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Preface

The motivation for the notes presented in this volume of BCAM SpringerBriefs
comes from a multidisciplinary graduate course offered to students in Mathemat-
ics, Physics or Control Engineering (at the University of Burgundy, France and at
the Institute of Mathematics for Industry Fukuoka, Japan). The content is based on
two real applications, which are the subject of current academic research programs
and are motivated by industrial uses. The objective of these notes is to introduce
the reader to techniques of geometric optimal control as well as to provide an ex-
posure to the applicability of numerical schemes implementadamPath [32],

Bocop [19] andGloptiPoly  [47] software.

To highlight the main ideas and concepts, the presentation is restricted to the
fundamental techniques and results. Moreover the selected applications drive the
exposition of the different methodologies. They have received signi cant attention
recently and are promising, paving the way for further research by our potential
readers. The applications have been chosen based on the existence of accurate math-
ematical models to describe them, models that are suitable for a geometric analysis,
and the possibility of implementing results from the analysis in a practical manner.

The notes are self-contained, moreover, the simpler geometric computations can
be reproduced by the reader using our presentation of the maximum principle. The
weak maximum principle covers the case of an open control domain which is the
standard situation encountered in the classical calculus of variations, and is suitable
for analysis of the rst application, motility at low Reynolds number, although a
good understanding of the so-called transversality conditions is necessary. For the
second application, control of the spin dynamics by magnetic elds in nuclear mag-
netic resonance, the use of the general maximum principle is required since the
control domain is bounded. At a more advanced level, the reader has to be familiar
with the numerical techniques implemented in the software used for our calcula-
tions. In addition, symbolic methods have to be used to handle the more complex
computations.

The rst application is the swimming problem at low Reynolds number describ-
ing the swimming techniques of microorganisms. It can be easily observed in na-
ture, but also mechanically reproduced using robotic devices, and it is linked to



Vi Preface

medical applications. This example serves as an introduction to geometric optimal
control applied tasub-Riemannian geometry non-trivial extension of Riemannian
geometry and a 1980's tribute of control theory to geometry under the in uence of
R. Brockett[31]. We consider tHeurcell swimmel78], a three-link model where

the shape variables are the two links at the extremities and the displacement is mod-
eled by both the position and the orientation of the central link representing the body
of the swimmer. To make a more complete analysis in the framework of geometric
control, we use a simpli ed model from D. Takagi called tbepepod swimmer
[87], where only line displacement is considered using symmetric shape links, and
which is also the swimming model for an abundant variety of zooplankton (cope-
pods). This fact is particularly interesting with respect to validating the correlation
between theobservedand predicteddisplacement using the mathematical model.
Also from the mathematical point of view, the copepod model issthglest slen-

der body modeand can be obtained as a limit case of more complex systems e.g.
the Purcell swimmer.

For this problem, only theveak maximum principlis necessary and thus will be
presented rst, with its simple proof nevertheless containing all the geometric ingre-
dients of the general maximum principle (see the historical paper by R.V. Gamkre-
lidze about the discovery of the maximum princiglel[40]). Moreover, in this case,
under proper regularity assumptions, the second-order conditions can be easily ex-
plained and numerically implemented using the concepts of conjugate points and
the Jacobi equation. More speci cally, using the optimal control framework, the
sub-Riemannian problem is expressed as:

Z1
0= & uORGON  mn & Fod
i=1, ;m )0 =1 m
wherex 2 M, M is a smooth manifold, and the sub-Riemannian metric is de-
ned by the orthonormal sub-framfeé=;  ; Fng that determines the so-called non-
holonomic constraints on the set of curveg) 2 D(x(t)), whereD is the distribu-
tion SpariF;; ;Fnhg: The relation to the swimming problem, modeled by some
of the earliest prominent scientists (e.g. Newton, Euler and more recently Stokes,
Reynolds, and Purcell), is straightforward in the framework of control theory. The
state variablex of the system decomposes ir(tq; x2) wherex; represents the dis-
placement of the swimmer and is the shape variable representing the periodic
shape deformation of the swimmer's body (called stroke) necessary to produce a
net displacement for a given stroke. The mathematical model relates the speed of
the displacement of; to the speed of the shape deformatignthus characterizing
the sub-Riemannian constraints, while the expended mechanical energy de nes the
metric. The model comes from hydrodynamics and is subject to vital approxima-
tions. First, at the scale of the micro-swimmer's life, it implies that inertia can be
neglected([45]. Second, according to the resistive force théofy [44] the interaction
of the swimmer with the uid is reduced to a drag force depending linearly upon
the velocity. Finally, each of our swimmers is approximated by a slender body. Due
to these approximations, experiments are crucial to validate the models. This theo-



Preface Vii

retical research also prompted experimentation using mechanical prototype devices
(see for instance [75]).

