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Preface

The motivation for the notes presented in this volume of BCAM SpringerBriefs
comes from a multidisciplinary graduate course offered to students in Mathemat-
ics, Physics or Control Engineering (at the University of Burgundy, France and at
the Institute of Mathematics for Industry Fukuoka, Japan). The content is based on
two real applications, which are the subject of current academic research programs
and are motivated by industrial uses. The objective of these notes is to introduce
the reader to techniques of geometric optimal control as well as to provide an ex-
posure to the applicability of numerical schemes implemented inHamPath [32],
Bocop [19] andGloptiPoly [47] software.

To highlight the main ideas and concepts, the presentation is restricted to the
fundamental techniques and results. Moreover the selected applications drive the
exposition of the different methodologies. They have received signi�cant attention
recently and are promising, paving the way for further research by our potential
readers. The applications have been chosen based on the existence of accurate math-
ematical models to describe them, models that are suitable for a geometric analysis,
and the possibility of implementing results from the analysis in a practical manner.

The notes are self-contained, moreover, the simpler geometric computations can
be reproduced by the reader using our presentation of the maximum principle. The
weak maximum principle covers the case of an open control domain which is the
standard situation encountered in the classical calculus of variations, and is suitable
for analysis of the �rst application, motility at low Reynolds number, although a
good understanding of the so-called transversality conditions is necessary. For the
second application, control of the spin dynamics by magnetic �elds in nuclear mag-
netic resonance, the use of the general maximum principle is required since the
control domain is bounded. At a more advanced level, the reader has to be familiar
with the numerical techniques implemented in the software used for our calcula-
tions. In addition, symbolic methods have to be used to handle the more complex
computations.

The �rst application is the swimming problem at low Reynolds number describ-
ing the swimming techniques of microorganisms. It can be easily observed in na-
ture, but also mechanically reproduced using robotic devices, and it is linked to
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vi Preface

medical applications. This example serves as an introduction to geometric optimal
control applied tosub-Riemannian geometry, a non-trivial extension of Riemannian
geometry and a 1980's tribute of control theory to geometry under the in�uence of
R. Brockett [31]. We consider thePurcell swimmer[78], a three-link model where
the shape variables are the two links at the extremities and the displacement is mod-
eled by both the position and the orientation of the central link representing the body
of the swimmer. To make a more complete analysis in the framework of geometric
control, we use a simpli�ed model from D. Takagi called thecopepod swimmer
[87], where only line displacement is considered using symmetric shape links, and
which is also the swimming model for an abundant variety of zooplankton (cope-
pods). This fact is particularly interesting with respect to validating the correlation
between theobservedandpredicteddisplacement using the mathematical model.
Also from the mathematical point of view, the copepod model is thesimplest slen-
der body modeland can be obtained as a limit case of more complex systems e.g.
the Purcell swimmer.

For this problem, only theweak maximum principleis necessary and thus will be
presented �rst, with its simple proof nevertheless containing all the geometric ingre-
dients of the general maximum principle (see the historical paper by R.V. Gamkre-
lidze about the discovery of the maximum principle [40]). Moreover, in this case,
under proper regularity assumptions, the second-order conditions can be easily ex-
plained and numerically implemented using the concepts of conjugate points and
the Jacobi equation. More speci�cally, using the optimal control framework, the
sub-Riemannian problem is expressed as:

dx
dt

(t) = å
i= 1;��� ;m

ui(t)Fi(x(t)) ; min
u(:)

Z T

0
å

i= 1;��� ;m
u2

i (t)dt;

where x 2 M, M is a smooth manifold, and the sub-Riemannian metric is de-
�ned by the orthonormal sub-framef F1; � � � ;Fmg that determines the so-called non-
holonomic constraints on the set of curves: �x(t) 2 D(x(t)) , whereD is the distribu-
tion Spanf F1; � � � ;Fmg: The relation to the swimming problem, modeled by some
of the earliest prominent scientists (e.g. Newton, Euler and more recently Stokes,
Reynolds, and Purcell), is straightforward in the framework of control theory. The
state variablex of the system decomposes into(x1;x2) wherex1 represents the dis-
placement of the swimmer andx2 is the shape variable representing the periodic
shape deformation of the swimmer's body (called stroke) necessary to produce a
net displacement for a given stroke. The mathematical model relates the speed of
the displacement ofx1 to the speed of the shape deformationx2, thus characterizing
the sub-Riemannian constraints, while the expended mechanical energy de�nes the
metric. The model comes from hydrodynamics and is subject to vital approxima-
tions. First, at the scale of the micro-swimmer's life, it implies that inertia can be
neglected [45]. Second, according to the resistive force theory [44] the interaction
of the swimmer with the �uid is reduced to a drag force depending linearly upon
the velocity. Finally, each of our swimmers is approximated by a slender body. Due
to these approximations, experiments are crucial to validate the models. This theo-
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retical research also prompted experimentation using mechanical prototype devices
(see for instance [75]).

Our objective is to provide a self-contained presentation of the model, of the
underlying concepts of sub-Riemannian geometry and of the techniques needed to
conduct the mathematical analysis. The application of optimization techniques to
the problem is recent. Our contribution's goal is to present a complete analysis using
geometric and numerical techniques in the case of the copepod swimmer. It provides
an excellent introduction to these methods, which have to be developed in the case
of the Purcell swimmer based on our numerical results.

The second example concerns the optimal control of systems innuclear mag-
netic resonance(NMR) andmagnetic resonance imaging(MRI). The dynamics is
modeled using theBloch equation(1946), which describes at the macroscopic scale
the evolution of the magnetization vector of a spin 1/2 particle depending on two
relaxation parametersT1 andT2, which are the chemical signatures of the chemical
species (e.g. water, fat) and controlled by an Rf-magnetic pulse perpendicular to the
strong polarizing �eld applied in thez� axis direction (see Bloch equations [18]).
At the experimental level, optimal control was introduced in the early 2000 in the
dynamics of such systems, the objective being the replacement of the heuristic MRI
pulse sequences used in hospital settings (in vivo), which means replacing in near
future the standard industrial software by a new generation of software, producing
a double gain: a better image in a shorter time.

Since the Bloch equations describe the evolution of the dynamics of the process
with great accuracy and the computed control strategies can be implemented easily,
this application provides an ideal platform to test the geometric optimal control
framework presented in this volume. Clearly, the theory has to be developed to han-
dle the mathematical problems and the analysis has to be supplemented by the use of
a new generation of speci�c software dedicated to optimal control (HamPath [32],
Bocop [19], GloptiPoly [47]). With this in mind, the reader is introduced to
two important problems in NMR and MRI. The �rst one is simply tosaturate in
minimum timethe magnetization vector, which corresponds to driving its amplitude
to zero. For this problem, we must �rst introduce the most general maximum prin-
ciple since the applied Rf-magnetic �eld is of bounded amplitude. The second step
is to compute, using geometric techniques, the structure of the optimal law as a
closed loop function. This is the so-called concept of optimal synthesis. The second
problem is thecontrast problem in MRIwhere we must distinguish within a given
picture between two heterogeneously distributed species, e.g. healthy versus cancer
cells, that are characterized thanks to the Bloch equation by different responses to
the same Rf-�eld due to different relaxation parameters. The actual MRI technol-
ogy enables the transformation of this observation problem into an optimal control
problem of the Mayer form:

dx=dt(t) = f (x(t);u(t)) with ju(t)j � M; minu(:) c(x(t f )) ;
wheret f is a �xed transfer time directly related to the image processing time and
the cost function measures the contrast. The dynamics represents the coupling of
the two Bloch equations controlled by the same Rf-�eld including the respective
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parameters associated to the two species to be distinguished, parameters which can
be easily computed experimentally.

We use three numerical software based on different approaches:

• Bocop. The so-called direct approach transforms the in�nite dimensional optimal
control problem into a �nite dimensional optimization problem. This is done
by a discretization in time applied to the state and control variables, as well as
to the dynamics equation. These methods are usually less precise than indirect
methods based on the maximum principle, but more robust with respect to the
initialization.

• Hampath. TheHamPath software is based upon indirect methods: simple and
multiple shooting; differential continuation (or homotopy) methods; and compu-
tation of the solutions of the variational equations needed to check the second-
order conditions of local optimality. Shooting methods consist in �nding a zero
of a speci�c function and use Newton-like algorithms. While simple shooting
leads to solution of a two-point boundary value problem, multiple shooting takes
into account intermediate conditions and the structure of the optimal solution has
to be determined. This can be done using theBocop software, which also allows
initialization of the shooting equation. The Jacobian of the homotopic function is
computed using variational equations to calculate the Jacobi �elds. Moreover the
Jacobi �elds are used to check the necessary second-order optimality conditions.

• LMI. The direct and indirect methods provide local optimal solutions. By com-
paring the different paths of zeros, one obtains a strong candidate solution whose
global optimality must be analyzed. This can be done by the moment approach.
The moment approach is a global optimization technique that transforms a non-
linear, possibly in�nite-dimensional optimization problem into convex and �nite-
dimensional relaxations in the form of linear matrix inequalities (LMI). The �rst
step consists in linearizing the problem by formulating it as a linear program on
a measure space, a problem often referred to as a generalized moment problem.
This can be performed by the use of so-called occupation measures, encoding
admissible trajectories. The second step is to exploit the problem's structure,
here given by its polynomial data, to manipulate the measures by their moment
sequences. This leads to a semi-de�nite program (SDP) with countably many de-
cision variables, one for each moment. The third and last step is to truncate this
last problem to a �nite set of those moments, leading to a relaxation in the form
of LMI. The method is used through theGloptiPoly software. This approach
is developed in the MRI problem thanks to the algebraic structure of Bloch equa-
tions and is crucial in this problem to discriminate the global optimum from the
multiple local optimum solutions.

Numerical methods are supplemented bysymbolic computationsto handle or to
check more complicated calculations. The combination of geometric, numerical and
symbolic computations represents the main originality of the book and leads to the
development of a modern and non-trivial computational framework.

Another originality of the work presented here is its connection to real experi-
ments. For the swimming problem, the copepod represents a variety of zooplankton
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observed at the University of Hawaii in Prof. Takagi's laboratory and is a model for
the design of swimming robots. We represent in Fig.0.1 the copepod observed by
Takagi and the associated micro-robot model.

x0(t)
x

! 1(t)

! 2(t)

! = " ! = 0

! 2(t)
! 1(t)

FIG. 1. Sketch of the upper half of a swimmer paddling along thex axis, the line of symmetry.

I. INTRODUCTION

2

Fig. 0.1 Left: Observation of a zooplankton.Right:Sketch of the two-link symmetric swimmer.

For the MRI problem the numerical computations were implemented by Prof.
Glaser at UTM inin vitro experiments and more recentlyin vivo experiments were
performed at Creatis (INSA Lyon) by the group of Prof. Ratiney. On Figs. 0.2 and
0.3 are represented thein vivo andin vitro experiments realized in the project. Note
that the numerical computations were performed using theGrape algorithm [59].

Fig. 0.2 Experimental results: The inner circle shape sam-
ple mimics the deoxygenated blood, the outside moon
shape sample corresponds to the oxygenated blood.Left:
Without control,Right:Optimized contrast.

corpus callosum

brain muscle

Fig. 0.3 Contrast optimization in
a in vivo setting. Species: brain –
parietal muscle.

Dijon, May 2018 Bernard Bonnard and J́erémy Rouot
Hawaii, May 2018 Monique Chyba
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Chapter 1
Historical part - Calculus of variations

The calculus of variations is an old mathematical discipline and historically �nds
its origins in the introduction of the brachistochrone problem at the end of the 17th
century by Johann Bernoulli to challenge his contemporaries to solve it. Here, we
brie�y introduce the reader to the main results. First, we introduce the fundamental
formula of the classical calculus of variations following the presentation by Gelfand
Fomin in [41]. The originality of this presentation lies in the fact that it provides
a general formula rather than starting with the standard Euler-Lagrange formula
derivation and dealing with general variations. The fundamental formula leads to a
derivation of the standard �rst order necessary conditions: Euler-Lagrange equation,
tranversality conditions, Erdmann-Weierstrass conditions for a broken extremal and
the Hamilton Jacobi equation. Second, we present a derivation of the second order
necessary conditions in relation with the concept of conjugate points and the Jacobi
equation. The main idea is to introduce the so-called accessory problem replacing
the positivity test of the second order derivative by a minimization problem of the
associated quadratic form [41]. The modern interpretation in terms of the spectral
theory of the associated self-adjoint operator (Morse theory) is also stated.

1.1 Statement of the Problem in the Holonomic Case

We consider the setC of all curvesx : [t0; t1] ! Rn of classC2, where the initial and
�nal times t0; t1 are not �xed, and the problem of minimizing a functional overC:

C(x) =
Z t1

t0
L(t;x(t); �x(t)) dt

whereL is C2. Moreover, we can impose extremity constraints:x(t0) 2 M0, x(t1) 2
M1 whereM0;M1 areC1-submanifolds ofRn. The distance between two curvesx(:),
x� (:) is given by

1
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r (x;x� ) = max
t2J\ J�

kx(t) � x� (t)k+ max
t2J\ J�

k �x(t) � �x� (t)k+ d(P0;P�
0 ) + d(P1;P�

1 )

whereP0 = ( t0;x0), P1 = ( t1;x1), J;J� are the domains ofx;x� andk� k is any norm
onRn while d is the usual distance mapping onRn+ 1. Note that a curve is interpreted
in the time-extended space(t;x). If the two curvesx(�);x� (�) are closed, they are by
conventionC2-extended onJ [ J� .

Proposition 1 (Fundamental formula of the classical calculus of variations)We
adopt the standard notation of classical calculus of variations, see [41]. Letg(�)
be a reference curve with extremities(t0;x0); (t1;x1) and letḡ(�) be any curve with
extremities(t0 + dt0;x0 + dx0); (t1 + dt1;x1 + dx1). We denote by h(�) the variation:
h(t) = ḡ(t) � g(t). Then, if we setDC = C(ḡ) � C(g), we have

DC =
Z t1

t0

�
¶L
¶x

�
d
dt

¶L
¶ �x jg

�
�h(t) dt +

�
¶L
¶ �x jg

� dx
� t1

t0

+

" �
L �

¶L
¶ �x

� �x
�

jg

dt

#t1

t0

+ o(r (ḡ;g))

(1.1)

where� denotes the scalar product inRn.

Proof. We write

DC =
Z t1+ dt1

t0+ dt0
L(t;g(t) + h(t); �g(t) + �h(t)) dt �

Z t1

t0
L(t;g(t); �g(t)) dt

=
Z t1

t0
L(t;g(t) + h(t); �g(t) + �h(t)) dt �

Z t1

t0
L(t;g(t); �g(t)) dt

+
Z t1+ dt1

t1
L(t;g(t)+ h(t); �g(t)+ �h(t)) dt �

Z t0+dt0

t0
L(t;g(t)+ h(t); �g(t)+ �h(t)) dt:

We develop this expression using Taylor expansions keeping only the linear terms
in h; �h;dx;dt. We get

DC =
Z t1

t0

�
¶L
¶x jg

� h(t) +
¶L
¶ �x jg

� �h(t)
�

jg

dt + [ L(t;g; �g)dt]t1t0 + o(h; �h;dt):

The derivative of the variation�h is depending onh, and integrating by parts we
obtain

DC �
Z t1

t0

�
¶L
¶x

�
d
dt

¶L
¶ �x

�

jg

� h(t) dt +
�

¶L
¶ �x jg

� h(t)
� t1

t0

+
h
Ljgdt

i t1

t0
:

We observe thath;dx;dt are not independent at the extremities and we have for
t = t0 or t = t1 the relation
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h(t + dt) = h(t)+ o( �h;dt):

So
h(t) � dx� �xdt:

Hence, we obtain the following approximation:

DC �
Z t1

t0

�
¶L
¶x

�
d
dt

¶L
¶ �x

�

jg

� h(t) dt +
�

¶L
¶ �x jg

� dx
� t1

t0

+

" �
L �

¶L
¶ �x

�x
�

jg
dt

#t1

t0

where all the quantities are evaluated along the reference trajectoryg(�). In this for-
mulah;dx;dt can be taken independent because in the integral the valuesh(t0);h(t1)
do not play any special role. �

From 1.1, we deduce that the standard �rst-order necessary conditions of the calcu-
lus of variations.

Corollary 1 Let us consider the minimization problem where the extremities(t0;x0);
(t1;x1) are �xed. Then, a minimizerg(�) must satisfy the Euler-Lagrange equation

�
¶L
¶x

�
d
dt

¶L
¶ �x

�

jg

= 0: (1.2)

Proof. Since the extremities are �xed we set in (1.1)dx = 0 anddt = 0 att = t0 and
t = t1. Hence

DC =
Z t1

t0

�
¶L
¶x

�
d
dt

¶L
¶ �x

�

jg

� h(t) dt + o(h; �h)

for each variationh(�) de�ned on [t0; t1] such thath(t0) = h(t1) = 0. If g(�) is a
minimizer, we must haveDC � 0 for eachh(�) and clearly by linearity, we have

Z t1

t0

�
¶L
¶x

�
d
dt

¶L
¶ �x

�

jg

� h(t) dt = 0

for eachh(�). Since the mappingt 7! ( ¶L
¶x � d

dt
¶L
¶ �x ) jg is continuous, it must be identi-

cally zero alongg(�) and the Euler-Lagrange equation 1.2 is satis�ed. �

1.2 Hamiltonian Equations

The Hamiltonian formalism, which is the natural formalism to use for the maximum
principle, appears in the classical calculus of variations via the Legendre transfor-
mation.

De�nition 1 The Legendre transformation is de�ned by
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p =
¶L
¶ �x

(t;x; �x) (1.3)

and if the mappingj : (x; �x) 7! (x; p) is a diffeomorphism we can introduce the
Hamiltonian:

H : (t;x; p) 7! p� �x� L(t;x; �x): (1.4)

Remark 1 In mechanics, the Lagrangian L is of the form V(x) � T(x; �x) where V is
the potential and T is the kinetic energy and T is strictly convex with respect to�x.

Proposition 2 The formula (1.1) takes the form

DC �
Z t1

t0

�
¶L
¶x

�
d
dt

¶L
¶ �x

�

jg

� h(t) dt +
h
pdx� Hdt

i t1

t0
(1.5)

and ifg(�) is a minimizer it satis�es the Euler-Lagrange equation in the Hamiltonian
form

�x(t) =
¶H
¶ p

(t;x(t); p(t)) ; �p(t) = �
¶H
¶x

(t;x(t); p(t)) : (1.6)

Proof. Computing, one has

dH =
¶H
¶t

dt +
¶H
¶ p

dp+
¶H
¶x

dx

= ( p�
¶L
¶ �x

)d �x+ �xdp�
¶L
¶x

dx�
¶L
¶t

dt:

1.3 Hamilton-Jacobi-Bellman Equation

De�nition 2 A solution of the Euler-Lagrange equation is called an extremal. Let
P0 = ( t0;x0) and P1 = ( t1;x1). The Hamilton-Jacobi-Bellman (HJB) function is the
multivalued function de�ned by

S(P0;P1) =
Z t1

t0
L(t;g(t); �g(t)) dt

whereg(�) is any extremal with �xed extremities x0;x1. If g(�) is a minimizer, it is
called the value function.

Proposition 3 Assume that for each P0;P1 there exists a unique extremal joining P0
to P1 and suppose that the HJB function is C1. Let P0 be �xed and letS̄: P7! S(P0;P).
Then,S̄ is a solution of the Hamilton-Jacobi-Bellman equation

¶S
¶t

(P0;P)+ H(t;x;
¶S
¶x

) = 0: (1.7)
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Proof. Let P = ( t;x) andP+ dP = ( t + dt;x+ dx). Denote byg(�) the extremal
joining P0 to P and byḡ(�) the extremal joiningP0 to P+ dP. We have

DS̄= S̄(t + dt;x+ dx) � S̄(t;x) = C(ḡ) � C(g)

and from (1.5) it follows that:

DS̄= DC �
Z t

t0

�
¶L
¶x

�
d
dt

¶L
¶ �x

�

jg

� h(t) dt +
h
pdx� Hdt

i t

t0
;

whereh(�) = ḡ(�) � g(�). Sinceg(�) is a solution of the Euler-Lagrange equation, the
integral is zero and

DS̄= DC �
h
pdx� Hdt

i t

t0
:

In other words, we have
dS̄= pdx� H dt:

Identifying, we obtain
¶S̄
¶t

= � H;
¶S̄
¶x

= p: (1.8)

Hence we get the HJB equation. Moreoverp is the gradient to the level setsf x 2
Rn; S̄(t;x) = cg. �

Other consequences of the general formula are the so-called transversality and
Erdmann Weierstrass (1877) conditions. They are presented in the exercises below.

Exercise 1.1.Consider the following problem: among all smooth curvest ! x(t)
whose extremity pointP1 = ( t1;x1) lies on a curvey(t) = Y (t), �nd the curve for
which the functional

Rt1
t0

L(t;x; �x) dt has an extremum. Deduce from the general for-
mula the transversality conditions

L + L �x( �Y � �x) = 0 att = t1:

Exercise 1.2.Let t ! x(t) be a minimizing solution of
Rt1
t0

L(t;x; �x) dt with �xed
extremities. Assume thatt ! x(t) is a broken curve with a corner att = c 2]t0; t1[.
Prove the Erdmann Weierstrass condition

L �x(c� ) = L �x(c+) ;

[L � L �x �x] (c� ) = [ L � L �x �x] (c+) :

Give an interpretation using Hamiltonian formalism.
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1.4 Second Order Conditions

The Euler-Lagrange equation has been derived using the linear terms in the Taylor
expansion ofDC. Using the quadratic terms we can get necessary and suf�cient
second order conditions. For the sake of simplicity, from now on we assume that the
curvest 7! x(t) belong toR, and we consider the problem with �xed extremities:
x(t0) = x0, x(t1) = x1. If the mapL is takenC3, the second derivative is computed as
follows:

DC =
Z t1

t0

�
L(t;g(t) + h(t); �g(t) + �h(t)) � L(t;g(t); �g(t))

�
dt

=
Z t1

t0

�
¶L
¶x

�
d
dt

¶L
¶ �x

�

jg

� h(t) dt +
1
2

Z t1

t0

� ¶2L
¶x2 jg

h2(t) + 2
¶2L
¶x¶ �x jg

h(t) �h(t)

+
¶2L
¶ �x2 jg

�h2(t)
�

dt + o(h; �h)2:

If g(t) is an extremal, the �rst integral is zero and the second integral corresponds
to the intrinsic second-order derivatived2C, that is:

d2C =
1
2

Z t1

t0

� ¶2L
¶x2 jg

h2(t) + 2
¶2L
¶x¶ �x jg

h(t) �h(t) +
¶2L
¶ �x2 jg

�h2(t)
�

dt: (1.9)

Usingh(t0) = h(t1) = 0, it can be written after an integration by parts as

d2C =
Z t1

t0

�
P(t) �h2(t) + Q(t)h2(t)

�
dt (1.10)

where

P =
1
2

¶2L
¶ �x2 jg

; Q =
1
2

�
¶2L
¶x2 �

d
dt

¶2L
¶x¶ �x

�

jg

:

Using the fact that in the integral (1.10) the termP�h2 is dominating [41], we get
the following proposition.

Proposition 4 If g(�) is a minimizing curve for the �xed extremities problem then it
must satisfy the Legendre condition:

¶2L
¶ �x2 jg

� 0: (1.11)

1.5 The Accessory Problem and the Jacobi Equation

The intrinsic second-order derivative is given by
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d2C =
Z t1

t0

�
P(t) �h2(t) + Q(t)h2(t)

�
dt; h(t0) = h(t1) = 0;

whereP;Q are as above. It can be written as

d2C =
Z t1

t0

�
(P(t) �h(t)) �h(t) + ( Q(t)h(t))h(t)

�
dt

and integrating by parts usingh(t0) = h(t1) = 0, we obtain

d2C =
Z t1

t0

�
Q(t)h(t) �

d
dt

(P(t) �h(t))
�

h(t) dt:

Let us introduce the linear operator D :h 7! Qh� d
dt (P

�h). Hence, we can write

d2C = ( Dh;h) (1.12)

where(; ) is the usual scalar product onL2([t0; t1]). The linear operator D is called
theEuler-Lagrange operator.

De�nition 3 From (1.12),d2C is a quadratic operator on the setC0 of C2-curves
h : [t0; t1] ! R satisfying h(t0) = h(t1) = 0;h 6= 0. The so-called accessory problem
is: min

h2C0
d2C.

De�nition 4 The Euler-Lagrange equation corresponding to the accessory problem
is called the Jacobi equation and is given by

Dh = 0 (1.13)

where D is the Euler-Lagrange operator: Dh= Qh� d
dt (P

�h). It is a second-order
linear differential operator.

De�nition 5 The strong Legendre condition is P> 0, where P= 1
2

¶2L
¶ �x2 jg

. If this

condition is satis�ed, the operator D is said to be nonsingular.

1.6 Conjugate Point and Local Morse Theory

In this section, we present some results from [43] and [72].

De�nition 6 Let g(�) be an extremal. A solution J(�) 2 C0 of DJ = 0 on [t0; t1] is
called a Jacobi curve. If there exists a Jacobi curve alongg(�) on [t0; t1] the point
g(t1) is said to be conjugate tog(t0).

