1007/978-3-319-08690-3

URL : https://hal.archives-ouvertes.fr/hal-01137580

F. John, Partial differential equations, reprint of 4th edition, Applied Mathematical Sciences, vol.1, 1991.

V. Jurdjevic, Geometric control theory, Cambridge Studies in Advanced Mathematics, vol.52, 1997.
DOI : 10.1017/CBO9780511530036

W. Klingenberg, Riemannian geometry, de Gruyter Studies in Mathematics, 1982.
DOI : 10.1515/9783110905120

A. J. Krener, The High Order Maximal Principle and Its Application to Singular Extremals, SIAM Journal on Control and Optimization, vol.15, issue.2, pp.256-293, 1977.
DOI : 10.1137/0315019

I. Kupka, Geometric theory of extremals in optimal control problems. i. the fold and Maxwell case, Trans. Amer. Math. Soc, vol.299, issue.1, pp.225-243, 1987.

I. Kupka, Géométrie sous-riemannienne. Astérisque, Séminaire Bourbaki, pp.351-380, 1995.

M. Lapert, Développement de nouvelles techniques de contrôle optimal en dynamique quantique : de la Résonance Magnétique Nucléairè a la physique moléculaire, 2011.

M. Lapert, Y. Zhang, S. J. Glaser, and D. Sugny, Towards the time-optimal control of dissipative spin-1/2 particles in nuclear magnetic resonance, Journal of Physics B: Atomic, Molecular and Optical Physics, vol.44, issue.15, p.15, 2011.
DOI : 10.1088/0953-4075/44/15/154014

URL : https://hal.archives-ouvertes.fr/hal-00642391

E. Lauga and T. R. Powers, The hydrodynamics of swimming microorganisms, Reports on Progress in Physics, vol.72, issue.9, p.9, 2009.
DOI : 10.1088/0034-4885/72/9/096601

D. F. Lawden, Elliptic functions and applications, Applied Mathematical Sciences, vol.80, p.80, 1989.
DOI : 10.1007/978-1-4757-3980-0

E. B. Lee and L. Markus, Foundations of optimal control theory, 1986.

M. H. Levitt, Spin dynamics: basics of nuclear magnetic resonance, 2001.

D. Liberzon, Calculus of Variations and Optimal Control Theory: A Concise Introduction, 2011.

A. J. Maciejewski and W. Respondek, The nilpotent tangent 3-dimensional sub-Riemannian problem is nonintegrable, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601), 2004.
DOI : 10.1109/CDC.2004.1428669

J. Milnor, Morse theory, Annals of Mathematics Studies, vol.51, 1963.

A. S. Mishchenko, V. E. Shatalov, and B. Y. Sternin, Lagrangian manifolds and the Maslov operator, 1990.
DOI : 10.1007/978-3-642-61259-6

Y. Or, S. Zhang, and R. M. Murray, Dynamics and Stability of Low-Reynolds-Number Swimming Near a Wall, SIAM Journal on Applied Dynamical Systems, vol.10, issue.3, pp.1013-1041, 2011.
DOI : 10.1137/100808745

E. Passov and Y. Or, Supplementary document to the paper: Dynamics of Purcell's three-link microswimmer with a passive elastic tail

L. S. Pontryagin, V. G. Boltyanskii, and R. V. Gamkrelidze, The Mathematical Theory of Optimal Processes, 1962.

E. M. Purcell, Life at low Reynolds number, American Journal of Physics, vol.45, issue.1, pp.3-11, 1977.
DOI : 10.1119/1.10903

Y. L. Sachkov, Symmetries of flat rank two distributions and sub-Riemannian structures, Transactions of the American Mathematical Society, vol.356, issue.02, pp.457-494, 2004.
DOI : 10.1090/S0002-9947-03-03342-7

E. D. Sontag, Mathematical control theory Deterministic finite-dimensional systems, second edition, Texts in Applied Mathematics, vol.6, 1998.

H. J. Sussmann, Orbits of families of vector fields and integrability of distributions, Transactions of the American Mathematical Society, vol.180, pp.171-188, 1973.
DOI : 10.1090/S0002-9947-1973-0321133-2

H. J. Sussmann and V. Jurdjevic, Controllability of nonlinear systems, Journal of Differential Equations, vol.12, issue.1, pp.95-116, 1972.
DOI : 10.1016/0022-0396(72)90007-1

D. Takagi, Swimming with stiff legs at low Reynolds number, Physical Review E, vol.92, issue.2, 2015.
DOI : 10.1103/PhysRevE.92.023020

V. M. Zakaljukin, Lagrangian and Legendre singularities, Funkcional. Anal. i Prilo?en, vol.10, pp.26-36, 1976.

M. Zhitomirski?-i, Typical singularities of differential 1-forms and Pfaffian equations, p.176, 1992.