Our objective is to provide a self-contained presentation of the model, of the
underlying concepts of sub-Riemannian geometry and of the techniques needed to
conduct the mathematical analysis. The application of optimization techniques to
the problem is recent. Our contribution's goal is to present a complete analysis using
geometric and numerical techniques in the case of the copepod swimmer. It provides
an excellent introduction to these methods, which have to be developed in the case
of the Purcell swimmer based on our numerical results.

The second example concerns the optimal control of systemadlear mag-
netic resonancéNMR) andmagnetic resonance imagir{yIRI). The dynamics is
modeled using thBloch equatior(1946), which describes at the macroscopic scale
the evolution of the magnetization vector of a spin 1/2 particle depending on two
relaxation parameterf andT,, which are the chemical signatures of the chemical
species (e.g. water, fat) and controlled by an Rf-magnetic pulse perpendicular to the
strong polarizing eld applied in the axis direction (see Bloch equations [18]).

At the experimental level, optimal control was introduced in the early 2000 in the
dynamics of such systems, the objective being the replacement of the heuristic MRI
pulse sequences used in hospital settings (in vivo), which means replacing in near
future the standard industrial software by a new generation of software, producing
a double gain: a better image in a shorter time.

Since the Bloch equations describe the evolution of the dynamics of the process
with great accuracy and the computed control strategies can be implemented easily,
this application provides an ideal platform to test the geometric optimal control
framework presented in this volume. Clearly, the theory has to be developed to han-
dle the mathematical problems and the analysis has to be supplemented by the use of
a new generation of speci ¢ software dedicated to optimal conttahfPath [32],

Bocop [19], GloptiPoly  [47]). With this in mind, the reader is introduced to

two important problems in NMR and MRI. The rst one is simply $aturate in
minimum timehe magnetization vector, which corresponds to driving its amplitude
to zero. For this problem, we must rst introduce the most general maximum prin-
ciple since the applied Rf-magnetic eld is of bounded amplitude. The second step
is to compute, using geometric techniques, the structure of the optimal law as a
closed loop function. This is the so-called concept of optimal synthesis. The second
problem is thecontrast problem in MRivhere we must distinguish within a given
picture between two heterogeneously distributed species, e.g. healthy versus cancer
cells, that are characterized thanks to the Bloch equation by different responses to
the same Rf- eld due to different relaxation parameters. The actual MRI technol-
ogy enables the transformation of this observation problem into an optimal control
problem of the Mayer form:

dx=dt(t) = f(x(t);u(t)) withju(t)j M;  miny:) c(x(ts));
wheret; is a xed transfer time directly related to the image processing time and
the cost function measures the contrast. The dynamics represents the coupling of
the two Bloch equations controlled by the same Rf- eld including the respective
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parameters associated to the two species to be distinguished, parameters which can
be easily computed experimentally.

We use three numerical software based on different approaches:

Bocop The so-called direct approach transforms the in nite dimensional optimal
control problem into a nite dimensional optimization problem. This is done
by a discretization in time applied to the state and control variables, as well as
to the dynamics equation. These methods are usually less precise than indirect
methods based on the maximum principle, but more robust with respect to the
initialization.