Theorem 1 (Local Morse theory [72]).Let t0 be �xed and let us consider the Euler-
Lagrange operator (indexed by t> t0) D t de�ned on the setC t

0 of curves on[t0; t]
satisfying h(t0) = h(t) = 0. By de�nition, a Jacobi curve on[t0; t] corresponds to
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an eigenvector Jt associated to an eigenvaluel t = 0 of Dt . If the strong Legendre
condition is satis�ed along an extremalg : [t0;T] ! Rn, we have a precise descrip-
tion of the spectrum of Dt as follows. There exists t0 < t1 < � � � < ts < T such that
eachg(ti) is conjugate tog(t0). If ni corresponds to the dimension of the set of the
Jacobi curves Jti associated to the conjugate pointg(ti), then for anyT̃ such that
t0 < t1 < � � � < tk < T̃ < tk+ 1 < � � � < T we have the identity

n�
T̃ =

k

å
i= 1

ni (1.14)

where n�
T̃

= dimf linear space of eigenvectors of DT̃ corresponding to strictly neg-
ative eigenvaluesg. In particular if T̃ > t1 we have

min
h2C0

Z T̃

t0
(Q(t)h2(t) + P(t) �h2(t)) dt = � ¥ : (1.15)

1.7 From calculus of variations to optimal control theory and
Hamiltonian dynamics

An important and dif�cult problem is to generalize the �rst and second order condi-
tions from classical calculus of variations to optimal control theory (OCT).

In OCT, the problem is stated as

( dq
dt = F(q;u)
min
u(�)

RT
0 L(q;u) dt

with smooth data but the set of admissible controls is the set of bounded measurable
mappings valued in a control domainU, thus the set of admissible trajectories is the
set ofabsolutely continuous curves t! q(�). Minimizers are found among the set of
extremals(q; p;u) solutions of the Hamilton equations

dq
dt

=
¶H
¶ p

;
dp
dt

= �
¶H
¶q

(1.16)

whereH is the so-called unmaximized Hamiltonian

H(q; p;u) = p� F(q;u)

where the controls have to satisfy the maximization condition

H(q; p;u) = max
v2U

H(q; p;v): (1.17)



1.7 From calculus of variations to optimal control theory and Hamiltonian dynamics 9

Solving this equation leads in general to several true HamiltonianHi(q; p); i =
1; : : : ;k and the optimal solution is found by concatenation of trajectories of the
vector �elds

�!
H i 's.

Remark 1.1.OCT is a non trivial extension to the so-calledLagrange problemin
calculus of variations since there exists no restriction of the control domain.

The concept of conjugate points can be extended in optimal control and is related to
losing optimality for some prescribed topology on the set of controls but practical
computation is intricate.

A major problem in the analysis is due to bad controllability properties of the
so-called abnormal trajectories. This problem stopped further developments of cal-
culus of variations in the forties [30]. It was revived recently in optimal control
theory when dealing with SR-geometry and more geometrically investigated, see
for instance [22].

Also in the frame of Hamiltonian formulation of the Maximum Principle de�ned
by (1.16), (1.17) a bridge is open between Hamiltonian dynamics and variational
principles. Indeed Hamiltonian and Lagrangian can be related with some regularity
assumptions using the Legendre-Fenchel transform

H(q; p) = max
v

(p� v� L(x;v))

and interaction between Hamiltonian dynamics and optimal control is a rich and
active domain, see for instance [1], [7].





Chapter 2
Weak Maximum Principle and Application to
Swimming at low Reynolds Number

2.1 Pre-requisite of Differential and Symplectic Geometry

We refer to [46, 9, 42] for more details about the general concepts and notations
introduced in this section.

Notations.Let M be a smooth (C¥ orCw) connected and second-countable mani-
fold of dimensionn. We denote byTM the �ber bundle and byT � M the cotangent
bundle. LetV(M) be the set of smooth vector �elds onM andDi f f (M) the set of
smooth diffeomorphisms.

De�nition 7 Let X2 V(M) and let f be a smooth function on M. The Lie derivative
is de�ned as: LX f = d f(X). If X;Y 2 V(M), the Lie bracket is given by

ad X(Y) = [ X;Y] = LY � LX � LX � LY:

If x = ( x1; � � � ;xn) is a local system of coordinates we have:

X(x) =
n

å
i= 1

Xi(x)
¶

¶xi

LX f (x) =
¶ f
¶x

X(x)

[X;Y](x) =
¶X
¶x

(x)Y(x) �
¶Y
¶x

(x)X(x):

The mapping(X;Y) 7! [X;Y] is R-linear and skew-symmetric. Moreover, the Jacobi
identity holds:

[X; [Y;Z]] + [ Y; [Z;X]]+ [ Z; [X;Y]] = 0:

De�nition 8 Let X 2 V(M). We denote by x(t;x0) the maximal solution of the
Cauchy problem�x(t) = X(x(t)) ; x(0) = x0. This solution is de�ned on a maximal
open interval J containing0. We denote byexptX the local one parameter group
associated to X, that is:exptX(x0) = x(t;x0). The vector �eld X is said to be com-
plete if the trajectories can be extended overR.

11
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De�nition 9 Let X 2 V(M) and j 2 Di f f (M). The image of X byj is j � X =
dj (X � j � 1).

We recall the following results.

Proposition 5 Let X;Y 2 V(M) andj 2 Di f f (M). We have:

1. The one parameter local group of Z= j � X is given by:

exptZ = j � exptX � j � 1:

2. j � [X;Y] = [ j � X; j � Y].
3. The Baker-Campbell-Hausdorff (BCH) formula is:

expsXexptY = expz(X;Y)

wherez(X;Y) belongs to the Lie algebra generated by[X;Y] with:

z (X;Y) = sX+ tY +
st
2

[X;Y]+
st2

12
[[X;Y];Y] �

s2t
12

[[X;Y];X]

�
s2t2

24
[X; [Y; [X;Y]]] + � � � :

The series is converging for s;t small enough in the analytic case.
4. We have

exptX expeYexp� tX = exph(X;Y)

with h (X;Y) = e å
k� 0

tk
k! adkX(Y) and the series converging fore;t small enough

in the analytic case.
5. The ad-formula is:

exptX � Y = å
k� 0

tk

k!
adkX(Y)

where the series is converging for t small enough.

De�nition 10 Let V be aR-linear space of dimension2n. This space is said to be
symplectic if there exists an applicationw : V � V ! R which is bilinear, skew-
symmetric and nondegenerate, that is: ifw(x;y) = 0 for all x 2 V, then y= 0. Let
W be a linear subspace of V . We denote by W? the set

W? = f x 2 V; w(x;y) = 0 8y 2 Wg:

The space W is isotropic if W� W? . An isotropic space is said to be Lagrangian
if dimW = dim V

2 . Let (V1;w1); (V2;w2) be two symplectic linear spaces. A linear
mapping f: V1 ! V2 is symplectic ifw1(x;y) = w2( f (x); f (y)) for each x;y 2 V1.

Proposition 6 Let (V;w) be a linear symplectic space. Then there exists a basis
f e1; :::;en; f1; :::; fng called canonical de�ned byw(ei ;ej ) = w( fi ; f j ) = 0 f or 1 �
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i; j � n andw(ei ; f j ) = di j (Kronecker symbol). If J is the matrix
�

0 I
� I 0

�
where

I is the identity matrix of order n, then we can writew(x;y) = hJx;yi whereh; i
is the scalar product (in the basis(ei ; f j )). In the canonical basis, the set of all
linear symplectic transformations is represented as the symplectic group de�ned by
Sp(n;R) = f S2 GL(2n;R); S| JS= Jg.

De�nition 11 Let M be a C¥ -manifold of dimension2n. A symplectic structure on
M is de�ned by a2-form w such thatdw = 0 and such thatw is regular, that is:
8x 2 M; wx is nondegenerate.

Proposition 7 For any C¥ -manifold of dimension n, the cotangent bundle T� M ad-
mits a canonical symplectic structure de�ned byw = da wherea is the Liouville
form. If x = ( x1; :::;xn) is a coordinate system on M and(x; p) with (p1; :::; pn)
the associated coordinates on T� M, the Liouville form is written locally asa =
å n

i= 1 pidxi andw = da = å n
i= 1dpi ^ dxi .

Proposition 8 (Darboux) Let (M;w) be a symplectic manifold. Then given any
point in M, there exists a local system of coordinates called Darboux coordinates,
(x1; :::;xn; p1; :::; pn) such thatw is given locally byå n

i= 1dpi ^ dxi . (Hence the sym-
plectic geometry is a geometry with no local invariant).

De�nition 12 Let(M;w) be a symplectic manifold and let X be a vector �eld on M.
We note iXw the interior product de�ned by iXw(Y) = w(X;Y) for any vector �eld
Y on M. Let H: M ! R a real-valued function. The vector �eld denoted by

�!
H and

de�ned by i�!
H (w) = � dH is the Hamiltonian vector �eld associated to H. If(x; p)

is a Darboux coordinate system, then the Hamiltonian vector �eld is expressed in
these coordinates as:

�!
H =

n

å
i= 1

¶H
¶ pi

¶
¶xi

�
¶H
¶xi

¶
¶ pi

:

De�nition 13 Let F;G : M ! R be two mappings. We denote byf F;Gg the Poisson-
bracket of F and G de�ned byf F;Gg = dF(

�!
G).

Proposition 9 (Properties of the Poisson-bracket)

1. The mapping(F;G) 7! f F;Gg is bilinear and skew-symmetric.
2. The Leibniz identity holds:

f FG;Hg = Gf F;Hg+ Ff G;Hg:

3. In a Darboux coordinate system, we have

f F;Gg =
n

å
i= 1

¶G
¶ pi

¶F
¶xi

�
¶G
¶xi

¶F
¶ pi

:

4. If the Lie bracket is de�ned by[
�!
F ;

�!
G] =

�!
G �

�!
F �

�!
F �

�!
G , then its relation with

the Poisson bracket is given by:[
�!
F ;

�!
G] = f

��!
F;Gg:
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5. The Jacobi identity is satis�ed:

ff F;Gg;Hg+ ff G;Hg;Fg+ ff H;Fg;Gg = 0:

De�nition 14 Let
�!
H be a Hamiltonian vector �eld on(M;w) and F : M ! R. We

say that F is a �rst integral for
�!
H if F is constant along any trajectory of

�!
H , that is

dF(
�!
H ) = f F;Hg = 0.

De�nition 15 Let (x; p) be a Darboux coordinate system and H: M ! R. The co-
ordinate x1 is said to be cyclic if¶H

¶x1
= 0. Hence F: (x; p) 7! p1 is a �rst integral.

De�nition 16 Let M be a n-dimensional manifold and let(x; p) be Darboux coordi-
nates on T� M. For any vector �eld X on M we can de�ne a Hamiltonian vector �eld
�!
H X on T� M by H(x; p) = hp;X(x)i ;

�!
H X is called the Hamiltonian lift of X and

�!
H X = X ¶

¶x � ¶X
¶x

|
p ¶

¶ p. Each diffeomorphismj on M can be lifted into a symplectic

diffeomorphism�! j on T� M de�ned in a local system of coordinates as follows. If

x = j (y), then�! j : (y;q) 7! (x; p) =
�

j (y); ¶ j � 1

¶y

|
q
�

.

Theorem 2 (Noether) Let (x; p) be Darboux coordinates on T� M, X a vector �eld
on M and

�!
H X its Hamiltonian lift. We assume

�!
H X to be a complete vector �eld and

we denote byj t the associated one parameter group. Let F: T � M ! R and let us
assume that F� j t = F for all t 2 R. Then HX is a �rst integral for

�!
F .

De�nition 17 Let M be a manifold of dimension2n+ 1 and letw be a2-form on
M. Then for all x2 M, wx is bilinear , skew-symmetric and its rank is� 2n. If for
each x, the rank is2n, we say thatw is regular. In this case kerw is of rank one and
is generated by an unique vector �eld X up to a scalar. Ifa is a1-form such thatda
is of rank2n, the vector �eld associated withda is called the characteristic vector
�eld of a and the trajectories of X are called the characteristics.

Proposition 10 On the space T� M � R with coordinates(x; p;t) the characteristics
of the1-formå n

i= 1(pidxi � H dt) project onto solutions of the Hamilton equations:

�x(t) =
¶H
¶ p

(x(t); p(t);t); �p(t) = �
¶H
¶x

(x(t); p(t);t):

De�nition 18 Let j : (x; p;t) 7! (X;P;T) be a change of coordinates on T� M � R.
If there exist two functions K(X;P;T) and S(X;P;T) such that

pdx� H dt = PdX � K dT + dS;

then the mappingj is a canonical transformation and S is called the generating
function ofj .

Proposition 11 For a canonical transformation the equations

�x(t) =
¶H
¶ p

(x(t); p(t);t); �p(t) = �
¶H
¶x

(x(t); p(t);t)
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transform onto

dX
dT

(T) =
¶K
¶P

(X(T);P(T);T);
dP
dT

(T) = �
¶K
¶X

(X(T);P(T);T):

If T = t, and(x;X) forms a coordinate system, then we have

dX
dt

(t) =
¶K
¶P

(X(t);P(t);t);
dP
dt

(t) = �
¶K
¶X

(X(t);P(t);t)

with

p(t) =
¶S
¶x

(X(t);P(t);t); P(t) = �
¶S
¶X

(X(t);P(t);t);

H(X(t);P(t);t) = K(X(t);P(t);t) �
¶S
¶t

(X(t);P(t);t):

Remark 2.1 (Integrability).Assume that the generating functionSis not depending
on t. If there exist coordinates such thatK(X;P) = H(x; p) is not depending onP,
we have�X(t) = 0, X(t) = X(0); henceP(t) = P(0)+ t ¶K

¶X jX= X(0) . The equations are

integrable. WithH(x; p) = K(X) we get

H(x;
¶S
¶x

) = K(X):

SinceX(t) = ( X1(0); : : : ;Xn(0)) is �xed, if we can integrate the previous equation
we get solutions to the Hamilton equations. A standard method is by separating the
variables. This is called the Jacobi method to integrate the Hamilton equations. In
particular, this leads to a classi�cation of integrable mechanical systems in small
dimension, see [56].

De�nition 19 A polysystem D is a familyf Vi ; i 2 Ig of vector �elds. We denote by
the same letter the associated distribution, that is the mapping x7! spanf V(x);V 2
Dg. The distribution D is said to be involutive if[Vi ;Vj ] � D, for all Vi ;Vj 2 D.

De�nition 20 Let D be a polysystem. We design by DL:A: the Lie algebra generated
by D, it is constructed recursively as follows:

D1 = spanf Dg;

D2 = spanf D1 + [ D1;D1]g;

: : : ;

Dk = spanf Dk� 1 + [ D1;Dk� 1]g

and DL:A: = [ k� 1Dk. By construction the associated distribution DL:A: is involutive.
If x 2 M, we associate the following sequence of integers: nk(x) = dimDk(x).

De�nition 21 Consider a control system�x = f (x;u) on M with u2 U. We can
associate to this system the polysystem D= f f (�;u); u constant; u 2 Ug. We denote
by ST (D) the set
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ST (D) = f expt1V1 � � � exptkVk; k 2 N; ti � 0 and
k

å
i= 1

ti = T; Vi 2 Dg

and by S(D) the local semi-group:[ T� 0ST (D). We denote by G(D) the local group
generated by S(D), that is

G(D) = f expt1V1 � � � exptkVk; k 2 N; ti 2 R; Vi 2 Dg:

Properties.

1. The accessibility set fromx0 in timeT is:

A(x0;T) = ST (D)(x0):

2. The accessibility set fromx0 is the orbit of the local semi-group:

A(x0) = S(D)(x0):

De�nition 22 We call the orbit of x0 the set O(x0) = G(D)(x0). The system is said
to be weakly controllable if for every x0 2 M; O(x0) = M.

2.2 Controllability Results

2.2.1 Sussmann-Nagano Theorem

When the rank condition is satis�ed (rankD = constant,D : x ! DL:A:(x)) we get
from the Frobenius theorem a description of all the integral manifolds nearx0. If we
only need to construct the leaf passing throughx0 the rank condition is clearly too
strong. Indeed, ifD = f Xg is generated by a single vector �eldX, there exists an
integral curve throughx0. For a family of vector �elds this result is still true if the
vector �elds are analytic.

Theorem 3 (Nagano-Sussman Theorem [85])Let D be a family of analytic vector
�elds near x0 2 M and let p be the rank ofD : x 7! DL:A:(x) at x0. Then through x0
there exists locally an integral manifold of dimension p.

Proof. Let p be the rank ofD at x0. Then there existsp vector �elds of DL:A: :
X1; � � � ;Xp such that spanf X1(x0); � � � ;Xp(x0)g = D(x0). Consider the map

a : (t1; � � � ; tp) 7! expt1X1 � � � exptpXp(x0):

It is an immersion for(t1; � � � ; tp) = ( 0; � � � ;0). Hence the image denoted byN is
locally a submanifold of dimensionp. To prove thatN is an integral manifold we
must check that for eachy 2 N nearx0, we haveTyN = D(y). This result is a direct
consequence of the equalities
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DL:A:(exptXi(x)) = dexptXi(DL:A:(x)) ; i = 1; � � � ; p

for x nearx0, andt small enough. To show that the previous equalities hold, let
V(x) 2 DL:A:(x) such thatV(x) = Y(x) with Y 2 DL:A:. By analycity and the ad-
formula fort small enough we have

(dexptXi)(Y(x)) = å
k� 0

tk

k!
adkXi(Y)(exptXi(x)) :

Hence fort small enough, we have

(dexptXi)(DL:A:(x)) � DL:A:(exptXi(x)) :

Changingt to � t we show the second inclusion.

C¥ -Counter Example

To prove the previous theorem we use the following geometric property. LetX;Y
be two analytic vector �elds and assumeX(x0) 6= 0. From the ad-formula, if all the
vector �elds adkX(Y);k � 0 are collinear toX at x0, then fort small enough the
vector �eld Y is tangent to the integral curve exptX(x0).

Hence is is easy to construct aC¥ -counter example using �atC¥ -mappings. In-
deed, let us takef : R 7! R a smooth map such thatf (x) = 0 for x � 0 andf (x) 6= 0
for x > 0. Consider the two vector �elds onR2 : X = ¶

¶x andY = f (x) ¶
¶y. At 0, DL:A:

is of rank 1. Indeed, we have[X;Y](x) = � f 0(x) ¶
¶y = 0 at 0 and hence[X;Y](0) = 0.

The same is true for all high order Lie brackets. In this example the rankDL:A: is
not constant along exptX(0), indeed forx > 0, the vector �eldY is transverse to this
vector �eld.

2.2.2 Chow-Rashevskii Theorem

Theorem 4 ([36, 79]) Let D be a C¥ -polysystem on M. We assume that for each
x 2 M; DL:A:(x) = TxM. Then we have

G(D)(x) = G(DL:A:(x)) = M;

for each x2 M.

Proof. SinceM is connected it is suf�cient to prove the result locally. The proof
is based on the BCH-formula. We assumeM = R3 and D = f X;Yg with rank
f X;Y; [X;Y]g= 3 atx0; the generalization is straightforward. Letl be a real number
and consider the map
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j l : (t1; t2; t3) 7! expl X expt3Yexp� l X expt2Yexpt1X(x0):

We prove that for small but nonzerol , j l is an immersion. Indeed, using the BCH
formula we have

j l (t1; t2; t3) = exp(t1X +( t2 + t3)Y +
l t3
2

[X;Y]+ � � � )(x0);

hence
¶ j l

¶t1
(0;0;0) = X(x0);

¶ j l

¶t2
(0;0;0) = Y(x0);

¶ j l

¶t3
(0;0;0) = Y(x0) +

l
2

[X;Y](x0) + o(l ):

SinceX;Y; [X;Y] are linearly independent atx0, the rank ofj l at 0 is 3 forl 6= 0
small enough.

2.3 Weak Maximum Principle

We consider the autonomous control system

�x(t) = f (x(t);u(t)) ; x(t) 2 Rn;u(t) 2 W (2.1)

wheref is aC1-mapping. The initial and target setsM0;M1 are given and we assume
they areC1-submanifolds ofRn. The control domain is a given subsetW � Rm. The
class of admissible controlsU is the set of bounded measurable mapsu: [0;T(u)] !
W. Let u(�) 2 U andx0 2 Rn be �xed. Then, by the Caratheodory theorem [64],
there exists a unique trajectory of (2.1) denotedx(�;x0;u) such thatx(0) = x0. This
trajectory is de�ned on a nonempty subintervalJ of [0;T(u)] andt 7! x(t;x0;u) is
an absolutely continuous function solution of (2.1) almost everywhere.

To eachu(�) 2 U de�ned on[0;T] with corresponding trajectoryx(�;x0;u) issued
from x(0) = x0 2 M0 de�ned on[0;T], we assign a cost

C(u) =
Z T

0
f 0(x(t);u(t)) dt (2.2)

where f 0 is aC1-mapping. An admissible controlu� (�) with corresponding trajec-
tory x� (�;x0;u) and de�ned on[0;T � ] such thatx� (0) 2 M0 and x� (T � ) 2 M1 is
optimal if for each admissible controlu(�) with corresponding trajectoryx(�;x0;u)
on [0;T];x(0) 2 M0 andx(T) 2 M1, then

C(u� ) � C(u):
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The Augmented System

The following remark is straightforward but is geometrically very important to un-
derstand the maximum principle. Let us considerf̂ = ( f ; f0) and the corresponding
system onRn+ 1 de�ned by the equations�̂x = f̂ (x̂(t);u(t)) , i.e.:

�x(t) = f (x(t);u(t)) ; (2.3)

�x0(t) = f 0(x(t);u(t)) : (2.4)

This system is called the augmented system. Sincef̂ is C1, according to the
Caratheodory theorem, to each admissible controlu(�) 2 U there exists an admis-
sible trajectory ˆx(t; x̂0;u) such that ˆx0 = ( x0;x0(0)) ;x0(0) = 0 where the added co-
ordinatex0(�) satis�esx0(T) =

RT
0 f 0(x(t);u(t)) dt.

Let us denote bŷAM0 the accessibility set[ u(�)2U x̂(T; x̂0;u) from M̂0 = ( M0;0)
and letM̂1 = M1 � R. Then, we observe that an optimal controlu� (�) corresponds
to a trajectory ˆx� (�) such that ˆx� 2 M̂0 and intersectingM̂1 at a point ˆx� (T � ) where
x0 is minimal. In particular ˆx� (T) belongs to the boundary of the Accessibility set
ÂM0.

Related Problems

Our framework is a general setting to deal with a large class of problems. Examples
are the following:

1. Nonautonomous systems:

�x(t) = f (t;x(t);u(t)) :

We add the variablet to the state space by settingdt
ds = 1;t(s0) = s0.

2. Fixed time problem. If the time domain[0;T(u)] is �xed (T(u) = T for all u(�))
we add the variablet to the state space by settingdt

ds = 1;t(s0) = s0 and we impose
the following state constraints ont : t = 0 ats= 0 andt = T at the free terminal
times.

Some speci�c problems important for applications are the following.

1. If f 0 � 1, then min
RT

0 f 0(x(t);u(t)) dt = min T and we minimize the time of
global transfer.

2. If the system is of the form: �x(t) = A(t)x(t) + B(t)u(t), whereA(t);B(t) are ma-
trices andC(u) =

RT
0 L(t;x(t);u(t)) dt whereL(�;x;u) is a quadratic form for each

t, T being �xed, the problem is called a linear quadratic problem (LQ-problem).
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Singular Trajectories and the Weak Maximum Principle

De�nition 23 Consider a system ofRn : �x(t) = f (x(t);u(t)) where f is a C¥ -map
from Rn � Rm into Rn. Fix x0 2 Rn and T > 0. The end-point map (for �xed x0;T )
is the map Ex0;T : u(�) 2 U 7! x(T;x0;u). If u(�) is a control de�ned on[0;T] such
that the corresponding trajectory x(�;x0;u) is de�ned on[0;T], then Ex0;T is de�ned
on a neighborhood V of u(�) for the L¥ ([0;T]) norm.

First and Second Variations ofEx0;T

It is a standard result, see for instance [84], that the end-point map is aC¥ -map
de�ned on a domain of the Banach spaceL¥ ([0;T]). The formal computation of
the successive derivatives uses the concept of Gâteaux derivative. Let us explain in
details the process to compute the �rst and second variations.