Hampath The HamPath software is based upon indirect methods: simple and
multiple shooting; differential continuation (or homotopy) methods; and compu-
tation of the solutions of the variational equations needed to check the second-
order conditions of local optimality. Shooting methods consist in nding a zero
of a speci c function and use Newton-like algorithms. While simple shooting
leads to solution of a two-point boundary value problem, multiple shooting takes
into account intermediate conditions and the structure of the optimal solution has
to be determined. This can be done usingBbeop software, which also allows
initialization of the shooting equation. The Jacobian of the homotopic function is
computed using variational equations to calculate the Jacobi elds. Moreover the
Jacobi elds are used to check the necessary second-order optimality conditions.
LMI. The direct and indirect methods provide local optimal solutions. By com-
paring the different paths of zeros, one obtains a strong candidate solution whose
global optimality must be analyzed. This can be done by the moment approach.
The moment approach is a global optimization technique that transforms a non-
linear, possibly in nite-dimensional optimization problem into convex and nite-
dimensional relaxations in the form of linear matrix inequalities (LMI). The rst
step consists in linearizing the problem by formulating it as a linear program on
a measure space, a problem often referred to as a generalized moment problem.
This can be performed by the use of so-called occupation measures, encoding
admissible trajectories. The second step is to exploit the problem's structure,
here given by its polynomial data, to manipulate the measures by their moment
sequences. This leads to a semi-de nite program (SDP) with countably many de-
cision variables, one for each moment. The third and last step is to truncate this
last problem to a nite set of those moments, leading to a relaxation in the form
of LMI. The method is used through tii&optiPoly  software. This approach

is developed in the MRI problem thanks to the algebraic structure of Bloch equa-
tions and is crucial in this problem to discriminate the global optimum from the
multiple local optimum solutions.

Numerical methods are supplemented dynbolic computationto handle or to
check more complicated calculations. The combination of geometric, numerical and
symbolic computations represents the main originality of the book and leads to the
development of a modern and non-trivial computational framework.

Another originality of the work presented here is its connection to real experi-

ments. For the swimming problem, the copepod represents a variety of zooplankton
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observed at the University of Hawaii in Prof. Takagi's laboratory and is a model for
the design of swimming robots. We represent in[Fig.0.1 the copepod observed by
Takagi and the associated micro-robot model.

100pm ()
- 1a(t)
{ =k
v j= 1=0
N »
£ ; Xo(t)
Sy 1a(t)

'2(t)
Fig. 0.1 Left: Observation of a zooplanktoRight: Sketch of the two-link symmetric swimmer.

For the MRI problem the numerical computations were implemented by Prof.
Glaser at UTM inin vitro experiments and more recentlyvivo experiments were
performed at Creatis (INSA Lyon) by the group of Prof. Ratiney. On [fig$. 0.2 and
[0.3 are represented tirevivo andin vitro experiments realized in the project. Note
that the numerical computations were performed usingttae algorithm [59].

Fig. 0.2 Experimental results: The inner circle shape saffig. 0.3 Contrast optimization in
ple mimics the deoxygenated blood, the outside ma®in vivo setting. Species: brain —
shape sample corresponds to the oxygenated blogftt. parietal muscle.

Without control,Right: Optimized contrast.

Dijon, May 2018 Bernard Bonnard and&émy Rouot
Hawaii, May 2018 Monique Chyba
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Chapter 1
Historical part - Calculus of variations

The calculus of variations is an old mathematical discipline and historically nds
its origins in the introduction of the brachistochrone problem at the end of the 17th
century by Johann Bernoulli to challenge his contemporaries to solve it. Here, we
brie y introduce the reader to the main results. First, we introduce the fundamental
formula of the classical calculus of variations following the presentation by Gelfand
Fomin in [41]. The originality of this presentation lies in the fact that it provides

a general formula rather than starting with the standard Euler-Lagrange formula
derivation and dealing with general variations. The fundamental formula leads to a
derivation of the standard rst order necessary conditions: Euler-Lagrange equation,
tranversality conditions, Erdmann-Weierstrass conditions for a broken extremal and
the Hamilton Jacobi equation. Second, we present a derivation of the second order
necessary conditions in relation with the concept of conjugate points and the Jacobi
equation. The main idea is to introduce the so-called accessory problem replacing
the positivity test of the second order derivative by a minimization problem of the
associated quadratic form [41]. The modern interpretation in terms of the spectral
theory of the associated self-adjoint operator (Morse theory) is also stated.

1.1 Statement of the Problem in the Holonomic Case

We consider the s& of all curvesx: [to;t1]! R" of classC?, where the initial and
nal times tg;t; are not xed, and the problem of minimizing a functional o&r

VA 4
C) = L(tx(t);x()) dt

fo

whereL is C?. Moreover, we can impose extremity constrain($g) 2 Mo, x(t1) 2
M; whereMo; M; areC*-submanifolds oR". The distance between two curugs),
X (3) is given by
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rixx)= maxkx(t) x (k+ maxkx(t) x (Ok+d(Ro;Ry)+ d(PiiPy)

wherePy = (to; X0), PL = (t1;X1), J;J are the domains of x andk k is any norm
onR"while d is the usual distance mapping BA* 1. Note that a curve is interpreted
in the time-extended spa¢t x). If the two curves();x () are closed, they are by
conventionC?-extended od[ J .

Proposition 1 (Fundamental formula of the classical calculus of variationg)e

adopt the standard notation of classical calculus of variations, seé [41]g(gt
be a reference curve with extremitiés; xo); (t1;%1) and letg() be any curve with
extremitieqtp + dtp; Xo+ dXp); (1 + dt1; X1 + dx1). We denote by() the variation:

h(t)= g(t) d(t). Then, if we seDC = C(g) C(g), we have

Zu gL diL L b
DC= — ——  h(t)d+ — d
o x dtTxjg (") * fxjg X to
t (1.1
+ L ik X dt +o(r(g0)
X PR
where denotes the scalar product R".
Proof. We write
z tp+dty z ty
DC= et L(t;g(t) + h(t); g(t) + h(t)) dt t L(t;g(t); 9(t)) dt
ot dlg 7 0
t 1
= L(t;g(t)+ h(t);g(t)+ h(t)) dt t L(t; g(t); g(t)) dt
0 0]
z tp+dty z to+dty
+ L(t;g(t)+ h(t); g(t)+ h(t)) dt L(t; g(t)+ h(t); g(t)+ h(t)) dt:

ty fo

We develop this expression using Taylor expansions keeping only the linear terms
in h; h; dx; dt. We get

2y qL L
DC = = h(t)+ — h(t) dt+[L(t;g;g)dt]" + o(h;h;dt):
o X, (t)+ X, (t) . +[L(t;g; 9)dt] + o )

The derivative of the variatioh is depending orh, and integrating by parts we
obtain
Zy u h i
L d9L L L t
DC — = h(t)ydte+ — h(t) + L _dt
o T @k NOXT g N0 e e
We observe thah;dx; dt are not independent at the extremities and we have for

t = tg ort = t; the relation
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h(t+ dt) = h(t)+ o(h:dt):

So
h(t) dx xdt:
Hence, we obtain the following approximation:
n #
Zy t E
oc = I %E hd+ = dx o+ L Ty g
to ﬂx ﬂx ig ﬂX]g to ﬂX ig to

where all the quantities are evaluated along the reference trajegtorin this for-
mulah; dx; dt can be taken independent because in the integral the Ja(ligE(t;)
do not play any special role.

From[1.], we deduce that the standard rst-order necessary conditions of the calcu-
lus of variations.

Corollary 1 Letus consider the minimization problem where the extrentiies);
(t1;x1) are xed. Then, a minimizey() must satisfy the Euler-Lagrange equation

L dfL _ _

9

Proof. Since the extremities are xed we setfn ([Lldy= 0 anddt = 0 att = t; and

t = t1. Hence 7
b oqL dfL

DC= B h(t) dt + o(h;h

o Tx &gk QU
for each variatiorh() de ned on [tp;t1] such thath(tg) = h(t;) = 0. If g() is a
minimizer, we must havBC 0 for eachh() and clearly by linearity, we have

VA 4
L dfL

— —— h(t)d=0

o Tx dtfix ®

for eachh(). Since the mapping7! (% %%)jg is continuous, it must be identi-

cally zero alongy() and the Euler-Lagrange equat1.2 is satis ed.

1.2 Hamiltonian Equations

The Hamiltonian formalism, which is the natural formalism to use for the maximum
principle, appears in the classical calculus of variations via the Legendre transfor-
mation.

De nition 1 The Legendre transformation is de ned by
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L
= —(t;xX 13
P= g (659 (13)

and if the mapping : (x;x) 7! (x;p) is a diffeomorphism we can introduce the
Hamiltonian:
H:({txp) 7! px L(t;xX): 1.9

Remark 1 In mechanics, the Lagrangian L is of the forfy T(x;x) whereV is
the potential and T is the kinetic energy and T is strictly convex with respect to

Proposition 2 The formula[(L.]l) takes the form
Zy

DC h(t)dt+ pdx Hdt

h i
L d YL ty
— = 15
o, Tx dfTx io to (1.5)

and ifg() is a minimizer it satis es the Euler-Lagrange equation in the Hamiltonian
form

CTH _OTH
x(t) = ﬂp(t,X(t),p(t)), p(t) ﬂX(t,X(t),lD(t))- (1.6)
Proof. Computing, one has