Let v(�) 2 L¥ ([0;T]) be a variation of the reference controlu(�) and let us denote
by x(�) + x(�) the trajectory issued fromx0 and corresponding to the controlu(�) +
v(�). Sincef is C¥ , it admits a Taylor expansion for each �xedt:

f (x+ x ;u+ v) = f (x;u)+
¶ f
¶x

(x;u)x +
¶ f
¶u

(x;u)v+
¶2 f

¶x¶u
(x;u)(x ;v)

+
1
2

¶2 f
¶x2 (x;u)(x ;x )+

1
2

¶2 f
¶u

(x;u)(v;v)+ � � �

Using the differential equation we get

�x(t) + �x (t) = f (x(t) + x(t);u(t) + v(t)) :

Hence we can writex as:d1x+ d2x+ � � � whered1x is linear inv, d2x is quadratic,
etc. and are solutions of the following differential equations:

�d1x =
¶ f
¶x

(x;u)d1x+
¶ f
¶u

(x;u)v (2.5)

�d2x =
¶ f
¶x

(x;u)d2x+
¶2 f

¶x¶u
(x;u)(d1x;v)

+
1
2

¶2 f
¶x2 (x;u)(d1x;d2x)+

1
2

¶2 f
¶u2 (x;u)(v;v):

(2.6)

Using x(0) = 0, these differential equations have to be integrated with the initial
conditions

d1x(0) = d2x(0) = 0: (2.7)

Let us introduce the following notations:
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A(t) =
¶ f
¶x

(x(t);u(t)) ; B(t) =
¶ f
¶u

(x(t);u(t)) :

De�nition 24 The system

�dx(t) = A(t)dx(t)+ B(t)du(t)

is called the linearized system along(x(�);u(�)) .

Let M(t) be the fundamental matrix on[0;T] solution almost everywhere of

�M(t) = A(t)M(t); M(0) = Id:

Integrating (2.5) withd1x(0) = 0 we get the following expression ford1x:

d1x(T) = M(T)
Z T

0
M� 1(t) B(t) v(t) dt: (2.8)

This implies the following lemma.

Lemma 1 The Fŕechet derivative of Ex0;T at u(�) is given by

E0x0;T (v) = d1x(T) = M(T)
Z T

0
M� 1(t)B(t)v(t) dt:

De�nition 25 The admissible control u(�) and its corresponding trajectory x(�;x0;u)
both de�ned on[0;T] are said to be regular if the Fréchet derivative E0x0;T is sur-
jective. Otherwise they are called singular.

Proposition 12 Let A(x0;T) = [ u(�)2U x(T;x0;u) be the accessibility set at time T
from x0. If u(�) is a regular control on[0;T], then there exists a neighborhood U of
the end-point x(T;x0;u) contained in A(x0;T).

Proof. SinceE0x0;T is surjective atu(�), we have using the open mapping theorem
thatEx0;T is an open map.

Theorem 5 Assume that the admissible control u(�) and its corresponding trajec-
tory x(�) are singular on[0;T]. Then there exists a vector p(�) 2 Rn nf 0g absolutely
continuous on[0;T] such that(x; p;u) are solutions almost everywhere on[0;T] of
the following equations:

dx
dt

(t) =
¶H
¶ p

(x(t); p(t);u(t)) ;
dp
dt

(t) = �
¶H
¶x

(x(t); p(t);u(t)) (2.9)

¶H
¶u

(x(t); p(t);u(t)) = 0 (2.10)

where H(x; p;u) = hp; f (x;u)i is the pseudo-Hamiltonian,h; i being the standard
inner product.
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Proof. We observe that the Fréchet derivative is a solution of the linear system

�dx(t) = A(t)d1x(t)+ B(t)v(t):

Hence, if the pair(x(�);u(�)) is singular this system is not controllable on[0;T].
We use an earlier proof on controllability to get a geometric characterization of this
property. The proof which is the heuristic basis of the maximum principle is given
in detail. By de�nition, sinceu(�) is a singular control on[0;T] the dimension of the
linear space

� Z T

0
M(T)M� 1(t) B(t) v(t) dt; v(�) 2 L¥ ([0;T])

�

is less thann. Therefore there exists a row vector p2 Rn n f 0g such that

pM(T)M� 1(t)B(t) = 0

for almost everywheret 2 [0;T]. We set

p(t) = pM(T)M� 1(t):

By constructionp(�) is a solution of the adjoint system

�p(t) = � p(t)
¶ f
¶x

(x(t);u(t)) :

Moreover, it satis�es almost everywhere the following equality:

p(t)
¶ f
¶u

(x(t);u(t)) = 0:

Hence we get the equations (2.9) and (2.10) ifH(x; p;u) denotes the scalar product
hp; f (x;u)i .

Geometric interpretation of the Adjoint Vector

In the proof of Theorem 5 we introduced a vectorp(�). This vector is called an ad-
joint vector. We observe that ifu(�) is singular on[0;T], then for each 0< t � T;uj[0;T]

is singular andp(t) is orthogonal to the image denotedK(t) of E0x0;T evaluated at
uj[0;t]

. If for eacht, K(t) is a linear space of codimension one thenp(t) is unique up
to a factor.
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The Weak Maximum Principle

Theorem 6 Let u(�) be a control and x(�;x0;u) the corresponding trajectory, both
de�ned on [0;T]. If x(T;x0;u) belongs to the boundary of the accessibility set
A(x0;T), then the control u(�) and the trajectory x(�;x0;u) are singular.

Proof. According to Proposition 12, ifu(�) is a regular control on[0;T] thenx(T)
belongs to the interior of the accessibility set.

Corollary 2 Consider the problem of maximizing the transfer time for system
�x(t) = f (x(t);u(t)) ;u(�) 2 U = L¥ , with �xed extremities x0;x1. If u� (�) and the
corresponding trajectory are optimal on[0; t � ], then u� (�) is singular.

Proof. If u� (�) is maximizing thenx� (T) must belong to the boundary of the acces-
sibility setA(x0;T) otherwise there existse > 0 such thatx� (T � e) 2 A(x0;T) and
hence can be reached by a solution x(�) in time T : x� (T � e) = x(T). It follows
that the pointx� (T) can be joined in a timêT > T. This contradicts the maximality
assumption.

Corollary 3 Consider the system�x(t) = f (x(t);u(t)) where u(�) 2 U = L¥ ([0;T])
and the minimization problem:min

u(�)2U

RT
0 L(x(t);u(t)) dt, where the extremities x0;x1

are �xed as well as the transfer time T. If u� (�) and its corresponding trajectory
are optimal on[0;T], then u� (�) is singular on[0;T] for the augmented system:
�x(t) = f (x(t);u(t)) , �x0(t) = L(x(t);u(t)) . Therefore there existŝp� (t) = ( p(t); p0) 2
Rn+ 1 n f 0g such that(x̂� ; p̂� ;u� ) satis�es

�̂x(t) =
¶Ĥ
¶ p̂

(x̂(t); p̂(t);u(t)) ; �̂p(t) = �
¶Ĥ
¶x̂

(x̂(t); p̂(t);u(t))

¶Ĥ
¶u

(x̂(t); p̂(t);u(t)) = 0

(2.11)

wherex̂ = ( x;x0) and Ĥ(x̂; p̂;u) = hp; f (x;u)i + p0L(x;u). Moreover p0 is a non-
positive constant.

Proof. We have thatx� (T) belongs to the boundary of the accessibility setÂ(x̂0;T).
Applying (2.9), (2.10) we get the equations (2.11) where �p0 = � ¶Ĥ

¶x0 = 0 sinceĤ is
independent ofx0.

Abnormality

In the previous corollary, ˆp� (�) is de�ned up to a factor. Hence we can normalizep0
to 0 or -1 and we have two cases:

Case 1: u(�) is regular for the system �x(t) = f (x(t);u(t)) . Thenp0 6= 0 and can be
normalized to -1. This is called the normal case (in calculus of variations), see
[30].



24 2 Weak Maximum Principle and Application to Swimming at low Reynolds Number

Case 2: u(�) is singular for the system �x(t) = f (x(t);u(t)) . Then we can choose
p0 = 0 and the Hamiltonian̂H evaluated along(x(�); p(�);u(�)) doesn't depend
on the costL(x;u). This case is called the abnormal case.

2.4 Second order conditions and conjugate points

In this section we make a brief introduction to the concept of conjugate point in
optimal control, in relation with second order conditions, generalizing the similar
concepts in calculus of variations presented in section 2.5.7.

The underlying geometric framework is elegant and corresponds to the concept
of Lagrangian manifold [73] and singularity of projection of Lagrangian manifold
[8, 90]. They can be numerically computed using rank tests on Jacobi �elds which
is one of the key components of theHamPath code [38]. Also this concept is well
known to be related to the zero eigenvalue of self-adjoint operators associated to the
intrinsic second order derivative [52].

2.4.1 Lagrangian manifold and Jacobi equation

De�nition 26 Let (M;w) be a (smooth) symplectic manifold of dimension2n. A
regular submanifold L of M of dimension n is called Lagrangian if the restriction of
w to TxL � TxL is zero.

De�nition 27 Let L be a Lagrangian submanifold of T� M and letP : z= ( x; p) 7! x
be the canonical projection. A tangent non zero vector v of L is called vertical if
dP (v) = 0. We call caustic the set of points x of L such that there exists at least one
vertical �eld.

De�nition 28 Let
�!
H be a (smooth) Hamiltonian vector �eld on T� M, j t = expt

�!
H

the associated one parameter group, L0 the �ber TxM and Lt = j t (L0). The set of
caustics is called the set of conjugate loci of L.

De�nition 29 Let
�!
H be a (smooth) Hamiltonian vector �eld on T� M and let z(t) =

(x(t); p(t)) be a reference trajectory of
�!
H de�ned on[0;T]. The variational equation

�dz(t) =
¶

�!
H

¶z
(z(t))dz(t)

is called Jacobi equation. We called Jacobi �eld J(t) = ( dx(t);dp(t)) a non trivial
solution of Jacobi equation. It is said to be vertical at time t ifdx(t) = 0. A time tc
is called conjugated if there exists a Jacobi �eld vertical at times0 and tc and the
point x(tc) is called geometrically conjugate to x(0).
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2.4.2 Numerical computation of the conjugate loci along a
reference trajectory

Verticality test

Let z(t) = ( x(t); p(t)) be a reference trajectory of
�!
H andx0 = x(0). The set of Jacobi

�elds forms ann-dimensional linear subspace. Let(e1; :::;en) be a basis ofT �
x0

M and
let Ji(t) = ( dxi(t);dpi(t)) ; i = 1; :::;n the set of Jacobi �elds (vertical att = 0), such
thatdxi(0) = 0;dpi(0) = ei . Therefore the timetc is geometrically conjugate if and
only if the rank of

dPz(tc)(J1(tc); :::;Jn(tc))

is strictly less thann.

2.5 Sub-Riemannian Geometry

In this section a quick introduction to sub-Riemannian (SR-geometry) is presented
which is the proper geometry framework for the swimming problem at low Reynolds
number.

2.5.1 Sub-Riemannian manifold

De�nition 30 A sub-Riemannian manifold is a triple(M;D;g) where M is a smooth
connected manifold, D is a smooth distribution of rank m on M and g is a rieman-
nian metric on M.

An horizontal curveis an absolutely continuous curvet ! g(t), t 2 I such that

�g(t) 2 D(g(t)) . The length of a curveg is de�ned byl (g) =
Z

I
g( �g(t))1=2dt and its

energyis given byE(g) = 1=2
Z T

0
g( �g(t)) dt where the �nal timeT can be �xed at

1.

2.5.2 Controllability

Let D1 = D, Dk = D1 + [ D1;Dk� 1]. We assume that there exists for eachx 2 M an
integerr(x), called thedegree of non holonomy, such thatDr(x) = TxM. Moreover at
a pointx 2 M, the distributionD is characterized by thegrowth vector(n1;n2; :::;nr )
wherenk = dim Dk(x).
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2.5.3 Distance

According to Chow's theorem, for each pair(x;y) 2 M, there exists an horizon-
tal curveg : [0;1] ! M such thatg(0) = x; g(1) = y. We denote byd the sub-
Riemannian distance(SR-distance):

d(x;y) = inf
g

f l (g); g is an horizontal curve joiningx to yg:

2.5.4 Geodesics equations

According to Maupertuis principle the length minimization problem is equivalent to
the energy minimization problem. Additionally if we parametrize the curves by arc-
length, then the length minimization problem is equivalent to the time minimization
problem.

To compute the geodesics equations it is convenient to minimize the energyE.
We proceed for the calculations as follows. We choose a local orthonormal frame
f F1; :::;Fmg of D, and we consider the minimization problem:

dx
dt

(t) =
m

å
i= 1

ui(t)Fi(x(t)) ; min
u(:)

1
2

Z 1

0

 

å
i

u2
i (t)

!

dt:

According to the weak maximum principle (corresponding to a control domain
U = Rm) we introduce the pseudo-Hamiltonian:

H(x; p;u) =
m

å
i= 1

uiHi(x; p)+ p0

m

å
i= 1

u2
i

whereHi(x; p) = hp;Fi(x)i is the Hamiltonian lift ofFi . By homogeneityp0 can be
normalized to 0 or� 1

2.

Normal case:p0 = � 1=2.

According to the maximum principle the condition¶H
¶u = 0 leads toui = Hi . Plug-

ging this last expression forui into H leads to the true Hamiltonian in the normal
case:

Hn(z) =
1
2

m

å
i= 1

H2
i (z)

wherez= ( x; p). A normal extremal is a solution of the Hamiltonian system asso-
ciated to the true Hamiltonian, and its projection on the state space is called a normal
geodesic.
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Abnormal case: p0 = 0.

In this case, the maximum principle leads to the conditionsHi = 0; i = 1; :::;m, thus
de�ning implicitly the abnormal curves related to the structure of the distributionD.
The solutions are called abnormal extremals, and their projections on the state space
are the abnormal geodesics.

Next we introduce the basic de�nitions related to the analysis of the geodesics
equations and generalizing the Riemannian concepts.

De�nition 31 Parametrizing the normal geodesics solutions of
!
Hn(z) and �xing x2

M, the exponential map is de�ned byexpx : ( p;t) ! P (expt
!
Hn(z)) where z= ( x; p)

andP is the projection(x; p) ! x.

De�nition 32 Let x2 M be �xed. The set of points at a SR-distance less or equal to
r from x form the ball of radius r centered at x and the sphere S(x; r) is formed by
the set of points at a distance r from x.

2.5.5 Evaluation of the Sub-Riemannian ball

The computation of the Sub-Riemannian ball (SR-ball), even with small radius is
a very complicated task. One of the most important result in SR-geometry is an
approximation result about balls of small radius, in relation with the structure of the
distribution.

De�nition 33 Let x2 M, and let f be a germ of a smooth function at x. The multi-
plicity of f at x is the numberm( f ) de�ned by:

• m( f ) = minf n; there exist X1; :::;Xn 2 D(x) such that:(LX1 � :::: � LXn f )(x) 6= 0g,
• if f (x) 6= 0 thenm( f ) = 0, andm(0) = + ¥ .

De�nition 34 Let f be a germ of a smooth function at x, f is called privileged at x
if we have thatm( f ) is equivalent tominf k; dfx(Dk(x)) 6= 0g. A coordinate system
f x1; :::;xng : V ! R de�ned on an open subset V of x is called privileged if all the
coordinates functions xi , 1 � i � n are privileged at x.

2.5.6 Nilpotent Approximation

Let us �x a privileged coordinate system atx = ( x1; :::;xn), where the weight of
xi is given bym(xi). Each smooth vector �eldV at x has a formal expansionV �
å j �� 1V j , where eachV j = å n

i= 1P j
i (x1; :::;xn) ¶

¶xi
is homogeneous of degreej for

the weights associated with the coordinate system, and the weight of¶
¶xi

is � m(xi).

P j
i (x1; :::;xn) is a homogenous polynomial of degreej.
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Proposition 13 Let f F1; :::;Fmg be the orthonormal subframe of the distribution D
and setF̂i = F � 1

i , i = 1; :::;m in the formal expansion. Then, the familyF̂i is a �rst
order approximation off F1; :::;Fmg at x since they generate a nilpotent Lie algebra
with a similar growth vector. Moreover, for small x it gives the following estimate of
the SR-normjxj = d(0;x) � j x1j1=w1 + :::jxnj1=wn.

See [13], [55] and [49] for the details of the construction of privileged coordi-
nates. In addition, note that [71] contains also the relation of the integrability issues
which is important for the practical implementation.

2.5.7 Conjugate and cut loci in SR-geometry

The standard concepts of conjugate and cut point from Riemannian geometry can be
generalized in optimal control and thus in SR-geometry. Consider the SR-problem:

�x(t) =
m

å
i= 1

ui(t)Fi(x(t)) ; min
u(:)

Z T

0

 
m

å
i= 1

u2
i (t)

! 1=2

dt:

De�nition 35 Let x(:) be a reference (normal or abnormal) geodesic de�ned on
[0;T]. The time tc is called the cut time if the reference geodesic stops to be optimal
at t = tc, i.e. is no longer optimal for t> tc, and x(tc) is called the cut point. Taking all
geodesics starting from x0 = x(0), their cut points will form the cut locus Ccut(x0).
The time t1c is called the �rst conjugate time if it is the �rst time such that the
reference geodesic is no longer optimal for t> t1c for the C1-topology on the set
of curves, and the point x(t1c) is called the �rst conjugate point. Calculated over
all geodesics, the set of �rst conjugate points will form the (�rst) conjugate locus
C(x0).

An important step is to relate the computation of the geometric conjugate lo-
cus (using a test based on Jacobi �elds) to the computation of the conjugate locus
associated to optimality. It can be done under suitable assumptions in both the nor-
mal and the abnormal case [21] but for simplicity we shall restrict ourselves to the
normal case.

2.5.8 Conjugate locus computation

Using Maupertuis principle, the SR-problem is equivalent to the (parametrized) en-
ergy minimization problem:

min
u(:)

Z T

0

 
m

å
i= 1

u2
i (t)

!

dt
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whereT is �xed, and we can chooseT = 1.
Let Hi(z) = hp;Fi(x)i and letHn(z) = 1

2 å m
i= 1H2

i (z) be the Hamiltonian in the
normal case. Take a reference normal geodesicx(:) de�ned on[0;1] and letz(:) =
(x(:); p(:)) be a symplectic lift solution of

�!
H n. Moreover assume thatx(:) is strict,

which means that it is not a projection of an abnormal curve. Then the following
proposition holds.

Proposition 14 The �rst conjugate time t1c along x(:) corresponds to the �rst geo-
metric conjugate point and can be computed numerically using the test of Section
2.4.

2.5.9 Integrable case

If the geodesic �ow is Liouville integrable, then the Jacobi equation is integrable
and the conjugate points can be computed using the parametrization of the geodesic
curve. This result is a consequence of the following standard lemma from differen-
tial geometry.

Lemma 2 Let J(t) = ( dx(t);dp(t)) be a Jacobi curve along z(t) = ( x(t); p(t)) , t 2
[0;1] and vertical at time t= 0, i.e.dx(0) = 0. Leta (e) be any curve in T�x0

M de�ned
by p(0)+ edp(0)+ o(e). Then:

J(t) =
d
de je= 0

exptHn(x(0);a (e)) :

2.5.10 Nilpotent models in relation with the swimming problem

The models in dimension 3 are related to the classi�cation of stable 2-dimensional
distributions, see [91], and will be used for the copepod swimmer. See also [31] for
the analysis of the Heisenberg case.

Contact case.A point x0 2 R3 is acontact pointof the distributionD = spanf F1;
F2g if [F1;F2](x0) =2 D(x0) and the growth vector is(2;3). A normal form atx0 � 0
is given by:

x = ( x1;x2;x3); D = kera ; a = x2dx1 + dx3:

Observe that

• da = dx2 ^ dx1 : Darboux form,
• ¶

¶x3
is equal to the Lie bracket[F1;F2] and is the characteristic direction of da .

This form is equivalent to the so-calledDido representation:

D = kera 0; a 0= dx3 + ( x1dx2 � x2dx1)
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with

D = spanf F1;F2g; F1 =
¶

¶x1
+ x2

¶
¶x3

; F2 =
¶

¶x2
� x1

¶
¶x3

:

If we set F3 = ¶
¶x3

, we have that[F1;F2] = 2F3 and the corresponding so-called
Heisenberg SR-caseis given by:

�x(t) =
2

å
i= 1

ui(t)Fi(x(t)) ; min
u(:)

Z T

0
(u2

1(t) + u2
2(t)) dt:

It corresponds to minimizing the Euclidean length of the projection of the curve
t ! x(t) on the(x1;x2)-plane. Starting from the origin(0;0;0), we observe that

x3(T) =
Z T

0
( �x1(t)x2(t) � �x2(t)x1(t)) dt

is proportional to the area swept by the curvet ! (x1(t);x2(t)) . The Heisenberg
SR-case is therefore dual to the Dido problem: among the closed curves in the plane
with �xed length, �nd those for which the enclosed area is maximal. The solutions
are well known and they are arcs of circles. They can be easily obtained using simple
computations as follows. The geodesic equations written in the(x;H) coordinates
where H = ( H1;H2;H3); Hi = hp;Fi i ; i = 1;2;3 are given by:

�x1 = H1; �x2 = H2; �x3 = H1x2 � H2x1;
�H1 = 2H2H3; �H2 = � 2H1H3; �H3 = 0:

SinceH3 is constant we can introduceH3 = l =2 with l 2 R, and we obtain the
equation of a linear pendulum̈H1 + l 2H1 = 0. The integration can be done directly
since we can observe that:

ẍ3 �
l
2

d
dt

(x2
1 + x2

2) = 0:

Sincel 6= 0, which can be assumed positive, we obtain the well known parametriza-
tion for the geodesics:

x1(t) =
A
l

(sin(l t + j ) � sin(j ))

x2(t) =
A
l

(cos(l t + j ) � cos(j ))

x3(t) =
A2

l
t �

A2

l 2 sin(l t)

with A =
q

H2
1 + H2

2 andj is the angle of the vector( �x1; � �x2).
If l = 0, the geodesics are straight lines.
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Conjugate points.Computations of �rst conjugate points are straightforward us-
ing the parameterization above for the normal geodesics. Only geodesics whose
projections are circles have a �rst conjugate point given bytc = 2p=l which corre-
sponds to the �rst intersection of the geodesic with the axisOx3. Geometrically, it is
due to the symmetry of revolution along this axis which produces a one-parameter
family of geodesics starting from 0 and intersecting at such point. This point is also
a cut point and a geodesic is optimal up to this point (included).

Note that the SR-Heisenberg case will lead to interesting geometric conse-
quences in the swimming problem: the circles projections correspond to the concept
of stroke. But while this model can provide some insights on optimal swimming, it
is too primitive because:

1. The geodesic �ow is integrable due to the symmetries and every(x1;x2) motion
is periodic;

2. The model is quasi-homogeneous wherex1;x2 are of weight 1 andx3 is of
weight 2.

Martinet case.A point x0 is aMartinet pointif at x0, [F1;F2] 2 spanf F1;F2g and
at least one Lie bracket[[F1;F2];F1] or [[F1;F2];F2] does not belong toD . Hence the
growth vector is(2;2;3). Then, there exist local coordinates nearx0 identi�ed to the
origin such that:

D = kerw; w = dx3 �
x2

2

2
dx1

where

F1 =
¶

¶x1
+

x2
2

2
¶

¶x3
; F2 =

¶
¶x2

; F3 = [ F1;F2] = x2
¶

¶x3
:

The surfaceS : det(F1;F2; [F1;F2]) = 0 is identi�ed to x2 = 0 and is called the
Martinet surface.This surface is foliated by abnormal curves which are integral
curves of ¶

¶x1
. In particular abnormal curves passing through the origin and param-

eterized by arc-length corresponds to the curvet ! (t;0;0).
Those two cases are nilpotent Lie algebras associated to nilpotent approximations

of the SR-metric in the copepod swimmer and are respectively the Heisenberg case
and the Martinet �at case. Also it can be easily checked that this second case leads
to integrable geodesic �ow using elliptic functions.

2.6 Swimming problems at low Reynolds number

2.6.1 Purcell's 3-link swimmer.

The 3-link swimmer is modeled by the position of the center of the second stickx =
(x;y) as well as the anglea between thex-axis and the second stick (the orientation
of the swimmer). The shape of the swimmer is modeled by the two relative angles
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q1 andq2 (see Fig 2.1). We also denote respectively byL andL2 the length of the
two external arms and central link. In what follows,x0(resp.x00) corresponds to(x;y)
(resp. to(a ;q1;q2)).

� x
q1

q2

a

ex

ey

L2

L

Fig. 2.1 Purcell's 3-link swimmer.

Dynamics via Resistive Force Theory.

We approximate the non local hydrodynamic forces exerted by the �uid on the
swimmer with local drag forces depending linearly on the velocity. For eachi 2
f 1;2;3g, we denote byek

i ande?
i the unit vectors parallel and perpendicular to the

i-th link, and we also introducevi(s) the velocity of the point at distances from the
extremity of thei-th link, that is:

v1(s) = �x �
L2

2
�a e?

2 � s( �a � �q1)e?
1 ; s2 [0;L];

v2(s) = �x � (s�
L2

2
) �a e?

2 ; s2 [0;L2];

v3(s) = �x+
L2

2
�a e?