TH TH TH

dH = ﬁdt+ ﬂ—pdp+ de
S, Tt Ty Tty
=(p ﬂx)dX+ xdp ﬂde Tt dt:

1.3 Hamilton-Jacobi-Bellman Equation

De nition 2 A solution of the Euler-Lagrange equation is called an extremal. Let
Py = (to;%0) and R = (t1;X1). The Hamilton-Jacobi-Bellman (HJB) function is the
multivalued function de ned by

Z

t1
SPo;P) = L(t;g(t);g(t)) dt

to

whereg() is any extremal with xed extremitiegx;. If g() is a minimizer, it is
called the value function.

Proposition 3 Assume that for eachyP; there exists a unique extremal joining P
to P and suppose that the HIB function isCet R be xed and letS: P 7! S(Py; P).
Then,S is a solution of the Hamilton-Jacobi-Bellman equation

1S, IS _
rRiP)I+ H(tx o) = O 1.7
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Proof. Let P = (t;x) andP+ dP = (t + dt;x+ dx). Denote byg() the extremal
joining Py to P and byg( ) the extremal joinind® to P+ dP. We have

DS= St+ di;x+ dx)  St;¥)= C(g C(g)

and from [[L.p) it follows that:

Z, h i
= L dfL t
DS= DC — = h(t)dt+ pdx Hdt ;
to ﬂX dt ﬂX jg ( ) P to

whereh()= g() ¢(). Sinceg() is a solution of the Euler-Lagrange equation, the
integral is zero and h i

DS=DC  pdx Hdt ik

0
In other words, we have

dS= pdx Hdt:
Identifying, we obtain _ _
1S _ i 1S _

Hence we get the HIB equation. Moreoyeis the gradient to the level sets 2
R™; S(t;x) = cg.

Other consequences of the general formula are the so-called transversality and
Erdmann Weierstrass (1877) conditions. They are presented in the exercises below.

Exercise 1.1.Consider the following problem: among all smooth curvés x(t)
whose extremity painP; = (t1;x;) lies on a curve/(t) = Y (t), nd the curve for
which the functional . L(t;X; x) dt has an extremum. Deduce from the general for-
mula the transversality conditions

L+ Lg(Y X)= Oatt=t;:

R
Exercise 1.2Lett! x(t) be a minimizing solution oftg1 L(t;x;x)dt with xed
extremities. Assume thatt  x(t) is a broken curve with a corner &t ¢ 2]to;ts][.
Prove the Erdmann Weierstrass condition

Lx(c )= Lx(ct);
[L Ld(c )=[L Lod(cH):

Give an interpretation using Hamiltonian formalism.
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1.4 Second Order Conditions

The Euler-Lagrange equation has been derived using the linear terms in the Taylor
expansion ofDC. Using the quadratic terms we can get necessary and suf cient
second order conditions. For the sake of simplicity, from now on we assume that the
curvest 7! x(t) belong toR, and we consider the problem with xed extremities:
x(to) = Xo, X(t1) = x1. If the mapL is takenC3, the second derivative is computed as
follows:

Zt
DC= Lo+ hig+ ht)  L(Ea:ion) o
0
Zy gL dqL 120 02
4—- - - 2 e

0 Tx dx VT3 .szlg e(t) + 2H h(Hh(t)
ﬂz . .

i ALCIC A G

If g(t) is an extremal, the rstintegral is zero and the second integral corresponds
to the intrinsic second-order derivatidéC, that is:

Z
10 q2L |_ 2L
’c= 5 h? - L )
aC=3 , e, Ot 2 ALCLORE PG SR
Usingh(to) = h(ty) = 0, it can be written after an integration by parts as
Z 4
d*C= PR+ QUN(D) dt (1.10)
fo
where
S O A I
= Zﬂxzjg’ - 2 TIXZ dt Ixqx jg.

Using the fact that in the integrdl (1]10) the teRi is dominating[41], we get
the following proposition.