2 + s( �a � �q2)e?
3 ; s2 [0;L]:

The forcef i acting on thei-th segment is taken as:

f i(s) := � ct

�
vi(s) � ek

i

�
ek

i � cn

�
vi(s) � e?

i

�
e?

i

wherect andcn are respectively the drag coef�cients in the directions ofek
i ande?

i .
Neglecting inertia forces, Newton laws are written as:

�
f = 0;
ez � Tx = 0

(2.12)

wheref is the total force exerted on the swimmer by the �uid andez = ex ^ ey,

f =
Z L

0
f1(s) ds+

Z L2

0
f2(s) ds+

Z L

0
f3(s) ds
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andTx is the corresponding total torque computed with respect to the central point
x,

Tx =
Z L

0
(x1(s) � x1) � f1(s) ds+

Z L2

0
(x2(s) � x1) � f2(s) ds

+
Z L

0
(x3(s) � x1) � f3(s) ds

wherexi = ( xi ;yi), for i = 1;2;3, corresponds to the left-end point of thei-th link,
andxi(s) = xi + sei .
Since thef i(s) are linear in�x; �a ; �q1; �q2, the system (2.12) can be rewritten as

A(q) �
�

�x
�a

�
� B(q) �

� �q1
�q2

�
= 0

whereq(t) = ( q1;q2;x;y;a )(t). The matrixA(q) is invertible (see [5]). Then, the
dynamics of the swimmer is �nally expressed as the system

�q(t) = f (q; �q1; �q2) = �q1(t) F1(q(t)) + �q2(t) F2(q(t))

where
�
F1(q) F2(q)

�
:=

�
I2

A� 1(q)B(q)

�
with I2 the 2� 2 identity matrix. The equa-

tions of the dynamics take the form
0

@
�x
�y
�a

1

A =
1
G

R a

0

@
g11 g12
g21 g22
g31 g32

1

A
� �q1

�q2

�
;

�q = u = S(q)t

(2.13)

wheret is the torque,R a is the rotation matrixR a =

0

@
cos(a ) � sin(a ) 0
sin(a ) cos(a ) 0

0 0 1

1

A and

gi j ; G andSare functions depending only on(q1;q2) which have long expressions
(cf. [76] for a details).

The cost functionu is minimizing the expanded mechanical power

Z T

0
t � udt (2.14)

wheret u = uH� 1u andH � 1(q) is the symmetric matrix described in [76]. It can be
computed as Z T

0

� Z L

0
f1 � v1 +

Z L2

0
f2 � v2 +

Z L

0
f3 � v3

�
:
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Expressions of the controlled vector �elds and the mechanical energy.

NormalizingL = 2, L2 = 1, ct = 1;cn = 2, we write the swimming control system
(2.13) as

�q(t) =
2

å
i= 1

ui(t)Fi(q(t)) ; (2.15)

and we obtain the following expressions of the vector �eldsF1;F2:

F1 = ¶
¶q1

+ ¶
¶x f13+ ¶

¶y f14+ ¶
¶a f15; (2.16)

F2 = ¶
¶q2

+ ¶
¶x f23+ ¶

¶y f24+ ¶
¶a f25 (2.17)

where
d = 1692+ 336 cos(q1 � q2)+ 84 cos(2q1) � 24 cos(q1 + 2q2) � 48 cos(q1 + q2)
+ 816 cos(q2) + 72 cos(� 2q2 + q1) + 816 cos(q1) � 6 cos(2q1 + 2q2)
+ 18 cos(� 2q2 + 2q1) + 84 cos(2q2) � 24 cos(2q1 + q2) + 72 cos(� q2 + 2q1)
in

. f13 = 1=d
�
4 sin(a � 2q2) � sin(a + 2q2 � q1) + 18 sin(a � q1 � q2)

+ 3 sin(a � q1 � 2q2) + 2 sin(a � 2q1 + 2q2) � 9 sin(a + q1 � 2q2)
� 21 sin(a + q1 + 2q2) � 126 sin(a + q1 + q2) � 30 sin(a � q1 + q2)
� 2 sin(a + 2q1 � 2q2) + 2 sin(a � 2q1) � 78 sin(a + q1 � q2)
+ 16 sin(a � q2) � 104 sin(a + q2) � 8 sin(a + 2q1 � q2) � 24 sin(a + 2q2)
� 18 sin(a + 2q1) � 36 sin(a ) � 262 sin(a + q1) + 26 sin(a � q1)

�
;

. f14 = 1=d
�
18 cos(a + 2q1) + 24 cos(a + 2q2) + 30 cos(a � q1 + q2)

� 3 cos(a � q1 � 2q2) + 126 cos(a + q1 + q2) + 78 cos(a + q1 � q2)
� 18 cos(a � q1 � q2) + 21 cos(a + q1 + 2q2) + 9 cos(a + q1 � 2q2)
� 26 cos(a � q1) + 104 cos(a + q2) � 16 cos(a � q2) + 8 cos(a + 2q1 � q2)
� 4 cos(a � 2q2) + 36 cos(a )+ 262 cos(a + q1) + cos(a + 2q2 � q1)
� 2 cos(a � 2q1) � 2 cos(a � 2q1 + 2q2) + 2 cos(a + 2q1 � 2q2)

�
,

. f15 = 1=d
�

� 216� 4 cos(2q1) + 6 cos(q1 + 2q2) + 12 cos(q1 + q2)
� 204 cos(q1) � 18 cos(� 2q2 + q1) � 84 cos(q1 � q2) � 4 cos(� 2q2 + 2q1) +
8 cos(2q2)

�
,

. f23 = 1=d
�
21 sin(a + q2 + 2q1) � 2 sin(a + 2q1 � 2q2) � 2 sin(a � 2q2)

+ 9 sin(a + q2 � 2q1) + 2 sin(a � 2q1 + 2q2) + 30 sin(a + q1 � q2)
+ 8 sin(a + 2q2 � q1) � 3 sin(a � q2 � 2q1) � 18 sin(a � q1 � q2)
+ 126 sin(a + q1 + q2) + 78 sin(a � q1 + q2) + sin(a + 2q1 � q2)
+ 262 sin(a + q2) + 104 sin(a + q1) � 4 sin(a � 2q1) � 16 sin(a � q1)
� 26 sin(a � q2) + 24 sin(a + 2q1) + 18 sin(a + 2q2) + 36 sin(a )

�
,

. f24 = 1=d
�
4 cos(a � 2q1) � 2 cos(a � 2q1 + 2q2) � 8 cos(a + 2q2 � q1)

+ 2 cos(a � 2q2) � 18 cos(a + 2q2) + 26 cos(a � q2) � 24 cos(a + 2q1)
� cos(a + 2q1 � q2) + 2 cos(a + 2q1 � 2q2) � 30 cos(a + q1 � q2)
� 21 cos(a + q2 + 2q1) � 126 cos(a + q1 + q2) � 78 cos(a � q1 + q2)
+ 3 cos(a � q2 � 2q1) � 9 cos(a + q2 � 2q1) + 18 cos(a � q1 � q2)
+ 16 cos(a � q1) � 104 cos(a + q1) � 262 cos(a + q2) � 36 cos(a )

�
,
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. f25 = 1=d
�

� 2168 cos(2q1)+ 12 cos(q1 + q2)+ 6 cos(2q1 + q2) � 4 cos(2q2)
� 18 cos(2q1 � q2) � 204 cos(q2) � 4 cos(� 2q2 + 2q1) � 84 cos(q1 � q2)

�
.

Moreover, writing the integrand of the cost function (2.14) asau2
1 + 2bu1u2 + cu2

2,
the coef�cientsa;b;c are given by

- a(q) = 1=k
�
3 cos(2q1 + 2q2) � 6 cos(� 2q2 + 2q1) � 12 cos(2q1 � q2)

+ 24 cos(2q1 + q2) + 72 cos(2q1) � 84 cos(2q2) � 492 cos(q2) � 1233
�
,

- b(q) = 1=k
�

cos(2q1 + 2q2) � 246 cos(q1) � 246 cos(q2)+ 12 cos(2q1 + q2) �
6 cos(2q1 � q2) + 12 cos(q1 + 2q2) + 84 cos(q1 + q2) � 276 cos(q1 � q2)
� 6 cos(� 2q2 + q1) � 4 cos(2q2) � 4 cos(2q1) � 153

�
,

- c(q) = 1=k
�
3 cos(2q1 + 2q2) � 492 cos(q1) � 6 cos(� 2q2 + 2q1)

+ 24 cos(q1 + 2q2) � 12 cos(� 2q2 + q1)+ 72 cos(2q2) � 84 cos(2q1) � 1233
�
.

wherek = 36 cos(q1 � 2q2) � 222 cos(2q1) � 1116 cos(q2) � 222 cos(2q2)
+ 18 cos(� 2q2 + 2q1) � 72 cos(2q1 + q2) � 72 cos(q1 + 2q2) � 180 cos(q1 + q2)
+ 36 cos(2q1 � q2) � 1116 cos(q1)+ 36 cos(q1 � q2) � 12 cos(2q1 + 2q2) � 3258.

2.6.2 Copepod swimmer

It is a simpli�ed model proposed by [87] of a symmetric swimming where only
line displacement is authorized, see also [10]. It consists in two pairs of symmetric
links of equal lengths with respective anglesq1;q2 with respect to the displacement
directionsOx while the body is assumed to be an in�nitesimal sphere, see Fig. 2.2.

x0(t)
x

! 1(t)

! 2(t)

! = " ! = 0

! 2(t)
! 1(t)

FIG. 1. Sketch of the upper half of a swimmer paddling along thex axis, the line of symmetry.

I. INTRODUCTION

2

Fig. 2.2 (Symmetric) copepod swimmer.

The swimming velocity atx0 is given by

�x0 =
�q1sinq1 + �q2sinq2

2+ sin2q1 + sin2q2
(2.18)

and
�q1 = u1; �q2 = u2:
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The mechanical energy is the quadratic form �qM �qt whereq = ( x0;q1;q2) is the
state variable andM is the symmetric matrix

M =

0

@
2� 1=2(cos2q1 + cos2q2) � 1=2sinq1 � 1=2sinq2

� 1=2sinq1 1=3 0
� 1=2sinq2 0 1=3

1

A :

The corresponding Riemannian metric de�nes the associated SR-metric thanks to
the relation between �x0 and �q1; �q2.

2.6.3 Some geometric remarks

In order to analyze the swimming problem one must introduce the concept of stroke.

De�nition 36 A stroke is a periodic motion of the shape variables associated with
a periodic control producing a net displacement of the displacement variable after
one period. Observe that due to the SR-structure one can �x the period of the stroke
to 2p.

A �rst geometric analysis is to consider bang-bang controls and the associated
strokes. For a single link one gets the famousscallop theorem.

Theorem 7 A scallop cannot swim.

Proof. The relation between the displacement and angular velocity is given by the
relation

�x0 =
sin(q) �q

2� cos2(q)
; �q = u

whereq is the angle of the symmetric link with respect to the axis. Letg be the
angle with respect to the vertical and a stroke is given by

u = 1 : q : p=2� g ! p=2

u = � 1 : q : p=2 ! p=2� g

and the controlu = 1 produces a displacement:x0 ! x1 while the controlu = � 1
reverses the motion:x1 ! x0. The net displacement of the stroke is zero and clearly
is related to the reversibility of the SR-model.

A similar computation can be done on the Purcell swimmer using a square stroke
like in the original paper ([78]). Considering the controlled system (2.15), the dis-
placement associated with the sequence stroke described in Fig.2.3 is given by

b(t) = ( exptF2 exp� tF1 exp� tF2 exptF1) (q(0)) ; q = ( q1;q2;x;y;a );

and using Baker-Campbell-Hausdorff formula one has
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Fig. 2.3 Purcell stroke.

b(t) = exp(t2[F1;F2] + o(t2))( q(0))

which gives for small stroket a displacement of

b(t) � q(0)+ t2[F1;F2](q(0)) :

This shall be compared with [12]. Hence for a small square stroke the displacement
can be evaluated using (2.16), (2.17).

In the case of the copepod swimmer, due to the constraintsqi 2 [0;p], q1 � q2
on the shape variable, a geometric stroke corresponds to a triangle in the shape
variable and is de�ned byq2 : 0 ! p; q1 : 0 ! p and q1 = q2 : p ! 0. See in
the speci�c analysis of the copepod swimmer the interpretation of this stroke (see
Fig.2.20(right)).

2.6.4 Purcell swimmer

Due to the mathematical complexity of the expressions of the vector �eldsF1 and
F2 (cf. Section 2.6.1) employed in this model, the nilpotent approximation will play
a crucial role in our analysis. First, as a consequence of the integrability of the
associated normal extremals in the class of elliptic functions, the nilpotent approxi-
mation will allow us to make a micro-local analysis of the different kinds of strokes
and to establish the existence of conjugate points using a suitable time rescaling.
Second, the abnormal extremals forming piecewise smooth strokes can be easily
computed in this approximation and, then, the optimality of these strokes can be
studied using the concept of the (corresponding) conjugate point.
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The �at nilpotent model

The Purcell system (2.13) can be written as a control system of the form �q =
F(q)u = å 2

i= 1uiFi(q); where q = ( q1;q2;x;y;a ) 2 R5. Even though the vectors
�elds F1;F2 have a complicated expression, they provide a 2-distribution with
growth(2;3;5) (see [15]). There exists a unique nilpotent model associated with a
2-dimensional distribution in dimension 5 with growth vector(2;3;5), see [33, 81].

De�nition 2.1. We call the �at Cartan model the 2-dimensional distribution in di-
mension �ve de�ned by the two vector �elds:

F̂1(x̂) =
¶

¶x̂1
; F̂2(x̂) =

¶
¶x̂2

+ x̂1
¶

¶x̂3
+ x̂3

¶
¶x̂4

+ x̂2
1

¶
¶x̂5

(2.19)

wherex̂= ( x̂1;x̂2;x̂3;x̂4;x̂5) are the privileged coordinates with the following weights:
1 for x̂1 andx̂2, 2 for x̂3, and 3 for ˆx4 andx̂5.

Computations of the nilpotent approximation

The nilpotent approximation of the Purcell model is computed at the origin. It
provides a nilpotent approximation for the SR-problem with the simpli�ed cost
Z 2p

0
(u2

1(t) + u2
2(t)) dt.

The two-jets ofF1 andF2 atq = ( 0;0;0;0;0) are given by:

F1(q) =
¶

¶q1
+

�
�

1
6

q5 �
4
27

q1 �
2
27

q2

�
¶

¶q3

+
�

1
6

�
1
12

q5
2 �

2
27

q5 q2 �
4
27

q5 q1 �
1
27

q1
2 �

1
27

q1q2 �
1
36

q2
2
�

¶
¶q4

+
�

�
7
27

+
2
81

q1
2 �

2
81

q1q2 �
5

162
q2

2
�

¶
¶q5

+ O(jqj3)

F2(q) =
¶

¶q2
+

�
1
6

q5 +
4
27

q2 +
2
27

q1

�
¶

¶q3

+
�

�
1
6

+
1
12

q5
2 +

4
27

q5 q2 +
2
27

q5 q1 +
1
36

q1
2 +

1
27

q1q2 +
1
27

q2
2
�

¶
¶q4

+
�

�
7
27

�
5

162
q1

2 �
2
81

q1q2 +
2
81

q2
2
�

¶
¶q5

+ O(jqj3) :

The local diffeomorphismj , which transformsF1;F2 into the nilpotent approxima-
tion F̂1; F̂2, can be explicitly written using a sequencej = j N o ::: o j 1 : R5 ! R5,
whereN = 13 (see [15]). This leads to a complicated transformation whose role
is to relate the privileged coordinates to the physical coordinates(q1;q2;x;y;a ) in
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particular we have a `stability' property for the shape variables as stated in the next
proposition.

Proposition 2.1.The shape variablesq = ( q1;q2) corresponds to the(x̂1; x̂2) coor-
dinates.

Integration of normal extremal trajectories

Computing with (2.19), we obtain:

F̂1(x̂) =
¶

¶x̂1
; F̂2(x̂) =

¶
¶x̂2

+ x̂1
¶

¶x̂3
+ x̂3

¶
¶x̂4

+ x̂2
1

¶
¶x̂5

;

[F̂1; F̂2](x̂) = �
¶

¶x̂3
� 2x̂1

¶
¶x̂5

; [[F̂1; F̂2]; F̂1](x̂) = � 2
¶

¶x̂5
;

[[F̂1; F̂2]; F̂2](x̂) =
¶

¶x̂4
:

All brackets of length greater than 3 are zero. Let us introduce ˆz= ( x̂; p̂). Employing
the corresponding Hamiltonian lifts, we have:

H1(ẑ) = hp̂; F̂1(x̂)i = p̂1; H2(ẑ) = hp̂; F̂2(x̂)i = p̂2 + p̂3x̂1 + p̂4x̂3 + p̂5x̂2
1;

H3(ẑ) = hp̂; [F̂1; F̂2](x̂)i = � p̂3 � 2x̂1 p̂5; H4(ẑ) = hp̂; [[F̂1; F̂2]; F̂1](x̂)i = � 2p̂5;

H5(ẑ) = hp̂; [[F̂1; F̂2]; F̂2](x̂)i = p̂4:

The SR-Cartan �at case is

�̂x(t) =
2

å
i= 1

ui(t)F̂i(x̂(t)) ; min
u

Z 2p

0
(u2

1(t) + u2
2(t)) dt:

and the normal Hamiltonian takes the form

Hn = 1=2(H2
1 + H2

2 ): (2.20)

More precisely, using the Poincaré coordinates, the control system can be written
as:

�̂x1 = H1; �̂x2 = H2; �̂x3 = H2x̂1;

�̂x4 = H2x̂3; �̂x5 = H2x̂2
1:

(2.21)

By differentiating with respect to the time variable, we obtain:

�H1 = dH1(
�!
Hn) = f H1;H2gH2 = hp̂; [F̂1; F̂2](x̂)i H2 = H3H2;

�H2 = � H3H1; �H3 = H1H4 + H2H5;
�H4 = 0 hence H4 = c4; �H5 = 0 hence H5 = c5:
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We �x the energy levelH2
1 + H2

2 to 1, and we introduceH1 = cosJ andH2 = sinJ
which implies:

�H1 = � sinJ �J = H2H3 = sinJ H3:

It follows that �J = � H3 and

J̈ = � (H1c4 + H2c5) = � c4cosJ � c5sinJ = � w2sin(J + f ) (2.22)

wherew andf are constant. More precisely, we have:

w =
�
p̂2

40+ 4p̂2
50

� 1=4
; f = arctan(� 2 p̂50=p̂40) :

• First, we consider thedegenerate casewhich corresponds töJ = 0. Therefore,
J (t) = p̂30t + J 0 whereJ 0, p̂30 are constant and for ˆp30 6= 0, the solutions ˆx1; x̂2
of (2.21) are expressed as:

x̂1(t) = x̂10+ 1=p̂30 sin( p̂30t + J 0);

x̂2(t) = x̂20 � 1=p̂30 cos( p̂30t + J 0)
(2.23)

wherex̂10, x̂20 are constant.
• Second, the case corresponding toJ̈ 6= 0 leads to a pendulum equation. Indeed,

by introducingy = J + f , (2.22) becomes:

1=2 �y 2 � w2 cos(y ) = B; (2.24)

whereB is the constant

B = 1=2 ( p̂30+ 2x̂10p̂50)
2 � p̂10 p̂40 � 2 p̂50 p̂20 � 2 p̂50 p̂40 x̂30:

We have the following two possible cases.

– Oscillating case.We introducek2 = 1=2+ B=(2w2) with 0 < k < 1 so that
(2.24) becomes

�y 2 = 4w2 �
k2 � sin2(y =2)

�

and, using standard relations on elliptic functions (cf. [63]), we obtain

sin(y =2) = ksn(u;k); cos(y =2) = dn(u;k)

whereu = wt + j 0. cn anddn are elliptic functions of the �rst kind and the
solutions of (2.21), ˆx1; x̂2, are expressed as

wx̂1(u) = wx̂10+ � 2k sin(f ) cn(u)+ ( � u+ 2E(u)) cos(f )

wx̂2(u) = wx̂20+ � 2k cos(f ) cn(u)+ ( u� 2E(u)) sin(f )
(2.25)

wherex̂10 andx̂20 are constant, andE(:) is the elliptic integral of the second
kind.
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– Rotating case.We introducek2 = 2w2=(B+ w2) with 0< k < 1 so that (2.24)
becomes

�y 2 = 4w2=k2 �
1� k2sin2(y =2)

�
:

Invoking again elliptic functions properties ([63]) we have

sin(y =2) = sn(u=k;k); cos(y =2) = cn(u=k;k)

whereu = wt + j 0. Still snandcn are elliptic functions of the �rst kind. The
solutions of (2.21), ˆx1; x̂2, satisfy the relations

wx̂1(u) = wx̂10+
�

1�
2
k2 + 2

E(k)
k2K (k)

�
cos(f ) u+

2
k

�
cos(f ) Z

� u
k

�
� sin(f ) dn

� u
k

��

wx̂2(u) = wx̂20+
� 2

k2 � 1� 2
E(k)

k2K (k)

�
sin(f ) u�

2
k

�
sin(f ) Z

� u
k

�
+ cos(f ) dn

� u
k

�� (2.26)

wherex̂10 andx̂20 are constant,K(k);E(k) are respectively the complete ellip-
tic integrals of the �rst and second kind,Z(:) is the Jacobi's Zeta function.

Computations of strokes with small amplitudes using the nilpotent
approximation

We recall that the physical variablesq are related to ˆx using the transformationj .
The adjoint variablesp are obtained by a Mathieu transformation associated with
j . More precisely, according to Proposition 2.1, recall that the shape variablesq =
(q1;q2) correspond to the(x̂1; x̂2) coordinates.

Strokes with small amplitudes such thatq(0) = 0 are computed from the nilpotent
approximation in the following way:

• Degenerate case:The corresponding solutions ˆxi(:); i = 1;2 of (2.23) yield the
periodic shape variablesqi(t) = x̂i(t); i = 1;2 of period 2p=p̂30. Moreover, the
constants ˆx10; x̂20;J 0 may be chosen so thatq(0) = ( q1(0);q2(0);x(0)) = 0.

• Oscillating case:
The modulusk can be expressed as

k( p̂(0)) =
1
2

vu
u
u
t

2
q

p̂2
40+ 4 p̂2

50+ p̂2
30 � 2 p̂10 p̂40 � 4 p̂50 p̂20

q
p̂2

40+ 4 p̂2
50

(2.27)

and, computingk( p̂(0)) such that the linear terms ofq1(t) = x̂1(wt + j 0); q2(t) =
x̂2(wt + j 0) of (2.25) vanish, leads to periodic strokes with eight shapes of period

T = 4K(k)=
�
p̂2

40+ 4 p̂2
50

� 1=4
:

The constants ˆx10; x̂20 are chosen such thatJ (0) = 0. The initial adjoint vec-
tor p̂(0) has to verify the conditionsH1(x̂(0); p̂(0))2 + H2(x̂(0); p̂(0))2 = 1,
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k( p̂(0)) 2 (0;1) andp̂2
40+ 4 p̂2

50 6= 0.
We integrate numerically the stroke in the physical variables starting from
(q(0) = 0; p̂(0)) and show that the stroke has a conjugate point on[0;T].

• Rotating case:The modulusk can be expressed as

k( p̂(0)) = 2

vu
u
u
t

q
p̂2

40+ 4 p̂2
50

2
q

p̂2
40+ 4 p̂2

50+ p̂2
30 � 2 p̂10 p̂40 � 4 p̂50 p̂20

(2.28)

We haveq1(t) = x̂1(wt + j 0);q2(t) = x̂2(wt + j 0) wherex̂1; x̂2 are explicitly
written in (2.26). We choosep(0) so thatH1(x̂(0); p̂(0))2 + H2(x̂(0); p̂(0))2 = 1,
k( p̂(0)) 2 (0;1) and such that the denominator ofk( p̂(0)) is nonzero. Ask( p̂(0))
tends to 0, the linear terms of ˆx1(u); x̂2(u) of (2.26) tend to 0. This is the case
whenp̂40 ! 0 andp̂50 ! 0, and at the limit, equation (2.22) reduces to the equa-
tion of the degenerate case:J̈ = 0.

Abnormal case

We can reduce the problem by considering the minimal time problem for the single-
input af�ne system (cf. [21]):

�̂x(t) = F̂1(x̂(t)) + u(t)F̂2(x̂(t))

whereu(:) is now a scalar control. We denote by ˆx(:) a reference minimum time
trajectory, and since we consider abnormal extremals it follows from the Pontryagin
maximum principle that along the extremal lift of ˆx(:), the identityH2(x̂; p̂) = 0
must hold and, differentiating with respect tot, it implies thatf H1;H2g(x̂; p̂) = 0
must hold too. Differentiating once more time, the extremals associated with the
controls:

ua(x̂; p̂) = �f H1; f H2;H1gg(x̂; p̂) =f H2; f H1;H2gg(x̂; p̂) = 2 p̂5=p̂4

satisfy the relationH2 = f H1;H2g = 0 along(x̂(:); p̂(:)) and are solutions of:

�̂x(t) =
¶Ha

¶ p̂
(x̂(t); p̂(t)) ; �̂p(t) = �

¶Ha

¶x̂
(x̂(t); p̂(t)) ;

whereHa is the true Hamiltonian:

Ha(x̂; p̂) = H1(x̂; p̂) + uaH2(x̂; p̂) = p̂1 + 2 p̂5
�
p̂2 + p̂3 x̂1 + p̂4 x̂3 + p̂5 x̂2

1
�

=p̂4:

From the Pontryagin maximum principle, we also have thatH1(x̂(:); p̂(:)) = 0. The
extremal system subject to the constraintsH1 = H2 = f H1;H2g= 0 is integrable and
the corresponding solutions can be written as:
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x̂1(t) = t + x̂10; x̂2(t) = 2 p̂50=p̂40t + x̂20;

x̂3(t) = p̂50=p̂40t2 + 2 p̂50x̂10=p̂40t + x̂30;

x̂4(t) = 2=3 p̂2
50=p̂2

40t
3 � 2 p̂50=p̂2

40
�
p̂50 x̂2

10+ p̂30 x̂10+ p̂20
�
t

� p̂50 p̂30=p̂2
40t2 + x̂40;

x̂5(t) = 2=3 p̂50=p̂40t3 + ( 4 p̂50 x̂10+ p̂30) =p̂40t2

+ 2
�
2 p̂50 x̂2

10+ p̂30 x̂10+ x̂30 p̂40+ p̂20
�

=p̂40t + x̂50;

p̂1(t) =
�
� 2 p̂50 p̂30 � 4 p̂2

50x̂10
�

=p̂40t + p̂10;

p̂2(t) = p̂20; p̂3(t) = � 2 p̂50t + p̂30; p̂4(t) = p̂40; p̂5(t) = p̂50

with (x̂10; x̂20; x̂30; x̂40; x̂50; p̂10; p̂20; p̂30; p̂40; p̂50) are constant satisfying

p̂10 = 0; p̂20 = p̂50x̂2
10 � p̂40x̂30; p̂30 = � 2p̂50x̂10:

Remark 2.2.The q-projection of abnormals are straight lines and form triangular
strokes.

2.7 Numerical results

This section presents the numerical simulations performed on the Purcell swimmer
problem. Simulations are performed using both direct and indirect methods, respec-
tively with the solversBocop andHamPath . We use the multipliers from the solu-
tions of the direct method to initialize the adjoint variables in the indirect approach.
We display the optimal trajectories obtained for both the nilpotent approximation as
well as for the true mechanical system.

BOCOP.

Bocop (www.bocop.org , [19]) implements a so-called direct transcription me-
thod. More precisely, a time discretization is used to rewrite the optimal control
problem as a �nite dimensional optimization problem (i.e nonlinear programming),
solved by an interior point method (IPOPT). We recall below the optimal control
problem, formulated with the stateq = ( q1;q2;x;y;a ) and controlu = ( �q1; �q2):

8
>>><

>>>:

min
u

Z T

0
E(u(t)) dt

�q(t) = F1(q(t)) u1(t) + F2(q(t)) u2(t)
x(0) = y(0) = 0; x(T) = xf
y(T) = yf ; a (T) = a (0); qi(T) = qi(0); i = 1;2:

(2.29)

www.bocop.org
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HamPath .

The HamPath software (http://www.hampath.org/ , [38]) is based on in-
direct methods to solve optimal control problems using simple shooting methods
and testing the local optimality of the solutions. More precisely two purposes are
achieved withHamPath :

• Shooting equations:to compute periodic trajectories for the Purcell swimmer,
we consider the true HamiltonianH given by the Pontryagin maximum principle
and the associated transversality conditions associated. The normal and regu-
lar minimizing curves are the projection of extremals solutions of the following
boundary value problem:

8
>><

>>:

�q = ¶H
¶ p ; �p = � ¶H

¶q ;
x(0) = x0; x(T) = xf ; y(0) = y0; y(T) = yf
qi(T) = qi(0); i = 1;2 a (T) = a (0);
pqi (T) = pqi (0); i = 1;2 pa (T) = pa (0)

(2.30)

whereq = ( q1;q2;x;y;a ), p = ( pq1; pq2; px; py; pq ) and the �nal timeT > 0 is
�xed. Due to the sensitivity of the initialization of the shooting algorithm, the
latter is initialized with direct methods namely theBocop toolbox.

• Local optimality: to show that the calculated normal stroke is optimal, we per-
form a rank test on the subspaces spanned by the solutions of the variational
equation with suitable initial conditions [21].

Using proposition 14, in the normal case it allows us to check the necessary opti-
mality condition related to the concept of conjugate point. The same holds in the
abnormal case using [21].

2.7.1 Nilpotent approximation

Notations.The state variables are given by ˆx = ( x̂1; x̂2; x̂3; x̂4; x̂5), the adjoint by
p̂ = ( p̂1; p̂2; p̂3; p̂4; p̂5), andF̂1; F̂2 are the vector �elds of the normal form given
by (2.19). The Hamiltonian lifts are respectively denotedH1 andH2.

Normal case

In the normal case, we consider the extremal system given by the true Hamiltonian
described in (2.20). We compute the optimal trajectories withHamPath , and we
display on Fig.2.4 the state and adjoint variables as functions of time. We also illus-
trate the conjugate points computed according to the algorithm in [27], as well as
the smallest singular value for the rank test.

http://www.hampath.org/
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Fig. 2.4 Nilpotent approximation (normal case): state, adjoint variables and �rst conjugate point
(blue cross), with the smallest singular value of the rank test.

Property on the �rst conjugate point.Let us consider the �xed energy level
(H2

1 + H2
2 ) jt= 0 = 1 along the extremals and the initial statex(0) = 0. We take a

large number of random initial adjoint vectorsp(0) and numerically integrate the
extremal system. For each normal extremal, we compute the �rst conjugate timet1c,
the pulsationw = ( p2

40+ 4p2
50)

1=4, and the complete elliptic integralK(k), wherek
is the amplitude

k =
1
2

vu
u
u
t

2
q

p̂2
40 + 4 p̂2

50 + p̂2
30 � 2 p̂10 p̂40 � 4 p̂50 p̂20 � 4 p̂50 p̂40 x̂30

q
p̂2

40 + 4 p̂2
50

:

Let g(:) be a normal extremal starting att = 0 from the origin and de�ned on
[0;+ ¥ [. As illustrated on Fig.2.5, there exists a �rst conjugate point alongg corre-
sponding to a conjugate timet1c satisfying the inequality:

0:3wt1c � 0:4 < K(k) < 0:5wt1c � 0:8:

Remark 2.3.In section 2.6.4u = wt + j 0 is the normalized parametrization of the
solutions.

5 10 15 20 25 30
3

4

5

6

7

8

9

K
(k

)

t
1c

.w

Fig. 2.5 Computations of the complete elliptic integralK(k;wtc) and of the �rst conjugate point
t1c for normal strokes on the energy levelH2

1 + H2
2 = 1. We observe: 0:3wt1c � 0:4 < K(k) <

0:5wt1c � 0:8.
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Abnormal case

Fig.2.6 illustrates the time evolution of the state variables for an abnormal extremal.
We check the second order optimality conditions with the algorithm described in
[21]. The determinant test and the smallest singular value for the rank condition
both indicate that there is no conjugate time for abnormal extremals (Fig.2.7).

Fig. 2.6 Abnormal case: state variables for
x̂(0) = ( 1;0;1;0;0), p̂(0) = ( 0;0; � 2;1;1).
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Fig. 2.7 Abnormal case: the second order
suf�cient condition indicates there is no con-
jugate point.

2.7.2 True mechanical system

We now consider the optimal control problem (2.29) consisting in minimizing either
the mechanical energy (2.14) or the criterionjuj2.

Direct method.In the �rst set of simulations performed byBocop , we set
T = 10, xf = 0:5, and the boundsa = 3 large enough so that the solution is ac-
tually unconstrained. The state and the control variables for the optimal trajectory
are shown on Fig.2.8, 2.9 and 2.10, and we observe that the trajectory is actually
a sequence of identical strokes. Fig.2.11 displays the phase portrait for the shape
anglesq1;q2, which is an ellipse. The constant energy level satis�ed by the opti-
mal trajectory implies that the phase portrait of the controls is a circle for thejuj2

criterion, but not for the energy criterion. The adjoint variables (or more accurately
in this case, the multipliers associated to the discretized dynamics) are shown on
Fig.2.12-2.13.
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Indirect method.Now we use the multipliers from theBocop solutions to ini-
tialize the shooting algorithm ofHamPath . Fig.2.14-2.15 and Fig.2.16 represent
respectively non intersecting strokes and an eight shape stroke. We check the second
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order optimality conditions according to [27] and observe that there is no conjugate
point on[0;2p] for the non intersecting case while a conjugate point is found on
[0;2p] for the eight shape stroke.
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Fig. 2.14 (Left) State and adjoint variables for the Purcell swimmer minimizing the mechanical
cost.(Right)Test of conjugate points (no conjugate point on[0;2p]).
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Fig. 2.15 (Left) State and adjoint variables for the Purcell swimmer minimizing the mechanical
cost.(Right)Test of conjugate points (no conjugate point on[0;2p]).
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Fig. 2.16 (Left) State and adjoint variables for the Purcell swimmer minimizing the mechanical
cost.(Right)Test of conjugate points. The cross on the trajectories on the left indicates the location
of the �rst conjugate point.

Continuation method

Finally, we construct for the Purcell swimmer, a one parameter family of simple
loops strokes using continuation methods.
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Fig. 2.17 Continuation on the amplitude:x(T)2 + y(T)2 = c1 for the
RT

0 (u2
1 + u2

2) dt cost.
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Fig. 2.18 Two families of strokes for the mechanical cost obtained by continuation from theRT
0 (u2

1 + u2
2) dt cost to the mechanical cost.

For the Purcell swimmer, the two families presented in Fig.2.18 are compared in
Fig.2.19 using the ef�ciency concept de�ned as

E(g(�)) =
q

x(T)2 + y(T)2=l(g(�))

wherel (g(�)) is the length of the stroke.

Fig. 2.19 Ef�ciency curves for the two families of strokes presented in Fig.2.18.

2.7.3 Copepod swimmer

Geometric analysis of a copepod swimmer

In [87], two types of geometric motions are described.

First case: (Fig.2.20(left) ) The two legs are assumed to oscillate sinusoidally
according to

q1 = F 1 + acos(t); q2 = F 2 + acos(t + k2)
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with a= p=4,F 1 = p=4,F 2 = 3p=4 andk2 = p=2. This produces a displacement
x0(2p) = 0:2.

Fig. 2.20 Different geometric motions of the Copepod swimmer.(left) Two legs oscillating si-
nusoidally according toq1 = F 1 + acost and q2 = F 2 + acos(t + p=2), wherea = p=4 is the
amplitude and(F 1;F 2) is �xed. The displacement after one cycle isx0(2p) = 0:2. (right) Two
legs paddling in sequence. The legs perform power strokes in sequence and then a recovery stroke
in unison, each stroke sweeping an anglep.

Second case: (Fig.2.20(right)) The two legs are paddling in sequence followed
by a recovery stroke performed in unison. In this case the controlsu1 = �q1,
u2 = �q2 produce bang arcs to steer the angles between the boundaryqi = 0 of
the domain to the boundaryqi = p, while the unison sequence corresponds to a
displacement fromp to 0 with the constraintq1 = q2.

Our �rst objective is to relate these properties to geometric optimal control.

Abnormal curves in the copepod swimmer

Let q| = ( x0;q1;q2), then the system takes the form:

�q(t) =
2

å
i= 1

ui(t)Fi(q(t))

where the control vector �elds are given by:

Fi =
sinqi

D
¶

¶x0
+

¶
¶qi

; D = 2+ sin2q1 + sin2q2:

The Lie brackets in the copepod case are easily calculated and are given by:

F3 = [ F1;F2] = f (q1;q2)
¶

¶x0
with f (q1;q2) =

2sinq1sinq2(cosq1 � cosq2)
D2 ;
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[[F1;F2];F1] =
¶ f
¶q1

(q1;q2)
¶

¶x0
; [[F1;F2];F2] =

¶ f
¶q2

(q1;q2)
¶

¶x0
:

Lemma 3 The singular setS : f q; det(F1(q);F2(q); [F1;F2](q)) = 0g, where the
vector �elds F1;F2; [F1;F2] are coplanar, is given by2sinq1sinq2(cosq1 � cosq2) =
0 which is equivalent to:

• qi = 0 or p i = 1;2,
• q1 = q2

and corresponds to the boundary of the physical domain:qi 2 [0;p];q1 � q2, with
respective controls u1 = 0; u2 = 0 or u1 = u2 forming a stroke of triangular shape
in the phase portait of the variablesq1;q2.

Remark 2.4.Each point of the boundary is a Martinet point except at the non smooth
points (vertices).

The previous lemma provides the interpretation of the triangle shape stroke in terms
of abnormal curves.

To understand smooth stroke strategies via optimal control we must introduce
the cost function related to the mechanical energy. Recall that according to [76] the
mechanical energy of the copepod swimmer is given by:

Z T

0
�qtM �qdt

whereq = ( x0;q1;q2) andM is the symmetric matrix:

M =

0

@
2� 1=2(cos2(q1) + cos2(q2)) � 1=2sin(q1) � 1=2sin(q2)

� 1=2sin(q1) 1=3 0
� 1=2sin(q2) 0 1=3

1

A : (2.31)

Taking into account the constraints on the velocities, the integrand can be written
as:

a(q)u2
1 + 2b(q)u1u2 + c(q)u2

2

where

a =
1
3

�
sin2q1

2(2+ sin2q1 + sin2q2)
; b = �

sinq1sinq2

2(2+ sin2q1 + sin2q2)
;

c =
1
3

�
sin2q2

2(2+ sin2q1 + sin2q2)
:

The pseudo-Hamiltonian is then expressed as:

H(q; p; p0) = u1H1(q; p)+ u2H2(q; p)+ p0 �
a(q)u2

1 + 2b(q)u1u2 + c(q)u2
2
�

:

Taking p0 = � 1=2, the normal controls are computed by solving the equations:
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¶H
¶u1

= 0;
¶H
¶u2

= 0:

We obtain:

u1 = �
3(4H1 + 2H1sin2q1 + 3H2sinq1sinq2 � H1sin2q2)

sin2q1 + sin2q2 � 4
;

u2 = �
9H1sinq1sinq2 + 6H2(2+ sin2q2) � 3H2sin2q1

sin2q1 + sin2q2 � 4
:

and plugging this controlu back into the pseudo-Hamiltonian provides the true
Hamiltonian which we denote byHn.

Note also thatHn can also be obtained by constructing an orthonormal basis of
the metric using a feedback transformationu= b(q)v to transform the problem into:

�q = ( Fb(q))( v); min
v(:)

Z T

0
(v2

1(t) + v2
2(t)) dt

whereF is the matrix(F1;F2). Writing Fb = ( F0
1;F0

2), F0
1;F0

2 will form an orthonor-
mal frame. The computation is straightforward and the normal HamiltonianHn takes
the formHn = 1

2(H0
1

2 + H0
2

2) whereH0
i is the Hamiltonian lift ofF0

i .

The concept of ef�ciency

To compare strokes with different amplitudes we introduce the following de�nition
of ef�ciency [69].

De�nition 37 The ef�ciency of a strokeg(�) is de�ned by:

E(g(�)) = x0(T)=L(g(�))

where x0 is the displacement of the swimmer and L is the length of the curveg(:).

The transversality condition given in Exercise 1.1 can be generalized, see [89].
For instance, for the copepod swimmer, considering the augmented adjoint vector
(p; p0), the transversality condition implies that:

(p(T); p0(T)) is collinear to the gradient of the setE = c; where c is a constant:

Geometric classi�cation of smooth strokes

The expected strokes are related to the classi�cation of smooth periodic curves in
the plane up to a diffeomorphism, assuming that in our discussion we relax the state
constraints on the shape variable. This problem was studied by Whitney (1937) and
Arnold (1994) , see [14]. In this classi�cation we have in particular the three cases
of Fig.2.21.
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Fig. 2.21 Closed periodic planar curves: non intersecting curve, eight curve and limaçon curve.

Each of this curve has a speci�c physical interpretation for the swimmer problem.

Numerical computations

• Micro-local analysis.First, we compute the normal strokes using the Maximum
Principle to recover the strokes displayed in Fig.2.21. Below, we present the nu-
merical calculations of these strokes using the weak Maximum Principle.
An important point is to account for the transversality conditions associated with
the periodicity requirementqi(0) = qi(2p); i = 1;2 which are given by:

pqi (0) = pqi (2p); i = 1;2:

The solutions are computed via a shooting method using theHamPath code.
Finally, we evaluate numerically the value function which reduces to 2pHn the
given reference geodesic, sinceHn is constant.

• Second order optimality.Conjugate points are computed for each type of stroke
which leads to select simple loops as candidates for minimizers, see Fig.2.22.

• Abnormal triangle.To deal with the global optimality problem we use thege-
ometric ef�ciency E= x0=L for single loops constrained in the triangle (see
Fig.2.24 and Table 2.1). From our analysis we deduce that the (triangle) abnor-
mal stroke is not optimal. Indeed, one can choose a normal stroke (inside the
triangle) such that the displacement is ¯x0=2 with x̄0 = 2:742 and length< L̄=2
whereL̄ = length of the triangle. Applying twice the normal stroke, we obtain
the same displacement ¯x0 than with the abnormal stroke but with a length< L̄.
Therefore, we proved the following theorem.

Theorem 8 The abnormal triangle is not optimal for both costs: minimizing
length with �xed displacement or maximizing the ef�ciency.
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Fig. 2.22 (Left) Normal stroke where the constraints are satis�ed: simple loop with no conjugate
point on[0;T]. (Right)Limaçon with inner loop with one conjugate point on[0;T].

Fig. 2.23 Normal stroke for the mechanical cost: eight case. We �xed the displacement tox0(2p) =
0:25.

Fig. 2.24 Ef�ciency curve for the mechanical cost (top) and the corresponding maximizing curve
(bottom). The ef�ciency of the abnormal curve is 5:56e� 2.
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Types ofg x0 L(g) x0=L(g)
Abnormal 2:742e-1 4:933 5:558e-2
Simple loop (Fig.2.22, left) 2:600e-1 3:046 888:::555333666e-2
Limaçon (Fig.2.22, right) 2:500e-1 3:353 7:456e-2
Simple loop with small amplitude0:500e-19:935e-1 5:033e-2

Table 2.1 Ratio x0=L for the abnormal stroke and different normal strokes corresponding to the
mechanical cost.

So far, the copepod microswimmer was analyzed using mainly simulations but a
complete analysis can be obtained combining mathematical analysis based on nu-
merical evidence. We proceed as follows.

First, to simplify the computations and to have a clear interpretation of the pic-
tures in the Euclidean frame, we replace the mechanical energy by the Euclidean

cost
Z T

0
ju(t)j2dt. Note that the true cost case can be analyzed using a numerical

continuation between the two costs (HamPath software).
Using the nilpotent approximation and Lemma 3, one must consider two cases

with respect to the triangleT associated with the state constraints: 0� q1 � q2 � p.

Point interior to the triangle. Take such a pointq= ( x0;q1;q2). Then near the chosen
point, there exists privileged coordinates ˆx = ( x̂1; x̂2; x̂3) such that the nilpotent SR-
model is given by the Dido model:

�̂x = u1F̂1(x̂) + u2F̂2(x̂); min
u

Z T

0
(u1(t)2 + u2

2(t)) dt

with

F̂1 =
¶

¶x̂1
+ x̂2

¶
¶x̂3

; F̂2 =
¶

¶x̂2
� x̂1

¶
¶x̂3

:

This model implies that starting from eachq we have a one parameter family of
symmetric simple strokes (see Fig.2.25)

x̂1

x̂2

Fig. 2.25 One parameter family of circles which are the geodesics of the Heisenberg-Brockett
problem.

Points on the sides of the triangle but different of the vertices.Take such a point
q = ( x0;q1;q2). Then the SR-nilpotent model is the Martinet �at case. Thus, one
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can �nd privileged coordinates ˆx = ( x̂1; x̂2; x̂3) such that the model is:

�̂x = u1F̂1(x̂) + u2F̂2(x̂); min
u

Z T

0
(u2

1(t) + u2
2(t)) dt

where

F̂1 =
¶

¶x̂1
+

x̂2
2

2
¶

¶x̂3
; F̂2 =

¶
¶x̂2

:

This model leads to the calculation of eight strokes parameterized by elliptic
functions which correspond to lemniscates of Bernoulli.

All these models are not stable models and higher order approximations can be
used to generate strokes with small amplitudes. Also by perturbation at a interior
point of the triangle, we can obtain limaçon's strokes by doubling the period. This
is indeed con�rmed by numerical simulations using the true model and represented
on Fig.2.26.

Fig. 2.26 One parameter family of simple loops, limaçons and Bernoulli lemniscates normal
strokes.

Moreover for the true system with the Euclidean cost, the numerical simulations
show the existence of a one-parameter family of simple strokes symmetric with
respect to the axisD : q2 = � q1 + p. They are obtained by integrating fromD
identi�ed to a cross-section and with a tangent vector taken normal toD , each stroke
being associated with a different energy level, see Fig.2.27.
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Fig. 2.27 One parameter family of simple loops symmetric with respect to the straight lineD :
q2 = � q1 + p with converges to a point when the displacement tends to 0.

It leads to the following proposition.

Proposition 15 There exists a one parameter family of simple strokes, symmetric
with respect to theD -axis and foliating the interior of the triangleT , each asso-
ciated to a different energy level.

The �nal result of our analysis is captured in the following theorem.

Theorem 9 Among this family of strokes, there exists a unique stroke with maximal

ef�ciency among all the strokes of the copepod swimmer for the
Z T

0
(u2

1(t)+ u2
2(t)) dt

cost.

Sketch of the proof
First we have the following lemma.

Lemma 2.1.For the Euclidean case (or the mechanical energy case) the geodesic
�ow is invariant under the transformationd : (q1;q2;x0) 7! (p � q2;p � q1;x0).

From this, we deduce that the one parameter family of simple loops represented
on Fig.2.27 is symmetric with respect to the straight lineD . The center of this
family can be calculated as follows. We choose a pointq(0) = ( q1(0);q2(0)) on
the line D which can be identi�ed to(0;0) if we introduce the new coordinates
x= q1 � q1(0); y= q2 � q2(0). Using a transformation of the formZ = z� c1x� c2y
we get a graded set of coordinates(x;y;Z) with weights(1;1;2) establishing a link
between the physical coordinates(q1;q2;x0) and the privileged coordinates identi-
�ed to (x;y;Z). Using this gradation, the nilpotent (order� 1) SR-model is given by
the Dido model. This model is not stable under perturbation and higher order terms
have to be taken into account. In particular, using the weights(1;1;2) the model
of order 0 can be computed. Using the analysis of [31], the model of order zero
can be identi�ed with the model of order� 1 using diffeomorphism and feedback
preserving the Euclidean energy. A precise computation detailed in [16] shows that
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the only pointq(0) such that the diffeomorphism is not mixing the shape variable
q with the displacement variablex0 corresponds to the centerq(0) ' (0:72;2:41)
of Fig.2.27. Hence, we proved that there exists only one point to generate such a
family of simple loops (compare with Fig.2.18 in the Purcell case).

Now, we must prove that the only strokes candidates as minimizers in the interior
of the triangle are simple strokes. This can be proved using the Stokes theorem and
the following lemma.

Lemma 2.2.Consider the smooth one-form onR2: w :=
2

å
i= 1

sinqi

D(q)
dqi with D(q) =

2+ sin2q1 + sin2q2 and introduce f(q) = 2sinq1sinq2(cosq1 � cosq2)=D(q)2.
Then,

1. dw = � f (q1;q2)dq1 ^ dq2.
2. For any bounded Stokes domain D� R2, we have

I

¶D
w =

Z

D
dw

and if g is a piecewise smooth stroke withg = ¶D the associated displacement
is

x0(T) =
Z

D
dw:

3. dw < 0 in the interior of the triangleT : 0 � q1 � q2 � p, anddw vanishes on
the boundary ofT formed by the abnormal stroke.

In particular this lemma allows to compare ef�ciency of simple loops versus
limaçons and eight shape strokes in the interior of the triangle.

Another method from optimal control theory is to compute conjugate points. This
can be performed by numerical computations but more theoretical computations are
related to conjugate loci computations on the SR-sphere. In particular, for limaçons
with small amplitudes, conjugate points can be estimated as follows. According
to the Dido model, the only strokes with small amplitudes can be either simple
loops or limaçons, obtained by perturbation of a simple loop followed twice. For
the Dido model, using the explicit computation, the �rst conjugate point appears
on a simple loop after exactly one period. By perturbation, for a simple stroke with
small amplitude, the �rst conjugate time corresponds approximately to the period.
Hence a limaçon of small amplitude produced by period doubling has necessarily a
conjugate point. This gives a rigorous proof of the existence of conjugate point for
limaçons with small amplitude.

2.8 Conclusion and bibliographic remarks

We made a short presentation of the problem of microswimming using the Purcell
and the copepod case in the frame of SR-geometry, combining analytic and numeric
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methods in optimal control based on the analysis of the geodesic �ow to determine
the most ef�cient stroke. A different approach combining Stokes theorem to deter-
mine the shape of optimal strokes and direct numeric methods using Fourier analysis
were used earlier in a series of articles, see for instance [10].

Note also that the copepod case is the analog of a limit of symmetric Purcell
swimmer described and analyzed in [10].

The approaches are complementary. The main result of this theory is the exis-
tence of center of swimmings from which are emanating a one parameter family of
simple strokes to compute the most ef�cient stroke. See [6] for an earlier computa-
tion using a shooting method.