Proposition 4 If g() is a minimizing curve for the xed extremities problem then it
must satisfy the Legendre condition:

1L

— 1.11
o), (1.11)

1.5 The Accessory Problem and the Jacobi Equation

The intrinsic second-order derivative is given by
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z t
d’C= PN+ QUML) di  hito)= h(ty)= O
fo
whereP, Q are as above. It can be written as
VA Y
d*C= : (P(M(E))h(t) + (QM)h(t)) h(t) dt
0
and integrating by parts usirftg) = h(t;) = 0, we obtain
Zy, d
d’C= Q(t)h(t) a(P(t)h(t)) h(t) dt:

to

Let us introduce the linear operator d 7! Qh %(Ph). Hence, we can write
d’C=(Dh;h) (1.12)

where(;) is the usual scalar product @s([to;t1]). The linear operator D is called
the Euler-Lagrange operator

De nition 3 From (1.12),d°C is a quadratic operator on the s& of C?-curves
h:lto;t1]! R satisfying litg) = h(t1) = 0;h 6 0. The so-called accessory problem
is: r@én d?C.

0

De nition 4 The Euler-Lagrange equation corresponding to the accessory problem
is called the Jacobi equation and is given by

Dh=0 (1.13)

where D is the Euler-Lagrange operator: -hQh %(Ph). It is a second-order
linear differential operator.

De nition 5 The strong Legendre condition is>P 0, where P= %%J . If this
9
condition is satis ed, the operator D is said to be nonsingular.

1.6 Conjugate Point and Local Morse Theory

In this section, we present some results from [43] and [72].

De nition 6 Letg() be an extremal. A solution(J 2 Cy of DJ = 0 on [tg;t1] is
called a Jacobi curve. If there exists a Jacobi curve alg(y on [to;t1] the point
o(ty) is said to be conjugate tg(to).

Theorem 1 (Local Morse theoryl[72])Let ) be xed and let us consider the Euler-
Lagrange operator (indexed byt tg) Dt de ned on the seCé of curves ortp;t]
satisfying Ittg) = h(t) = 0. By de nition, a Jacobi curve offtp;t] corresponds to
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an eigenvector Jassociated to an eigenvallié = 0 of D!. If the strong Legendre
condition is satis ed along an extremgl: [to; T]! R", we have a precise descrip-
tion of the spectrum of Das follows. There existg & t1 < < ts< T such that
eachg(t) is conjugate tay(to). If nj corresponds to the dimension of the set of the
Jacobi curves associated to the conjugate poig(ti), then for anyT such that
to<ti< <t<T<tw1< < T wehave the identity

&

= dn (1.14)
1=

where 1 = dimf linear space of eigenvectors offlilzorresponding to strictly neg-
ative eigenvalueg. In particular if T > t; we have
Z3

min  (Q(t)h?(t)+ P(t)h?(t)) dt = ¥: (1.15)
hZCO to

1.7 From calculus of variations to optimal control theory and
Hamiltonian dynamics

An important and dif cult problem is to generalize the rst and second order condi-
tions from classical calculus of variations to optimal control theory (OCT).
In OCT, the problem is stated as

(
& = Faru)
min g L(g;u) ot
u

with smooth data but the set of admissible controls is the set of bounded measurable
mappings valued in a control domaih thus the set of admissible trajectories is the

set ofabsolutely continuous curves$t g( ). Minimizers are found among the set of
extremalqg; p; u) solutions of the Hamilton equations

dg_fH dp_ TH
d fp’ d q

whereH is the so-called unmaximized Hamiltonian

(1.16)

H(q; p;u) = p F(q;u)
where the controls have to satisfy the maximization condition

H(g; piu) = maxH(q; p;v): (1.17)
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Solving this equation leads in general to several true Hamiltohidq; p); i =

vector eldSHi's.

Remark 1.10CT is a non trivial extension to the so-calledgrange problemnin
calculus of variations since there exists no restriction of the control domain.

The concept of conjugate points can be extended in optimal control and is related to
losing optimality for some prescribed topology on the set of controls but practical
computation is intricate.

A major problem in the analysis is due to bad controllability properties of the
so-called abnormal trajectories. This problem stopped further developments of cal-
culus of variations in the forties [30]. It was revived recently in optimal control
theory when dealing with SR-geometry and more geometrically investigated, see
for instancel[22].

Also in the frame of Hamiltonian formulation of the Maximum Principle de ned
by (I.18), [Z.1)) a bridge is open between Hamiltonian dynamics and variational
principles. Indeed Hamiltonian and Lagrangian can be related with some regularity
assumptions using the Legendre-Fenchel transform

H(g;p)= max(p v L(xV))

and interaction between Hamiltonian dynamics and optimal control is a rich and
active domain, see for instance [1]] [7].