Note also the (geometric) link of microswimmers in SR-geometry with the
geodesic motion of a 2D-particle in a magnetic �eld very well presented in [74].
This leads to a �ne and technical study in [2] as a generalization of the Dido prob-
lem, to compute conjugate and cut loci for small lengths. Such results being ap-
plicable to generate in general conjugate and cut loci, using numeric continuation
methods.





Chapter 3
Maximum Principle and Application to Nuclear
Magnetic Resonance and Magnetic Resonance
Imaging

3.1 Maximum Principle

In this section we state the Pontryagin maximum principle and we outline the proof.
We adopt the presentation from Lee and Markus [64] where the result is presented
into two theorems. The complete proof is complicated but rather standard, see the
original book from the authors [77].

Theorem 10 We consider a system ofRn : �x(t) = f (x(t);u(t)) , where f: Rn+ m !
Rn is a C1-mapping. The familyU of admissible controls is the set of bounded mea-
surable mappings u(�), de�ned on[0;T] with values in a control domainW � Rm

such that the response x(�;x0;u) is de�ned on[0;T]. Let ū(�) 2 U be a control and
let x̄(�) be the associated trajectory such thatx̄(T) belongs to the boundary of the
accessibility set A(x0;T). Then there exists̄p(�) 2 Rn n f 0g, an absolutely contin-
uous function de�ned on[0;T] solution almost everywhere of the adjoint system:

�p(t) = � p(t)
¶ f
¶x

(x̄(t); ū(t)) (3.1)

such that for almost every t2 [0;T] we have

H(x̄(t); p̄(t); ū(t)) = M(x̄(t); p̄(t)) (3.2)

where
H(x; p;u) = hp; f (x;u)i

and
M(x; p) = max

u2W
H(x; p;u):

Moreover t7! M(x̄(t); p̄(t)) is constant on[0;T].

Proof. The accessibility set is not in general convex and it must be approximated
along the reference trajectory ¯x(�) by a convex cone. The approximation is obtained
by usingneedle type variationsof the control ¯u(�) which are closed for theL1-

63
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topology. (We do not useL¥ perturbations and the Fréchet derivative of the end-
point mapping computed in this Banach space.)

Needle type approximation

We say that 0� t1 � T is aregular timefor the reference trajectory if

d
dt jt= t1

Z t

0
f (x̄(t ); ū(t ))dt = f (x̄(t1); ū(t1))

and from measure theory we have that almost every point of[0;T] is regular.
At a regular timet1, we de�ne the followingL1-perturbation ¯ue(�) of the refer-

ence control: we �xl ;e � 0 small enough and we set

ūe(t) =
�

u1 2 W constant on[t1 � le;t1]
ū(t) otherwise on[0;T]

:

We denote by ¯xe(�) the associated trajectory starting at ¯xe(0) = x0. We denote by
e 7! at (e) the curve de�ned byat (e) = x̄e(t) for t � t1. We have

x̄e(t1) = x̄(t1 � le)+
Z t1

t1� le
f (x̄e(t); ūe(t))dt

whereūe = u1 on [t1 � le;t1], Moreover

x̄(t1) = x̄(t1 � le)+
Z t1

t1� le
f (x̄(t); ū(t))dt

and sincet1 is a regular time for ¯x(�) we have

x̄e(t1) � x̄(t1) = le( f (x̄(t1);u1) � f (x̄(t1); ū(t1)) + o(e):

In particular if we consider the curvee 7! at1(e), it is a curve with origin ¯x(t1) and
whose tangent vector is given by

v = l( f (x̄(t1);u1) � f (x̄(t1); ū(t1))) : (3.3)

For t � t1, consider the local diffeomorphism:f t (y) = x(t;t1;y; ū) wherex(�;t1;y; ū)
is the solution corresponding to ¯u(�) and starting att = t1 from y. By construction we
haveat (e) = f t (at (e)) for e small enough and moreover fort � t1, vt = d

de je= 0
at (e)

is the image ofv by the Jacobian¶ f t
¶x . In other wordsvt is the solution at timet of

the variated equation
dV
dt

=
¶ f
¶x

(x̄(t); ū(t))V (3.4)
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with conditionvt = v for t = t1. We can extendvt on the whole interval[0;T]. The
construction can be done for an arbitrary choice oft1; l andu1. Let P = f t;l ;u1g be
�xed, we denote byvP (t) the corresponding vectorvt .

Additivity property

Let t1; t2 be two regular points of ¯u(�) with t1 < t2 andl1; l2 small enough. We de�ne
the following perturbation

ūe(t) =

8
<

:

u1 on [t1 � l1e;t1]
u2 on [t2 � l2e;t2]

ū(t); otherwise on[0;T]

whereu1;u2 are constant values ofW and letx̄e(�) be the corresponding trajectory.
Using the composition of the two elementary perturbationsP1 = f t1; l1;u1g and
P2 = f t2; l2;u2g we de�ne a new perturbationP : f t1; t2; l1; l2;u1;u2g. If we denote
by vP1(t);vP2(t) andvP (t) the respective tangent vectors, a computation similar to
the previous one gives us:

vP (t) = vP1(t) + vP2(t); for t � t2:

We can deduce the following lemma.

Lemma 4 LetP = f t1; � � � ; ts; l 1l1; � � � ; l sls;u1; � � � ;usgbe a perturbation at regular
times ti ; t1 < � � � < ts; l i � 0; l i � 0;å s

i= 1 l i = 1 and corresponding to elementary
perturbationsP i = f ti ; l i ;uig with tangent vectors vP i (t). Letx̄e(�) be the associated
response with perturbationP . Then we have

x̄e(t) = x̄(t) +
s

å
i= 1

el ivP i (t) + o(e) (3.5)

whereo(e)
e ! 0, uniformly for0 � t � T and0 � l i � 1.

De�nition 38 Let ū(�) be an admissible control and̄x(�) its associated trajectory
de�ned for 0 � t � T . The �rst Pontryagin's cone K(t);0 < t � T is the smallest
convex cone at̄x(t) containing all elementary perturbation vectors for all regular
times ti .

De�nition 39 Let v1; � � � ;vn be linearly independent vectors of K(t), each vi being
formed as convex combinations of elementary perturbation vectors at distinct times.
An elementary simplex cone C is the convex hull of the vectors vi .

Lemma 5 Let v be a vector interior to K(t). Then there exists an elementary simplex
cone C containing v in its interior.

Proof. In the construction of the interior ofK(t), we use the convex combination of
elementary perturbation vectors at regular times not necessarily distinct. Clearly by
continuity we can replace such a combination withn distinct times.



66 3 Maximum Principle and Application to NMR and MRI

Approximation lemma

An important technical lemma is the following topological result whose proof uses
the Brouwer �xed point theorem.

Lemma 6 Let v be a nonzero vector interior to K(t), then there existsl > 0 and
a conic neighborhood N ofl v such that N is contained in the accessibility set
A(x0;T).

Proof. See [64].

Separation step

To �nish the proof, we use the geometric Hahn-Banach theorem. Indeed if ¯x(T) 2
¶A(x0;T) there exists a sequencexn =2 A(x0;T) such thatxn ! x̄(T) whenn ! + ¥
and the unit vectorsxn� x(T)

jxn� x(T)j have a limitw whenn! ¥ . The vectorw is not interior
to K(T) otherwise from Lemma 6 there would existl > 0 and a conic neighborhood
of lw in A(x0;T) and this contradicts the fact thatxn =2 A(x0;T) for any n. Let p
be any hyperplane at ¯x(T) separatingK(T) from w and let p̄ be the exterior unit
normal top at x̄(T). Let us de�nep̄(�) as the solution of the adjoint equation

�p(t) = � p(t)
¶ f
¶x

(x̄(t); ū(t))

satisfyingp(T) = p̄. By construction we have

p̄(T)v(T) � 0

for each elementary perturbation vectorv(T) 2 K(T) and since fort 2 [0;T] the
following equations hold:

�̄p(t) = � p̄(t)
¶ f
¶x

(x̄; ū); �v(t) =
¶ f
¶x

(x̄; ū)v

we have
d
dt

p̄(t)v(t) = 0:

Hence ¯p(t)v(t) = p̄(T)v(T) � 0;8t. Assume that the maximization condition (3.2)
is not satis�ed on some subsetSof 0 � t � T with positive measure. Lett1 2 Sbe a
regular time, then there existsu1 2 W such that

p̄(t1) f (x̄(t1); ū(t1)) < p̄(t1) f (x̄(t1);u1):

Let us consider the elementary perturbationP1 = f t1; l ;u1g and its tangent vector

vP1(t1) = l [ f (x̄(t1);u1) � f (x̄(t1); ū(t1))] :
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Then using the above inequality we have that

p̄(t1)vP1(t1) > 0

which contradicts ¯p(t1)vP1(t1) � 0, for all t. Therefore the inequality

H(x̄(t); p̄(t); ū(t)) = M(x̄(t); p̄(t))

is satis�ed almost everywhere on 0� t � T. Using a standard reasoning we can
prove thatt 7! M(x̄(t); p̄(t)) is absolutely continuous and has zero derivative almost
everywhere on 0� t � T, see [64].

Theorem 11 Let us consider a general control system:�x(t) = f (x(t);u(t)) where f
is a continuously differentiable function and let M0;M1 be two C1 submanifolds of
Rn. We assume the setU of admissible controls to be the set of bounded measurable
mappings u: [0;T(u)] ! W 2 Rm, whereW is a given subset ofRm. Consider the
following minimization problem:min

u2U
C(u), C(u) =

RT
0 f 0(x(t);u(t))dt where f0 2

C1;x(0) 2 M0;x(T) 2 M1 and T is not �xed. We introduce the augmented system:

�x0(t) = f 0(x(t);u(t)) ; x0(0) = 0; (3.6)

�x(t) = f (x(t);u(t)) ; (3.7)

x̂(t) = ( x0(t);x(t)) 2 Rn+ 1; f̂ = ( f 0; f ). If (x� (�);u� (�) is optimal on[0;T � ], then
there existsp̂� (�) = ( p0; p(�)) : [0;T � ] ! Rn+ 1 n f 0g absolutely continuous, such
that (x̂� (�); p̂� (�);u� (�)) satis�es the following equations almost everywhere on0 �
t � T� :

�̂x(t) =
¶Ĥ
¶ p̂

(x(t); p̂(t);u(t)) ; �̂p(t) = �
¶Ĥ
¶x̂

(x(t); p̂(t);u(t)) (3.8)

Ĥ(x(t); p̂(t);u(t)) = M̂(x(t); p̂(t)) (3.9)

where
Ĥ(x(t); p̂(t);u(t)) = hp̂; f̂ (x;u)i ; M̂(x̂; p̂) = max

u2W
Ĥ(x̂; p̂;u):

Moreover, we have
M̂(x(t); p̂(t)) = 0;8t; p0 � 0 (3.10)

and the boundary conditions (transversality conditions):

x� (0) 2 M0; x� (T � ) 2 M1; (3.11)

p� (0) ? Tx� (0)M0; p� (T � ) ? Tx� (T)M1: (3.12)

Proof. (For the complete proof, see [64] or [77].) Since(x� (�);u� (�)) is optimal
on [0;T � ], the augmented trajectoryt 7! x̂� (t) is such that ˆx� (T) belongs to the
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boundary of the accessibility setÂ(x� (0);T � ). Hence by applying Theorem 10 to
the augmented system, one gets the conditions (3.8), (3.9) andM̂ constant. To show
thatM̂ � 0, we construct an approximated coneK0(T) containingK(T) but also the
two vectors� f̂ (x� (T);u� (T)) using time variations (the transfer time is not �xed).
To prove the transversality conditions, we use a standard separation lemma as in the
proof of Theorem 10.

De�nition 40 A triplet (x(�); p(�);u(�)) solution of the maximum principle is called
an extremal.

3.2 Special cases

Minimal Time

Consider the time minimum case:f 0 = 1. In this case, an optimal controlu� on
[0;t � ] is such that the corresponding trajectoryx� (:) is such that for eacht > 0, x� (t)
belongs to the boundary of the accessibility setA(x� (0);t). The pseudo-Hamiltonian
of the augmented system is written:

Ĥ(bx; p̂;u) = H(x; p;u)+ p0

with H(x; p;u) is the reduced pseudo-Hamiltonian and sincep0 � 0, conditions 3.9,
3.10 become

H(x� (t); p� (t);u� (t)) = M(x� (t); p� (t)) a:e:

with M(x; p) = Max
u2W

H(x; p;u) andM(x� (t); p� (t)) � 0 is constant everywhere.

Mayer Problem

A Mayer problemis an optimal control problem for a systemdx
dt = f (x;u); u 2

W; x(0) = x0, where the cost to be minimized is of the form:

Min
u2W

c(x(t f ))

wherec : Rn �! R is smooth the transfer timet f is �xed and the �nal boundary
conditions are of the form:g(x(t f )) , with g : Rn ! Rk is smooth.
In this case the maximum principle and the geometric interpretation of this principle
lead to the following:

• Each optimal controlu� on [0;t f ] with responsex� (:) is such thatx� (t f ) belongs
to the boundary of the accessibility setA(x0; t f ) and at the �nal point the adjoint
vector p� (t f ) is orthogonal to the manifold de�ned by the boundary conditions
and the cost function:
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M : f x; g(x) = 0; c(x) = mg

wherem is the minimum.

Introducing the pseudo-Hamiltonian

H(x; p;u) = hp; f (x;u)i

the necessary optimality conditions are:

dx�

dt
=

¶H
¶ p

(x� ; p� ;u� );
dp�

dt
= �

¶H
¶x

(x� ; p� ;u� ); (3.13)

H(x� ; p� ;u� ) = max
u2W

H(x� ; p� ;u) (3.14)

and the following boundary conditions

f (x� (t f )) = 0; (3.15)

p� (t f ) = p0:
¶c
¶x

(x� (t f )) + d:
¶g
¶x

(x� (t f )) ;

p0 � 0 (transversality conditions):
(3.16)

Exercise 3.1.Write the necessary optimality conditions for aBolza problemwhere
the cost problem is of the form:

C(u) = g(x(t f )) +
Z t f

0
f 0(x(t);u(t))dt:

3.3 Application to NMR and MRI

Optimal control was very recently applied very successively to a general research
project initiated by S. Glaser: the control of spins systems with applications to Nu-
clear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI). Such
success is partially explained by an accurate representation of the control problem
by theBloch equationsintroduced in 1946 and F. Bloch and E.M. Purcell were
awarded the 1952 Nobel Prizes for Physics for “their development of new ways and
method for NMR”, Purcell providing a nice link between our two working exam-
ples.
Next, we make a mathematical introduction of Bloch equations and the concept of
resonance, in order to model the class of associate problems objects of our research
program.
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3.3.1 Model

The Bloch equations are a set of macroscopic equations which accurately describe
the experimental model in NMR and MRI [66] based on the concept of the dynamics
of a spin-1/2 particle. At this level it is represented by amagnetization vector M=
(Mx;My;Mz) in thelaboratory reference framewhich evolves according to

dM
dt

= gM ^ B+ R(M) (3.17)

whereg is the gyromagnetic ratio, B = ( Bx;By;Bz) is the applied magnetic �eld
which decomposes into astrong polarizing �eld Bz = B0 in the z-direction, while
Bx, By are the components of aRf-magnetic �eldin the transverse direction and
corresponds to the control �eld andR(M) is the dissipation of the form:

�
�

Mx

T2
; �

My

T2
; �

(Mz � M0)
T1

�

whereT1, T2 are thelongitudinal and transverse relaxation parameterscharacteris-
tic of the chemical species, e.g. water, fat, blood.

The parameterM0 is normalized to 1 up to a rescaling ofM. We denotew0 =
� gB0 the resonant frequencyand let introduce the control components:u(t ) =
� gBy andv(t ) = � gBx. The Bloch equations in the stationary frame can be written
in the matrix form:

d
dt

2

4
Mx
My
Mz

3

5 =

2

4
0 � w0 u(t )

w0 0 � v(t )
� u(t ) v(t ) 0

3

5

2

4
Mx
My
Mz

3

5 �

2

6
4

Mx
T2
My
T2

Mz� 1
T1

3

7
5 : (3.18)

The Bloch equations can be represented in arotating frame of reference: S(t ) =
exp(twWz), M = S(t )q, q = ( x;y;z),

Wz =

2

4
0 � 1 0
1 0 0
0 0 0

3

5

and introducing the control representation:

u1 = ucoswt � vsinwt

u2 = usinwt + vcoswt ;

one gets the Bloch equations in the moving frame:

d
dt

2

4
x
y
z

3

5 =

2

4
0 � Dw u2

Dw 0 � u1
� u2 u1 0

3

5

2

4
x
y
z

3

5 �

2

6
4

x
T2y
T2

z� 1
T1

3

7
5 (3.19)
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whereDw = w0 � w is theresonance offset.
The control is bounded bym, m= 2p � 32:3Hz being the experimental intensity

of the experiments. AssumingDw = 0 (resonance), and using the normalized time
t = t m, denotingG = 1=mT2, g = 1=mT1 and the physical parameters satisfying the
constraint: 2G � g � 0, the system is normalized to:

dx
dt

= � Gx+ u2z

dy
dt

= � Gy� u1z

dz
dt

= g(1� z)+ u1y� u2x;

(3.20)

wherejuj � 1. Moreover since 2G � g � 0, one has that theBloch ball jqj � 1 is
invariant for the dynamics.

This equation describes the evolution of the magnetization vector in NMR. The
choice ofw = w0 corresponding to resonance neutralized the existence of the strong
polarizing �eld B0, except the side effect of a stable unique equilibrium, correspond-
ing to the North poleN = ( 0;0;1) of the Bloch equation for the uncontrolled motion.

In MRI, the situation is more complex due to the spatial position of the spin in the
image and one must control an ensemble of spins corresponding to each pixel. Due
to this localization they are somedistortionscorresponding toB0 and B1 inhomo-
geneities. The variation ofB0 producing a resonance offset andDw belongs to some
intervals, whileB1-inhomogeneity introduces a scaling factorai � 0 depending on
the spatial position of the spin in the image modeling the distortion of the amplitude
of the control �eld and the equation transforms into

dx
dt

= � Gx+ aiu2z

dy
dt

= � Gy� aiu1z

dz
dt

= g(1� z)+ ai(u1y� u2x):

(3.21)

In the general case one must consider both inhomogeneities producing a detuning
and amplitude alteration. Note that such distortions cannot be modelized and have
to beexperimentally determined.

To relate Bloch equation to imaging we associate to the amplitudejqj of the
normalized magnetization vector agrey level wherejqj = 1 corresponds to white
while the center of the Bloch ball de�ned byjqj = 0 corresponds to black.
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3.3.2 The problems

Having introduced the control systems in relation with Bloch equations taking into
accountB0 andB1 inhomogeneities one can present the fundamental problems stud-
ied in NMR and MRI.

Saturation problem

The objective of the saturation problem for a single spin is to bring the magnetization
vectorq from the North poleN = ( 0;0;1) of the Bloch ball (which is the equilibrium
of the free system) to the centerO = ( 0;0;0) of the Bloch ball, recalling thatjqj
corresponds to a grey level where the spherejqj = 1 corresponds to white andjqj = 0
to black.

A direct generalization being to consider anensemble of spin particlescorre-
sponding to the same chemical species and to bring each spin of this ensemble from
the North pole to the center, corresponding to themultisaturation problem.

The contrast problem

In the contrast problem in NMR calledideal contrast problemwe consider two
pairs of (uncoupled) spin-1/2 systems corresponding to different chemical species,
each of them solutions of the Bloch equations (3.21) with respective parameters
(g1;G1) and(g2;G2) controlled by the same magnetic �eld. Denoting each system
by dqi

dt = f (qi ;L i ;u), L i = ( gi ;Gi) and qi = ( xi ;yi ;zi) is the magnetization vector
representating each spin particle,i = 1;2. This leads to the consideration of the
system abbreviated as:dq

dt = f (q;u), whereq = ( q1;q2) is the state variable. The
constrast problem by saturation is the following optimal control problem: starting
from the equilibrium pointq0 = (( 0;0;1); (0;0;1)) where both chemical species are
white and henceindistinguishable, reach in a given transfer timet f the �nal state
q1(t f ) corresponding to saturation of the �rst spin while maximizingjq2(t f )j2, the
�nal observed contrast beingjq2(t f )j.

Obvious generalization of the problems in MRI, taking into accountB0 andB1
inhomogeneities, is to consider in the image an ensemble ofN pairs of chemical
species, e.g. water or fat, and distributed in the image and the objective is to provide
multisaturation of the ensemble of spins of the �rst species and to reach for the
second species a small ball centered atjq2(t f )j wherejq2(t f ) corresponds to the
contrast calculated in NMR.

The objective in MRI is to produce arobust controltaking into account theB0
andB1 inhomogeneities.
In the sequel and in order to present the concepts and the theoretical tools, we shall
restrict to the saturation problem of a single spin and the contrast problem by satura-
tion in NMR. It is the preliminary step to the analysis of an ensemble of spins which
is in the applications treated numerically using adapted software e.g.Bocop and
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HamPath representative respectively of direct and indirect methods in numeric op-
timal control.

3.3.3 The saturation problem in minimum time for a single spin

The saturation problem in minimum time was �rst analyzed in [57] and was an
important step to the applications of geometric optimal control to the dynamics of
spins particles.

Preliminaries

First of all, since the transfer is from the North poleN = ( 0;0;1) to the center of
the Bloch ballO = ( 0;0;0) which belongs to the z-axis of revolution of the system
corresponding to polarization the system can be restricted to the two-dimensional
plane of the Bloch ball and the controlu= ( u1;u2) reduces to theu1component. The
system is compactly written as:dq

dt = F(q) + u1G(q), while the control is bounded
by juj � 1 andq = ( y;z). We have

F = � Gy
¶
¶y

+ g(1� z)
¶
¶z

G = � z
¶
¶y

+ y
¶
¶z

:
(3.22)

According to the maximum principle an optimal trajectory is a concatenation of
bang arcs whereu(t) = signhp(t);G(q(t)) i and singular arcs wherehp(t);G(q(t)) i =
0. The following Lie brackets are relevant in our analysis. Denotingd = g� G, we
have

[G;F] = ( � g+ dz)
¶
¶y

+ dy
¶
¶z

[[G;F];F] = ( g(g� 2G) � d2z)
¶
¶y

+ d2y
¶
¶z

[[G;F];G] = 2dy
¶
¶y

+ ( g� 2dz)
¶
¶z

:

Singular trajectories and optimality

The singular trajectories are located on the setS : det( G; [G;F] ) = 0 which is given
by y(� 2dz+ g) = 0. Hence it is formed by

• the z-axis of revolutionsy = 0,
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• the horizontal linez = g=(2d). This line intersects the Bloch balljqj < 1 when
2G > 3g and moreoverz is negative.
The singular control is given byD0+ usD = 0, whereD = det( G; [[G;F];G] ) and
D0= det( G; [[G;F];F] ).

• for y= 0,D = � z(g� 2dz) andD0= 0. The singular control is zero and a singular
trajectory is a solution of �y = � y; �z= g(1� z) where the equilibrium point(0;1)
is a stable node ifg 6= 0.

• for z= g=(2d), D = � 2dy2, D0= yg(2G� g) andus = g(2G� g)=(2dy), 2G �
g � 0. Hence along the horizontal direction, the �ow: �y = � Gy� g2 2G� g

4d2y and
jusj ! ¥ wheny ! 0.

An easy computation gives the following proposition.

Proposition 16 If g 6= 0, the singular control along the singular line is L1 but not
L2.

The maximum principle selects the singular line but the high order maximum prin-
ciple and the so-called generalized Legendre-Clebsch condition [53] has to used to
distinguish between small time minimum and maximum solution. It can be easily
understood using the two seminal examples:

�x = 1� u2; �x = 1+ u2;

�y = u; juj � 1; �y = u; juj � 1

where in both case the x-axis is the singular line and is time minimizing in the �rst
case and time maximizing in the second case. The optimality condition takes the
following form in our case. LetD00= det(G;F) = gz(z� 1) + G g2. The setC :
D00= 0 is thecollinear set. If g 6= 0, this set forms an oval joining the North pole
to the center of the Bloch ball and the intersection with the singular line is empty.
DenotingD = det(G; [[G;F];G]) the singular lines are fast displacement direction if
DD00> 0 and slow ifDD00< 0. From this condition, one deduces that the z-axis of
revolution is fast if 1> z> z= g=(2d) and slow ifz= g=(2d) > z> � 1, while the
horizontal singular line is fast.

From the analysis we deduce �rst

Lemma 7 If the condition2G > 3g is not satis�ed the horizontal singular line
doesn't intersect the Bloch balljqj < 1 and the optimal solution is the standard
inversion sequence used in practices: apply a bang control to steer(0;1) to (0; �� ).
Followed by u= 0 to relax the system to(0;0) along the z-axis.

If 2G > 3g the existence of the fast displacement horizontal line will determine
the optimal policy. First of all observe that sinceuS ! ¥ , whenq ! 0 along this
line, it is saturating the constraintjuj < 1 at a point of this line. Hence this line has
to be quitted before this point. The exact exit point is determined by the maximum
principle because such point has to be a switching point at both extremities for the
corresponding bang arc. Such an arc is calleda bridge.
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Note that in this analysis we assume that the applied RF-�eld is large enough,
which correspond to the experimental situation.
We deduce the following theorem, see [57] for further details.

Theorem 12 If 2G > 3g, in the time minimal saturation problem is of the form:
d+ dh

s d+ dv
s , concatenating the bang arc to quit the North pole to the horizontal sin-

gular line, followed by the bridge and relaxation to0 along the z-axis of revolution.

Fig. 3.1 (left) Time minimal solution compared with(right) inversion sequence .

Remark 3.1.The bridge can be empty and in this case the optimal policy isd+ dv
s .

This gives a complete solution to the saturation problem using a careful geomet-
ric analysis to understand the interaction between the two singular lines. Moreover
a similar analysis leads to a complete understanding of the time minimum synthesis
to transfer any point of the Bloch ball to the center.

Extension of this type of results to an ensemble of two or more spins is an im-
portant issue. The complexity is related to the analysis of singular extremals at two
levels. First of all, in general the symmetry of revolution due to z-polarization cannot
be invoked to reduced the bi-inputs case to the single single-input case. Secondly,
in dimension� 3, the analysis of the singular �ow even in the single-input case is
a complicated task. Next, we shall present this complexity in the contrast problem
and present some achievements.

3.3.4 The maximum principle in the contrast problem by saturation

The system is written as:

�q = F0(q)+ u1F1(q)+ u2F2(q); juj � 1
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where q = ( q1;q2) 2 f jq1j � 1; jq2j � 1 g and q1;q2 represents the normalized
magnetization vector of the �rst and second spin,qi = ( xi ;yi ;zi); i = 1;2. Us-
ing the notation of the section 3.2 for a Mayer problem, the cost function is
c(q(t f )) = �j q2(t f )j2 and the �nal boundary condition isF(q(t f )) = q1(t f ) = 0.
Splitting the adjoint vector intop = ( p1; p2) 2 R3 � R3, the transversality condition
is:

p2(t f ) = � 2p0q2(t f ); p0 � 0

and if p0 6= 0 it can be normalized top0 = � 1=2.
We denotez= ( q; p); Hi = hp;Fi(q)i ; i = 0;1;2, the Hamiltonian lift of the sys-

tem �z=
�!
H 0 + å 2

i= 1
�!
H i(z). If (H1;H2) 6= 0, the maximization condition of the maxi-

mum principle leads to the following parametrization of the controls

u1 =
H1q

H2
1 + H2

; u2 =
H2q

H2
1 + H2

2

:

De�ne theswitching surface:

S : H1 = H2 = 0:

Plugging suchu into the pseudo-Hamiltonian gives the true Hamiltonian:Hn = H0+q
H2

1 + H2
2 . The corresponding extremal solutions are called zero.

Besides those generic extremals, additional extremals are related to Lie algebraic
properties of the system and a careful analysis is the key factor to determine the
properties of the optimal solutions.

Lie bracket computations

Due to the bilinear structure of the Bloch equations, Lie brackets can be easily com-
puted, which is crucial in our analysis.

Recall that the Lie bracket of two vectors �eldsF;G is computed with the con-
vention

[F;G](q) =
¶F
¶q

(q)G(q) �
¶G
¶q

(q)F(q)

and ifHF ;HG are the Hamiltonian lifts, recall that the Poisson bracket is

f HF ;HGg(z) = dHF (
�!
G)(z) = H[F;G](z):

To simplify the computation, each spin system is lifted on thesemi-direct Lie prod-
uct GL(3;R) � R3 acting on the q-space using the action(A;a):q = Aq+ a. The Lie
bracket computation rule is((A;a);B;b) = ([ A;B];Ab� Ba) where[A;B] = AB� BA.

Introducing F0 = ( A0;a0), with A0 = diag(� G1; � G1; � g1; � G2; � G2; � g2) and
a0 = ( 0;0;g1;0;0;g2) whereas the control �elds(F1;F2) are identi�ed to B1 =
diag(C1;C1) and B2 = diag(C2;C2) whereC1;C2 are the antisymmetric matrices
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C1 = E32 � E23, C2 = ( E13 � E31) with Ei j = ( di j ) (Kronecker symbol). See [24] for
more details.

Next, we present in details the Lie brackets needed in our computations, each
entry form by a couple(v1;v2) and we use the notation omitting the indices. We set
d = g� G.

• Length 1:

F0 = ( � Gx; � Gy;g(1� z))

F1 = ( 0; � z;y)

F2 = ( z;0; � x):

• Length 2:

[F0;F1] = ( 0;g� dz; � dy)

[F0;F2] = ( � g+ dz;0;dx)

[F1;F2] = ( � y;x;0):

• Length 3:

[[F1;F2];F0] = 0

[[F1;F2];F1] = F2

[[F1;F2];F2] = � F1

[[F0;F1];F1] = ( 0; � 2dy; � g+ 2dz)

[[F0;F1];F2] = ( dy;dx;0) = [[ F0;F2];F1]

[[F0;F2];F2] = ( � 2dx;0;2dz� g)

[[F0;F1];F0] = ( 0; � g(g� 2G)+ d2z; � d2y)

[[F0;F2];F0] = ( g(g� 2G) � d2z;0;d2x):

3.3.5 Strati�cation of the surfaceS : H1 = H2 = 0 and partial
classi�cation of the extremal �ow nearS

Let z= ( q; p) be a curve solution of
�!
H 0 + u1

�!
H 1 + u2

�!
H 2. DifferentiatingH1 andH2

along such a solution, one gets:

�H1 = f H1;H0g+ u2f H1;H2g
�H2 = f H2;H0g+ u1f H2;H1g:

(3.23)

Hence we have:

Proposition 17 Let z0 � S1 = S n f H1;H2g = 0 and de�ne the control us by:
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us(z) =
(�f H0;H2g(z); f H0;H1g(z))

f H1;H2g(z)
; (3.24)

and plugging such us into H de�nes the true Hamiltonian

Hs(z) = H0(z)+ us;1(z)H1(z)+ us;2(z)H2(z)

which parameterizes the singular solutions of the bi-input system contained inS1.

This gives the �rst stratum of the surfaceS. Moreover, the behaviors of the ex-
tremals of order zero near a pointz0 of S1 can be easily analyzed using (3.23) and a
nilpotent model where all Lie brackets atz0 2 S1 of length� 3 are zero. Denoting:

f H1;H0g(z0) = a1; f H2;H0g(z0) = a2; f H2;H1g(z0) = b

and using polar coordinatesH1 = r cosq, H2 = r sinq; then (3.23) becomes:

�r = a1cosq + a2sinq

�q =
1
r

(b� a1sinq + a2cosq):
(3.25)

To analyze this equation, we write:

a1sinq � a2cosq = Asin(q + f )

with Atanf = � a2=a1, A=
q

a2
1 + a2

2. Hence the equation�q = 0 leads to the relation

Asin(q + f ) = b;

which has two distinct solutions on[0;2p[ denotedq0, q1 if and only if A > jbj, one
solution ifA = jbj and zero solution ifjAj < jbj. Moreoverq1 � q0 = p if and only if
b = 0. Pluggingq0, q1 in (3.25), one gets two solutions of (3.25). Hence we deduce:

Lemma 8 If
q

a2
1 + a2

2 > jbj and b6= 0, we have a broken extremal formed by con-
catenating two extremals of order zero at each point z0 of S1.

At such a pointz0 of S1, the singular control (3.24) is such that

u2
s;1 + u2

s;2 =
a2

1 + a2
2

b2 > 1

andhence is not admissible.
Next we analyze more degenerated situations and one needs the following con-

cept.
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Goh condition

Higher order necessary optimality conditions along singular extremals in the bi-
input case are related to �niteness of the index of the quadratic forms associated
with the second order derivative [22] known asGoh conditionwhich is the relation:

f H1;H2g = 0: (3.26)

UsingH1 = H2 = f H1;H2g = 0 and (3.23), one gets the additional relations:

f H1;H2g = f H0;H1g = f H0;H2g = 0: (3.27)

Then differentiating again along a solution leads to the relations:

ff H1;H2g;H0g+ u1ff H1;H2g;H1g+ u2ff H1;H2g;H2g = 0 (3.28)
�

ff H0;H1g;H0g+ u1ff H0;H1g;H1g+ u2ff H0;H1g;H2g = 0
ff H0;H2g;H0g+ u1ff H0;H2g;H1g+ u2ff H0;H2g;H2g = 0

(3.29)

This leads in general tothreerelations to computetwo control components, and for
a generic system such conditions are not satis�ed [35], but in our case, according to
Lie brackets computations, we have:

Lemma 9 If H1 = H2 = 0, one has

ff H1;H2g;H0g = ff H1;H2g;H1g = ff H1;H2g;H2g = 0

and(3.28)is satis�ed.

The equation (3.29) are then written:Ã+ B̃uand if det(B̃) 6= 0, the corresponding
singular control is given by:

u0
s(z) = � B̃� 1(z)Ã(z) (3.30)

Using the relations:

H1 = H2 = f H1;H2g = f H0;H1g = f H0;H2g = 0;

the vectorp is orthogonal toF1, F2, [F1;F2], [F0;F1], [F0;F2]. Introducing:

A =
�

A1
A2

�
; B =

�
B1 B3
B2 B4

�
; C = ( F1;F2; [F1;F2]; [F0;F1]; [F0;F2]);

with
A1 = det(C; [[F0;F1];F0]); A2 = det(C; [[F0;F2];F0]);

and

B1 = det(C; [[F0;F1];F1]); B2 = det(C; [[F0;F2];F1]);

B3 = det(C; [[F0;F1];F2]); B4 = det(C; [[F0;F2];F2]);
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the relation (3.29) leads to:
A+ Bu= 0;

and if detB 6= 0, one gets the singular control given by the feedback:

u0
s(q) = � B� 1(q)A(q) (3.31)

and the associated vector �eld:

Q0
s = F0 + u0

s;1F1 + u0
s;2F2:

Moreover, the singular control has to be admissible:ju0
sj � 1. We introduce the stra-

tum:
S2 : H1 = H2 = f H1;H2g = f H0;H1g = f H0;H2gndetB̃ = 0:

Hence we have:

Lemma 10 1. On the stratumS2, there exists singular extremals satisfying Goh
condition where the singular control is given by the feedback(3.30).

2. For the contrast problem:

detB =( x1y2 � x2y1)4(d1 � d2)(2d1z1 � g1)(2d2z2 � g2)
�
2(d2

1 g2z1 � d2
2 g1z2) � g1g2(d1 � d2) � 2d1d2(g1z2 � g2z1)

�
;

(3.32)

The behaviors of the extremals of order zero near a pointz0 2 S2 is a complicated
problem. Additional singular extremals can be contained in the surface:

S3 : H1 = H2 = f H1;H2g = f H0;H1g = f H0;H2g = detB̃ = 0;

and they can be computed using the property that the corresponding control has to
force the surface detB = 0 to be invariant.Some have an important meaning, due to
the symmetry of revolution of the Bloch equations. They correspond to control the
system, imposingu2 = 0. In this case, one can restrict the system to

Q = f q = ( q1;q2) 2 Rn : jq1j � 1; jq2j � 1; x1 = x2 = 0g:

The computations of the corresponding extremals amount to replace in the relations;
H2 by eH2 and to imposee = 0. The remaining relations are then:

H1 = f H0;H1g = 0

and from (3.29) one gets the relations:

ff H0;H1g;H0g+ u1;sff H0;H1g;H1g = 0; (3.33)

and thus, this de�nes the singular control:

u1;s = �
ff H0;H1g;H0g
ff H0;H1g;H1g

(3.34)
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and the associated HamiltonianH1;s = H0 + u1;sH1. We have the following result:

Proposition 18 The singular extremals of the single-input case with u2 � 0 are
extremals of the bi-input case with the additional condition: x1 = px1 = x2 = px2 = 0.

Moreover from the geometric interpretation of the maximum principle for a
Mayer problem, in order to be optimal the generalized Legendre-Clebsch condition
has to be satis�ed:

¶
¶u1

d2

dt2

¶H
¶u1

= f H1; f H1;H0gg(z) � 0: (3.35)

Observe that if we imposeu2 = 0, the classi�cation of the extremals near the switch-
ing surface, which reduces toH1 = 0, is a standard problem [54].

Finally, another important property of the extremal �ow, again a consequence
of the symmetry of revolution is given next, in relation with Goh condition. It is a
consequence of Noether integrability theorem.

Proposition 19 In the contrast problem, for the Hamiltonian vector �eld
�!
H n whose

solutions are extremals of order zero, the Hamiltonian lift H(z) = f H1;H2g(z) =
(px1y1 � py1x1) + ( px2y2 � py2x2) is a �rst integral.

Exercise 3.2 (Generalization to the case ofB1 and B0 inhomogeneities).It is in-
teresting to compare to the case of an ensemble of two spins of the same spin particle
with B0 andB1 inhomogeneities which is left to the reader. More precisely:

• B1-inhomogeneities.
In this case, the control directions of the second spin are relaxed by a factor and
the Lie brackets computations can be used to strati�ed. It can be applied to the
multisaturation problem.

• B0-inhomogeneities.
In this case the vector �eldF0 of the second spin contains a non-zero detuning.
Clearly this introduces modi�cations in the Lie brackets computations. Again it
can be applied to multisaturation problem. It explains the following phenomenon:
in the precense of detuning both controls(u1;u2) have to be used.

Next, motivating by the fact that due to the symmetry of revolution and the ob-
served numerical experiments, we shall restrict our study to the single-input case.
It is an important theoretical step since we can reduce the analysis of the singular
�ow for a 4-dimensional system with one input vs a 6-dimensional system. This
complexity will be illustrated by the computations presented next.
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3.3.6 The classi�cation of the singular extremals and the action of
the feedback group

Preliminairies

Restricting to the single input case, the research program concerning the contrast
problem or the multisaturation problem for an ensemble of two spins is clear.

Saturation problem for a single spin and bridge phenomenon

In the case of a single spin the complete geometric analysis requires the compu-
tations of the two singular line and the understanding of the singularity associated
with their intersection, which causes the saturation of the singular control and the
occurrence of a bang arc called a bridge to connect both singular arcs. This phe-
nomenon generalizes to higher dimension and it tells you that the analysis of the
singular �ow codes all the information of the optimal solution which is a sequence
of arcs of the formd� dSd� :::dS, whered� denotes bang arcs withu = � 1, whiledS
are singular arcs.

This will be presented in details next, in relation with the action of the feedback
group.

Computations of the singular �ow

Consider a control system of the form:

dq
dt

= F(q)+ uG(q); q 2 Rn

and relaxing the control constraints:u 2 R. DenotingHF andHG the Hamiltonian
lifts of F andG, if the denominator is not vanishing, a singular control is given by:

uS(z) = �
ff HG;HFg;HFg(z)
ff HG;HFg;HGg(z)

: (3.36)

Plugging suchuS into the pseudo-Hamiltonian one gets the true Hamiltonian:HS =
HF + uSHG and the singular extremals are solutions of theconstrained Hamiltonian
equation:

dz
dt

=
�!
H S(z); z2 S0 : HG = f HG;HFg = 0:

This set of equations de�nes a Hamiltonian vector �eld on the surface

S0n f f HG;HFg;HGg = 0

, restricting the standard symplectic fromw = dp^ dq.
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We use the notationD = ff HG;HFg;HGg andD 0= ff HG;HFg;HFg. The dif-
ferential equation (3.36) can be desingularized using the time reparametrization

ds= dt=D (z(t))

which amounts to analyze the one dimensional foliation.
We get the system:

dq
ds

� D F � D 0F;
dp
ds

= � p
�

D
¶F
¶q

� D 0¶G
¶q

�

restricted to the surfaceS0.
In the contrast problem, since the state space is of dimension four, using the two

constraintsHG = f HG;HFg = 0 and the homogeneity with respect top, equation
(3.36) can be reduced to the explicit form:

dq
dt

= F(q) �
D 0(q; l )
D (q; l )

G(q)

wherel is a one-dimension time-dependant parameter whose dynamics is deduced
from the adjoint equation.

Using the previous remark, the optimal problem can be analyzed by understand-
ing the behavior of the corresponding trajectories and the singularities of the �ow
near the setD = 0, which codes the switching sequence.

This is a very complicated task, in particular because the system is depending
upon four parameters and simpli�cations have to be introduced to simplify this
task. Two simpli�cations can be introduced. First, we can restrict to some speci�c
parameters corresponding to some experimental cases. For instance, in the water
case, saturation of a single spin amounts to the standard inversion sequence. Sec-
ond, a projection of the singular �ow which is physically relevant can be intro-
duced. A natural choice is to consider the case where the transfer timet is not �xed.
Then according to the maximum principle this leads to the additional constraint:
M = Max

u(:)
HF + uHG = 0, which gives in the singular case the additional constraint:

HF (z) = 0. This case is called theexceptional caseusing the terminology of [29].
With this constraint, the adjoint vector can be eliminated and the singular control

in this exceptional case is the feedback:

ue
S = �

D0(q)
D(q)

;

whereD = det(F;G; [G;F]; [[G;F];G]); D0 = det(F;G; [G;F]; [[G;F];F]) with the
corresponding vector �eldXe de�ned by

dq
dt

= F(q) �
D0(q)
D(q)

G(q)
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which can again be desingularized using the reparametrization ds= dt=D(q(t)) and
this gives the smooth vector �eld

Xe
r = DF � D0G:

Feedback classi�cation

De�nition 41 Let E and F be twoR-vector spaces and letG be a group acting
linearly on E and F. A homomorphismX : G ! R n f 0g is called a character. A
semi-invariant of weightX is a mapl : E ! R such that for all g2 G and all x2 E,
l (g;x) = X(g)l (x); it is an invariant ifX = 1. A mapl : E ! F is a semi-covariant
of weightX if for all g 2 G and for all x2 E, l (g:x) = X(g)g:l (x); it is called a
covariant ifX = 1.

More about invariant theory can be found in [39].
The key concept in analyzing the role of relaxation parameters in the control

problem is the action of thefeedback groupG on the set of systems. We shall restrict
our presentation to the single-input case and we denoteC = f F;Gg the set of such
(smooth) systems on the state spaceQ ' Rn, see [20] for the details.

De�nition 42 Let (F;G); (F0;G0) be two elements ofC. They are called feedback
equivalent if there exist a smooth diffeomorphismj ofRn and a feedback u= a (q)+
b(q)v, b invertible such that:

• F0= j � F + j � (Ga ); G0= j � (Gb).

wherej � z denotes the image of the vector �eld.

De�nition 43 Let (F;G) 2 C and let l 1 be the map which associated the con-
strained Hamiltonian vector �eld(

�!
H S;S0) (see(3.36)) to (F;G). We de�ne the

action of(j ;a ;b) of G on (
�!
H S;S0) to be the action of the symplectic change of

coordinates:
�! j : q = j (Q); p = P

¶ j
¶x

� 1

in particular the feedback acts trivially.

Theorem 13 ([20]) The mappingl 1 is a covariant.

Next, we detail the induced action restricting to exceptional singular trajectories
when dimQ = 4.

The exceptional singular trajectories and the feedback classi�cation

Notation. Let j be a diffeomorphism ofQ. Thenj acts on the mappingF : Q ! R
according toj :F = Foj and on vector �eldsX asj :X = j � X ( image ofX): this
corresponds to the action on tensors.



3.3 Application to NMR and MRI 85

The feedback group acts on the vector �eldXe by change of coordinates only
and this can be checked as a consequence of the following lemma.

Lemma 11 • DF+ a G;bG = b4DF;G.

• D0F+ a G;bG = b3
�

D0F;G + a DF;G
�

.

• Dj � F;j � G(q) = det
�

¶ j
¶q

� 1�
DF;G(j (q)) .

• D0j � F;j � G(q) = det
�

¶ j
¶q

� 1�
D0F;G(j (q)) .

From which we deduce the following crucial result in our analysis.

Theorem 14 We have the following:

• l 2 : (F;G) ! Xe is a covariant.
• l 3 : (F;G) ! D is a semi-covariant.
• l 4 : (F;G) ! Xe

r = DF � D0G is a semi-covariant.

The classi�cation program.Having introduced the concepts and results, the con-
trast problem is related to the following classi�cation program (up to change of
coordinates)

• Classi�cation of the vector �eldsXe
r = DF � DF0and the surfaces:D = 0, D =

D0= 0.

Interpretation.

• The singular control isue
S = � D0

D and will explode atD = 0 except ifD0= 0,
taking into account the (non isolated) singularities ofXe

r (if D = D0= 0; Xe
r = 0).

Collinear set.The collinear set ofF;G is a feedback invariant which has also an
important meaning in our classi�cation.

Remark 3.2.In our classi�cation program we use semi-covariants and in the set of
parametersL = ( g1;G1;g2;G2) it amounts to work in the projective space. It is also
clear from our reparametrization of time.

Now, the problem is to test the computational limits of our program which is
clearly:

• Compute the surfacesD = 0; D = D0= 0,
• Compute the equilibrium points ofXe

r .

Clearly, in the framework of computational methods in real algebraic geometry it is
a complicated task which has been achieved in two cases.

• The multisaturation problem of two spins taking into accountB1-inhomogeneity.
• The contrast problem when the �rst spin system corresponds to water (g1 = G1).

The second problem has application in in vivo, where the parameters are varying,
in particular in the brain.

We shall present the results in details in the �rst case.
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3.3.7 Algebraic classi�cation in the multisaturation of two spins
with B1-inhomogeneity

The pointN = (( 0;1); (0;1)) is a singular point ofXr
e and under a translationN is

taken as the origin of the coordinates. We have:

F0 = ( � Gy1; � gz1; � Gy2; � gz2);

F1 = (( � (z1 + 1);y1); (1� e)( � (z2 + 1);y2))

where(1� e) denotes the control rescaling of the second spin.
We haveD = ( 1� e)D̃, whereD̃ is a quadric which decomposes intoh2+ h3+ h4

wherehi are the homogeneous part of degreei:

h2 = ( 2G� g)h̄2

h̄2 = G (2G� g)(( e� 1) y1 + y2)2 + g2 (e � 1)2z2
1 � g2 �

2� 2e+ e2�
z2z1 + g2z2

2

h3 = 2(g� G)h̄3

h̄3 = ( g� 2G)
�

g+ 2G(e� 1)2
�

z2y2
1 + ( g� 2G)(g+ 2G)(e� 1) (y2z1 + z2y2) y1�

g2e (e� 2) z2z2
1 +

�
(g� 2G)

�
2G+( e� 1)2g

�
y2

2 + g2e (e� 2) z2
2

�
z1

h4 = 4(g� G)2h̄4

h̄4 =
�

g+ ( e� 1)2G
�

z2
2y2

1 + 2 (e� 1) (g+ G) z2y2z1y1 +
�

G+( e� 1)2g
�

y2
2z2

1

D0= 2g2(G � g)(2G� g)(1� e)(z1 � z2)(( e � 1) z1y2 + z2y1):

In particular we deduce (compare with [23] in the contrast problem):

Proposition 20 The quadric D0 reduces to a cubic form which is factorized into a
linear and a quadratic (homogeneous) forms.

Singular analysis

We assumeg > 0 and 2G > 3g. It impliesg 6= G andg 6= 2G. The main result is the
following:

Theorem 15 Providede 6= 1 the equilibrium points of Xre = DF0 � D0F1 are all
contained inf D = D0= 0g.

A simple proof exists, but we present a method based on symbolic computation and
Gröbner basis.

Proof. Obviously, every point off D = 0g \ f D0= 0g is a singularity ofXr
e.

Conversely, let us assumee 6= 1. We �rst divideXr
e by 1� e. We still assume that

G 6= 0. We consider the equationsf (Xr
e)y1 = 0;(Xr

e)z1 = 0;(Xr
e)y2 = 0;(Xr

e)z2 = 0g
and remark that the last third are dividable byg. By homogeneity, changingg into
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gG, we get rid ofG. So we may assumeG = 1. The resulting system is denotedSr .
We add the two polynomials((e� 1) z1y2 + z2y1) a1 � 1 and(z1 � z2) a2 � 1, and
the polynomialsgg� 1, (g� 1)g1 � 1, (g� 2)g2 � 1. We denotẽSr this new system,
involving four new variablesg1;g2;a1;a2. We compute a Gr̈obner basis with total
degree with reverse lexicographic order on(y1;y2;z1;z2;e;g;g1;g2;a1;a2) and get
f 1g. Hence, providedg is different from 0;1;2, there is no singular point ofXr

e
outside off D = 0g \ f D0= 0g.

The remaining of the section is devoted to the singularity resolution. From the
factorized form ofD0(Proposition 20) we get:

Proposition 21 f D = 0g \ f D0= 0g is an algebraic variety of algebraic dimension
2 whose components are located in the hyperplane z1 = z2 and in the hypersurface
(e� 1) z1y2 + z2y1 = 0.

These components are studied in the following analysis, and explicitly expressed
in Lemmas 12, 13, 14, 15.

• Case A: components off D = 0g \ f D0= 0g in z1 = z2.
Under the constraintz1 = z2, we have a factorizatioñD = p1 p2 with:

p1 = 2(g� G) z1 + g� 2G

and:

p2 =
�

2 (g� G)
�

g+ ( e� 1)2G
�

z1 + G (e� 1)2 (g� 2G)
�

y2
1+

(4 (g� G)(g+ G)(e� 1) z1 + 2G (e� 1)(g� 2G)) y2y1+�
2 (g� G)

�
G+ ( e� 1)2g

�
z1 + G (g� 2G)

�
y2

2:

The �rst polynomial has one rootz1 = zg;G

zg;G =
1
2

2G� g
g� G

which corresponds to the plane-solutionf (y1;zg;G;y2;zg;G); (y1;y2) 2 R2g.
We put:

d2(y1;y2) =
�

g+ ( e� 1)2G
�

y2
1 + 2 (e� 1) (g+ G) y2y1 +

�
G+( e� 1)2g

�
y2

2:

The discriminant ofd2 with respect toy1 is � 4 (e� 2)2g G e2y2
2 which is strictly

negative providede 6= 0. Sod2 is non-zero outsidey1 = y2 = 0.
So, providedy2

1 + y2
2 6= 0, d2 6= 0, andp2 = 0 is solved with respect toz1. We get

z1 = r2(y1;y2) with

r2(y1;y2) =
G (2G� g) (( e� 1) y1 + y2)2

2(g� G) d2(y1;y2)
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and(y1; r2(y1;y2);y2; r2(y1;y2)) (de�ned for (y1;y2) 6= ( 0;0)) vanishes bothD
andD0.
Finally, if y1 = y2 = 0, we have the solution(0;z;0;z); z2 R.
We summarize the casez1 = z2 in:

Lemma 12 f D = 0g \ f D0= 0g \ f z1 = z2g is the union of an af�ne plane z1 =
z2 = zg;G, a rational surface z1 = z2 = r2(y1;y2) (de�ned for (y1;y2) 6= ( 0;0)),
and the linef (0;z;0;z); z2 Rg.

• Case B: components off D = 0g \ f D0= 0g in (e� 1) z1y2 + z2y1 = 0.

– Assume �rst thaty1 = 0 andz1 6= z2. We havez1y2 = 0.
· If y1 = z1 = 0, then:

D̃ = ( g� 2G)
�
G (2G� g) y2

2 + g2z2
2
�

Since 2G > g, f D̃ = 0g \ f y1 = z1 = 0g corresponds to the North poleN.
· If y1 = y2 = 0, then let us put

d1(z1) = 2e (e� 2) (g� G) z1 + 2G� g:

We have:

D̃ = g2(z2 � z� 1)(d1(z1)z2 � (e � 1)2 (2G� g) z1:

Observe that the polynomiald1 vanishes if and only ifz1 equals ˜zg;G with

z̃g;G =
1
2

g� 2G
e (e� 2)(g� G)

and in this case, there is no solution such thatz2 6= z1.
Providedd1(z1) 6= 0, one getsz2 = r1(z1):

r1(z1) =
(e� 1)2 (2G� g) z1

d1(z1)

which is a rational function ofz1. And the intersection withf D = 0g \
f D0= 0g is the curvef (0;z1;0; r1(z1)) z1 2 R n f z̃g;Ggg.
Lemma 13 f D = 0g \ f D0= 0g \ f y1 = 0g \ f (z1 � z2) 6= 0g is the union
of two lines off y1 = z1 = 0g intersecting at N and a rational curve
f (0;z1;0; r1(z1)) z1 2 R n f z̃g;Ggg.

– Let us assumey1 6= 0.
We can eliminatez2 using:

z2 =
z1y2 (1� e)

y1

and, substituting iny2
1D̃ we get the factorizationy2

1D̃ = q1q2, with:
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q1 = G (e� 1)(2G� g) y3
1 + g2 (e � 1) z2

1y1 + g2 (e � 1)2z2
1y2

+( 2G e(e� 2)(g� G) z1 � G (g� 2G)) y2y2
1

and:

q2 = ( e� 1) (g� 2G) y1 + ( 2e (2� e) (g� G) z1 + g� 2G) y2
= ( e� 1) (g� 2G) y1 + d1(z1)y2:

Providedd1 6= 0 (that isz1 6= z̃g;G), we solveq2 = 0 with respect toy2, and
then we get the value of(y2;z2):

 
(e � 1) (g� 2G) y1

d1(z1)
;
(e � 1)2 (2G� g) z1

d1(z1)

!

:

Lemma 14 f D = 0g \ f D0= 0g \ f (z1 � z2) y1d1(z1) 6= 0g is a rational sur-
face(y2 = r 2(y1;z1);z2 = r 1(z1)y1 6= 0z1 6= z̃g;G).

We putd3

d3 = ( 2G e(e� 2)(g� G) z1 � G (g� 2G)) y2
1 + g2 (e � 1)2z2

1

Its discriminant with respect toy1 is:

� 4
�
2G� 4gz1e+ 2gz1e2 � g+ 4Gz1e� 2Gz1e2�

G g2z2
1 (e � 1)2

� 4 (2G� g+ 2e(2� e) (G � g) z1) G g2z2
1 (e � 1)2

and its sign changes whenz1 reaches ˜zg;G.
Providedd3(y1;z1) 6= 0, we solveq1 with respect toy2, and then we get the
value of(y2;z2):

 �
G(2G� g) y2

1 + g2z2
1

�
(1� e) y1

d3(y1;z1)
;

�
G(2G� g) y2

1 + g2z2
1

�
(e � 1)2 z1

d3(y1;z1)

!

:

Lemma 15 f D = 0g \ f D0= 0g \ f (z1 � z2) y1d3(z1) 6= 0g is a rational sur-
face with parameterization(y2 = r 3(y1;z1);z2 = r 4(y1;z1)) .

• Analysis of the behaviors of the solutions ofXr
e near O.

We setz̃i = 1+ zi and we have the following approximations:

– D = ( 1� e)D̃, D̃ = h1 + h2,

h1 = g2e (e� 2) (g� 2G)( z̃1 � z̃2)

h2 = G (e� 1)2 (g� 2G)2y2
1 + 2G (g� 2G)2 (e � 1) y2y1

+ G (g� 2G)2y2
2 � g2 (e � 1)2 (g� 2G) z̃2

1

� g2 (g� 2G) z̃2
2 + g2 �

e2 + 2� 2e
�

(g� 2G) z̃1z̃2:
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– D0= 2g2(G � g)(2G� g)(1� e)( z̃2 � z̃1)[( � 1+ z̃1)y2(e � 1)+ ( � 1+ z̃2)y1].

Conclusion: these computations allow to evaluate the equilibrium points and the
behaviors of the solutions near such point, using linearization methods. A �rst step
towards the global behavior is the following result.

Lemma 16 The surface y1 = y2 = 0 is foliated by lines solutions connecting O to
the north pole N, the singular control being zero.

Proposition 22 Singular points on y1 = y2 = 0, z1 = z2 = z̄ are such that: in the
coordinatesq̄ = ( y1;y2;z1 � z2;z1) the system takes the form

�̄q = Aq̄+ R(q̄)

where

A =

0

B
B
@

0 0 0 0
0 0 0 0
0 0 0 0
0 � g3ez̄2 (e � 2) (2d + g+ 2z̄d) 0 0

1

C
C
A :

• At the North Pole, A= 0, Rq̄ = O(jq̄j3).
• At the point S= ( 0;zs;0;zs) where zs = g� 2G

2(G� g) , A= 0, R(q̄) = O(jq̄j2).

Locally the trajectories can be computed using a blowing-up.

3.3.8 Numerical simulations, the ideal contrast problem

This section is devoted to numerical simulation in the ideal control problem using
three complementary softwares:

• Bocop : direct method,
• HamPath : indirect method,
• GloptiPoly : Lmi technique to estimate the global optimum.

The algorithms based on the softwares are presented in details in [25].
The ideal contrast problem by saturation in the single-input case, can be summa-

rized this way:
8
>><

>>:

c(q(t f )) = �j q2(t f )j2 �! minu(�) ; �xed t f

�q = F0(q)+ u1F1(q);
q(0) = q0
q1(t f ) = 0

(ICPS)

whereq = ( q1;q2), qi = ( yi ;zi) 2 R2, jqi j � 1, i = 1;2. The initial condition for each
spin isqi(0) = ( 0;1). The vector �eldsF0 andF1 are given by:
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F0(q) = å
i= 1;2

(� Giyi)
¶

¶yi
+ ( gi(1� zi))

¶
¶zi

;

F1(q) = å
i= 1;2

� zi
¶

¶yi
+ yi

¶
¶zi

;

whereL i = ( gi ;Gi) are the physical parameters representing each spin.
We present the simulations using the numerical methods (see [25] for a complete

description of the algorithms).
The simulations correspond to the two following sets of experimental data, with

the relaxation times in seconds andTmin the solution of the time minimal saturation
problem for a single spin, from section 3.3.3.

P1: Fluid case.
Spin 1: Cerebrospinal �uid:T1 = 2, T2 = 0:3;
Spin 2: Water:T1 = 2:5 = T2.
Tmin = 26:17040.

P2: Blood case.
Spin 1: Deoxygenated blood:T1 = 1:35,T2 = 0:05;
Spin 2: Oxygenated blood:T1 = 1:35,T2 = 0:2.
Tmin = 6:7981.

Optimal solutions of the contrast problem are concatenations of bang and singu-
lar extremals. For the following sections, we introduce some notations. We note BS
the sequence composed by one bang arc (d+ or d� ) followed by one singular arc
(ds), andnBS,n > 1, the concatenation ofn BS-sequences.

First results with �xed �nal time

The �rst dif�culty comes from the discontinuities of the optimal control structure.
We need to know the control structure (meaning the number of Bang-Singular se-
quences) before calling the multiple shooting method. The indirect method also
typically requires a reasonable estimate for the control switching times, as well as
the states and costates values at the initial and switching times. We use theBocop
software based upon direct methods to obtain approximate optimal solutions in or-
der to initialize the indirect shooting, within theHamPath code. We recall that
the costate (or adjoint state) for Pontryagin's Principle corresponds to the Lagrange
multipliers for the dynamics constraints in the discretized problem, and can there-
fore be extracted from the solution of the direct method.

The only a priori information is the value of the minimum time transferTmin,
used to set the �nal timet f in the [Tmin;3Tmin] range. We notet f = l Tmin with l
in [1;3]. The state variables are initialized as constant functions equal to the ini-
tial state,i.e. y1(�) = y2(�) = 0, z1(�) = z2(�) = 1. For the control variables we use
the three constant initializationsu1(�) 2 f 0:1;0:25;0:5g. The discretization method
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used is implicit midpoint (2nd order) with a number of time steps set tol � 100. In
order to improve convergence, we add a small regularization term to the objective
to be minimized,ereg

Rt f
0 ju(t)j2dt, with ereg = 10� 3.

We repeat the optimizations forl in f 1:1;1:5;1:8;2:0;3:0g with the three control
initializations, see Table. 3.1. The solutions fromBocop are used to initialize the
continuations inHamPath , and we discuss in the following sections the results
obtained with the indirect method. Both methods con�rm the existence of many
local solutions, as illustrated on Fig. 3.2 forl = 1:5, due in particular to symmetry
reasons.

l 1.1 1.5 1.8 2 3
uinit : 0:1 0.636 (++ ) 0.678 (+ � + ) 0.688 (+ � + ) 0.702 (� + ) 0.683 (� + � + )
uinit : 0:25 FAIL 0.661 (++ � + ) 0.673 (++ � + ) 0.691 (� ++ ) 0.694 (+ � + )
uinit : 0:5 0.636 (++ ) 0.684 (++ ) 0.699 (� + ) 0.697 (++ ) 0.698 (++ )

Table 3.1 Fluid case: Batch optimizations (Direct method).For each value ofl we test the
three initializations for the controlu, and record the value of the objective (i.e. the contrast), as
well as the control structure (i.e. the signs of bang arcs). CPU times for a single optimization are
less than one minute on a Intel Xeon 3.2GHz.

Fig. 3.2 Fluid case: Two local solutions forl = 2:0. Trajectories for spin 1 and 2 in the (y,z)-
plane are portrayed in the �rst two subgraphs of each subplot. The corresponding control is drawn
in the bottom subgraph. The two bang arcs have the same sign for the left solution, whereas for the
right solution, the two bang arcs are of opposite sign.

Second order conditions

According to proposition 3.2 from [26], the non-existence of conjugate points on
each singular arc of a candidate solution is a necessary condition of local optimal-
ity. See [26] for details about conjugate points in the contrast problem. Here, we
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compute for each singular arc of all the solutions from subsection 3.3.8, the �rst
conjugate point along the arc, applying the algorithm presented in Sect. 4.3 from
[26]. None of the solutions has a conjugate point on a singular arc. Hence all the
solutions satisfy the second order necessary condition of local optimality. Fig. 3.3
represents the computations of the two conjugate points (since the structure is 2BS)
of the best solution withl = 2:0 from subsection 3.3.8.

Fig. 3.3 Fluid case: second order conditions. Second order necessary condition checked on the
best solution withl = 2:0 from subsection 3.3.8. The rank condition from the algorithm presented
in subsection 4.3 from [26] is evaluated along the two singular arcs. See [21] for details on the
concept of conjugate times. On the left subplot, for each singular arc, the curve is reparameterized
so that the �nal time corresponds to the abscissa 1 (vertical blue dashed line); the determinant
associated with the rank condition is plotted (top subgraph), so there is a conjugate time whenever
it vanishes (vertical red dashed lines). One observes that conjugate times on each arc are located
after the (normalized to 1) �nal time, satisfying necessary condition of local optimality of the
trajectory. At the bottom, the smallest singular value of the matrix whose rank we test is plotted,
extracting only the relevant information to detect the rank drops. On the right subplot is presented
a zoom of top-left subgraph near the two conjugate times.

In�uence of the �nal time

Given that the initial point (the North pole) is a stationary point, the constrast is
an increasing function oft f acting as a parameter. Indeed, applying a zero control
at t = 0 leaves the system in its initial state so there is an inclusion of admissible
controls between problems when the �nal time is increased (and the bigger the set
of controls, the larger the maximum contrast). Having increasing bounded (by one,
which is the maximum possible contrast given the �nal condition on spin no. 1)
functions, it is natural to expect asymptotes on each branch.

In both casesP1 andP2, the contrast problem has many local solutions, possibly
with different control structures. Besides, the structure of the best policy can change
depending on the �nal time. The possible change of structure along a single path of
zeros is emphasized in Fig. 3.4. In this �gure, the branch made of 2BS solutions is
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represented in blue, whereas the 3BS branch is the dashed red line. We also show a
crossing between two value functions of two different paths of zeros in Fig. 3.5.

Then for each solution of each branch the second order necessary condition is
checked as in subsection 3.3.8: the �rst conjugate point of each singular extremal is
computed. There is no failure in this test, hence all the solutions satisfy the neces-
sary second order condition of local optimality. Fig. 3.6 presents the second order
conditions along the extended path from Fig. 3.4.

Fig. 3.4 Fluid case: in�uence of the �nal time. On the left subgraph are shown the control laws
of solutions atl = 2 andl = 1:32 from path from the right subplot. Forl = 1:32, we can see the
saturating singular arc around the normalized timet = 0:92 (the time is normalized to be between
0 and 1 for each solution). The 2BS solution atl = 1:32 is used to initialize a multiple shooting
with a 3BS structure and then to perform a new homotopy froml = 1:32 to l = 1. On the right
subgraph is portrayed the two homotopies: the �rst froml = 2 to l = 1:32 and the second to
l = 1, with one more BS sequence. The value function, the norm of the initial adjoint vector, the
norm of the shooting function and the switching times along the path are given. The blue color
represents 2BS solutions while the red color is for 3BS structures. The dashed red lines come from
the extended path after the change of structure detected aroundl = 1:32.

Sub-optimal syntheses in �uid and blood cases

We give the syntheses of locally optimal solutions obtained in the blood and �uid
cases. Note that in the special caset f = Tmin, for both cases the solution is 2BS and
of the formd+ dsd+ ds.

For the �uid case, the left subplot of Fig. 3.7 represents all the different branches
we obtained by homotopy onl . The greatest two value functions intersect around
t f = 1:048Tmin. The right subplot shows the sub-optimal synthesis. The best policy
is:

d+ dsd+ ds for l 2 [1:000;1:006];

d+ dsd+ dsd� ds for l 2 [1:006;1:048];

d+ dsd� dsd� ds for l 2 [1:048;1:351];

d+ dsd� ds for l 2 [1:351;3:000]:

(3.37)
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Fig. 3.5 Fluid case: in�uence of the �nal time. Crossing between two branches with 3BS so-
lutions. The crossing is aroundl = 1:0484, see top subgraph. Thus forl � 1:0484, the best so-
lution, locally, has a 3BS structure of the formd+ dsd+ dsd� ds (bottom-left subgraph) while for
l 2 [1:0484;1:351] the best solution is of the formd+ dsd� dsd� ds (bottom-right subgraph). On the
two bottom subgraphs, the trajectories for spin 1 and 2 in the (y,z)-plane are portrayed with the
corresponding control, both forl = 1:0484.

Fig. 3.6 Fluid case: in�uence of the �nal time. Second order necessary condition checked along
the extended path from Fig. 3.4. For all solutions froml = 1 to l = 3 are computed the �rst
conjugate times along each singular arc. Forl 2 [1;1:32], the structure is 3BS and there are 3
singular arcs. Forl 2 [1:32;3], there are 2 singular arcs. Each singular interval is normalized in
such a way the initial time is 0 and the �nal time is 1. The lower dashed horizontal line represents
the �nal time 1. There is no conjugate time before the normalized �nal time 1 which means that all
solutions satisfy the second order necessary condition of local optimality. Note that at a magenta
cross, around(1:32;1), the control of the �rst singular arc saturates the constraintjuj = 1, and so
no conjugate time is computed after this time.

For the blood case, the results are excerpted from [38]. The left subplot of Fig. 3.8
shows the contrast for �ve different components off h = 0g, for �nal times t f 2
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Fig. 3.7 Fluid case, sub-optimal synthesis. Illustration on the left subplot, of local solutions (each
branch corresponds to a control structure). The suboptimal synthesis is plotted on right subplot. The
colors are blue for 2BS structure, red for 3BS and green for 4BS. The best policy isd+ dsd+ dsd� ds
for l � 1:0484, andd+ dsd� dsd� ds for l 2 [1:0484;1:351]. Then, forl 2 [1:351;3], the best policy
is 2BS and of the formd+ dsd� ds.

[1;2]Tmin. The three black branches are made only of BS solutions whereas the two
others are made of 2BS and 3BS solutions. To maximize the contrast, the best policy,
drawn as solid lines, is:

d+ dsd+ ds for l 2 [1:000;1+ e]; e > 0 small

d+ ds for l 2 [1+ e;1:294];

d+ dsd� dsd� ds for l 2 [1:294;2:000]:

(3.38)

Fig. 3.8 Blood case, sub-optimal synthesis. Illustration on the left subplot, of local solutions
(each branch corresponds to a control structure). Best policy as solid lines, local solutions as dashed
lines. The suboptimal synthesis is plotted on right subplot. The colors are black for BS structure,
blue for 2BS and red for 3BS. The best policy is BS fort f 2 (1;1:294)Tmin and 3BS of the form
d+ dsd� dsd� ds for t f 2 (1:294;2]Tmin. In the special caset f = Tmin, the solution is 2BS and of the
form d+ dsd+ ds
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Sub-optimal syntheses compared to global results

We now apply thelmi method to the contrast problem, described in [25], in order
to obtain upper bounds on the true contrast. Comparing these bounds to the contrast
of our solutions then gives an insight about their global optimality.

Table 3.2 shows the evolution of the upper bound on the contrast in function of
lmi relaxation order, for the �uid case witht f = Tmin. As expected, the method
yields a monotonically non-increasing sequence of sharper bounds. Relaxations of
orders 4 and 5 yield very similar bounds, but this should not be interpreted as a
termination criterion for thelmi method.

r
p

� Jr
M Nr tr

1 0:8474 63 0:7
2 0:7552 378 3
3 0:6226 1386 14
4 0:6069 3861 332
5 0:6040 9009 8400

Table 3.2 Fluid case, t f = Tmin: upper bounds on contrast
p

� Jr
M , numbers of momentsNr and

CPU timestr in function of relaxation orderr.

Figs. 3.9 and 3.10 compare the tightest upper bounds found by thelmi me-
thod with the best candidate solutions found byBocop andHamPath , in both the
blood and �uid cases. The �gures also represent the relative gap between the meth-
ods de�ned as(CLMI � CH )=CH , whereCLMI is thelmi upper bound andCH is the
contrast found withHamPath . As such, this measure characterizes the optimal-
ity gap between the methods. It does not, however, specify which of the method(s)
could be further improved. At the �fth relaxation, the average gap is around 11%
in the blood case, which, given the application, is satisfactory on the experimental
level. For the �uid case, the average gap on the contrast is about 2% at the �fth re-
laxation, which strongly suggest that the solution is actually a global optimum. The
gap is even below the 1% mark fort f � 2Tmin.

3.3.9 Numerical simulations, the multisaturation of two spins with
B1-inhomogeneity.

In this section we give an illustration of our techniques applied to the saturation of
two spins combining geometric analysis and numerical simulations to deduce the
solution. We proceed in two steps.

• Step 1: Time minimal saturation of a single spinIn the single-spin case the
time minimal solution is described in Fig.3.1 leads to construct the optimal solu-
tion for a continuation on the set of parameters wherel = 0 corresponds to the
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Fig. 3.9 Fluid case. Best upper bounds (dashed line) by thelmi method compared with best
solutions byHamPath (solid line), and relative gap between the two.

Fig. 3.10 Blood case. Best upper bounds (dashed line) by thelmi method compared with best
solutions byHamPath (solid line), and relative gap between the two.

case of deoxygenated blood,l = 1 corresponds to the case 2G = 3g andl = l f
is the water case:G = g. According to Figs.3.11-3.12-3.13, due to the control
bound, the bifurcation occurs not exactly atl = 1 when the horizontal singular
line z= g=2=d leaves the Bloch ball but atl̄ ' 0:99, since forl > l̄ this line is
no more accessible from the north pole.

• Step 2: We describe in Figs.3.14-3.15-3.16-3.17 the BC-extremal for the mul-
tisaturation problem withB1-inhomogeneity using the same continuation on the
set of parameters. The control is computed usingHamPath software in combi-
nation withBocop in order to determine the structure of the extremal trajectory
for l = 0. Figs.3.14-3.15 show a control with the same structured+ dsd+ dsd+ ds,
that is a sequence of three bang-singular arcs. A bifurcation occurs atl̄ ' 0:94
where the �rst singular arc disappears. Figs.3.16-3.17 show a control with a dif-
ferent structured+ dsd+ ds. In each picture, we have represented the critical alti-
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State

Control

Time ((32:3� 2p]� 1 s)

Fig. 3.11 Time-minimal saturation of a single spin (l = 0).

State

Control

Time ((32:3� 2p]� 1 s)

Fig. 3.12 Time-minimal saturation of a single spin (l = 0:9941' l̄ ).

State

Control

Time ((32:3� 2p]� 1 s)

Fig. 3.13 Time-minimal saturation of a single spin (l = l f ).

tudez = g=2=d (on horizontal dotted line). Atl = l f , the extremal is simply
d+ d0d+ d0: singular arcs are obtained by applying a zero control.
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Reference matter With B1-inhomogeneity

Control

Time ((32:3� 2p]� 1 s)

Fig. 3.14 BC-extremal for the multisaturation problem withl = 0.

Reference matter With B1-inhomogeneity

Control

Time ((32:3� 2p]� 1 s)

Fig. 3.15 BC-extremal for the multisaturation problem withl = 0:943< l̄ .

Reference matter With B1-inhomogeneity

Control

Time ((32:3� 2p]� 1 s)

Fig. 3.16 BC-extremal for the multisaturation problem withl = 0:948> l̄ .

Reference matter With B1-inhomogeneity

Control

Time ((32:3� 2p]� 1 s)

Fig. 3.17 BC-extremal for the multisaturation problem withl = l f .



Chapter 4
Conclusion

The two cases studied in this book show the practical interest of combining geo-
metric optimal control with numeric computations using the developed software to
solve industrial type problems.
The application to microswimmers is very recent and validate results obtained from
�uid mechanics practitioners based on curvature control and Fourier analysis. The
SR-geometry framework allows to compare different strokes anddifferent swim-
mers, using the mechanical energy cost. The copepod mathematical swimmer is the
simplest slender body model. Normal and abnormal strokes have interpretation in
terms of sinusoidal and sequential paddlings. This leads to design a simple macro-
scopic copepod robot to validate the theoretical computations of the most ef�cient
stroke. Another validation of the mathematical model using Resistive Force Theory
for Stokes' �ow is coming from the observations [65] showing the agreement be-
tween observed and predicted displacements. The mathematical developments lead
to solve the inverse problem of identifying the cost used for the copepod nauplii
displacement.
The developments motivated by MRI are more profound and lead to intricate nu-
merical investigations to deal with an highly complex optimal control problem with
many local optimal solutions. Nevertheless we believe that the techniques validate
by in vitro and in vivo experiments realized under the auspices of the ANR project
DFG Explosy will �nd in a very near future applications in MRI diagnosis.
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(1997)

56. Landau, L., Lipschitz, E.: Physique théorique. Ed. Mir (1975)
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