Chapter 2

Weak Maximum Principle and Application to
Swimming at low Reynolds Number

2.1 Pre-requisite of Differential and Symplectic Geometry

We refer to [46] B _42] for more details about the general concepts and notations
introduced in this section.

Notations.Let M be a smooth@¥ orC¥) connected and second-countable mani-
fold of dimensionn. We denote byl M the ber bundle and by M the cotangent
bundle. Letv(M) be the set of smooth vector elds dvi andDif f (M) the set of
smooth diffeomorphisms.

De nition 7 Let X2 V(M) and let f be a smooth function on M. The Lie derivative
isde ned as: Ix f = df(X). If X;Y 2 V(M), the Lie bracket is given by

adX(Y)=[X;Y]= Ly Lx Lx Ly:

If x=(x1; ;Xn) is alocal system of coordinates we have:

RN
X09= & X0 q,;

Lx f(x) = %X(x)

X;YI(9) = %(x)v(x) 11%(x)><(x):

The mappingX;Y) 7! [X;Y]is R-linear and skew-symmetric. Moreover, the Jacobi
identity holds:
XY ZI+ Y [Z XTI+ Z5 X YD = O

De nition 8 Let X2 V(M). We denote by (x;Xp) the maximal solution of the
Cauchy problenx(t) = X(x(t)); x(0) = xg. This solution is de ned on a maximal
open interval J containin@. We denote bgxptX the local one parameter group
associated to X, that iexptX(xg) = X(t;Xg). The vector eld X is said to be com-
plete if the trajectories can be extended oRer

11
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De nition 9 Let X2 V(M) andj 2 Diff(M). The image of X by isj X=
d (X j .

We recall the following results.

Proposition 5 Let X;Y 2 V(M) andj 2 Dif f(M). We have:

1. The one parameter local group ofZj X is given by:
exptZ=j exptX j L

2. XYI=[ X Y]
3. The Baker-Campbell-Hausdorff (BCH) formula is:

expsXexptY = expz (X;Y)
wherez (X;Y) belongs to the Lie algebra generatedDy Y] with:

&t

z(X;Y) = sX+tY+ it[X'Y]+ SiZ[[X'Y]'Y] —
T 2 2% 12

[X; YL X]

S v I
ﬂ[x![Y’[X!Y]]]*-

The series is converging fortssmall enough in the analytic case.
4. We have
exptX expeYexp tX = exph(X;Y)

withh(X;Y)= e & %ade(Y) and the series converging fert small enough
ko

in the analytic case.
5. The ad-formula is:

tk
exptX Y= g —ad*X(Y)
k!
k0
where the series is converging for t small enough.
De nition 10 LetV be aR-linear space of dimension. This space is said to be
symplectic if there exists an application:V V! R which is bilinear, skew-

symmetric and nondegenerate, that iswifx;y) = 0 for all x 2 V, then y= 0. Let
W be a linear subspace of V. We denote by the set

W? = £x2 V;w(xy) = 08y2 Wg:

The space W is isotropic if W W? . An isotropic space is said to be Lagrangian
if dimw = dim%. Let (Vi;wq); (V2;w2) be two symplectic linear spaces. A linear
mapping f:Vy ! Vs is symplectic ifvy(x;y) = wo(f(x); f(y)) for each xy 2 V;.

Proposition 6 Let (V;w) be a linear symplectic space. Then there exists a basis
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i;j nandw(e;f;) = dj (Kronecker symbol). If J is the matrix OI (|) where

| is the identity matrix of order n, then we can writg(x;y) = hixyi wherehi

is the scalar product (in the basi@; fj)). In the canonical basis, the set of all
linear symplectic transformations is represented as the symplectic group de ned by
SHn;R) = £S2 GL(2n;R); S JS= Jg.

De nition 11 Let M be a & -manifold of dimension. A symplectic structure on
M is de ned by a2-form w such thatdw = 0 and such thatwv is regular, that is:
8x 2 M; wy is nondegenerate.

Proposition 7 For any Cf -manifold of dimension n, the cotangent bundléVTad-
mits a canonical symplectic structure de ned Wwy= da wherea is the Liouville
form. If x=(xq1;:::;%,) is a coordinate system on M an(d; p) with (p1;:::; pn)

the associated coordinates on N, the Liouville form is written locally as =

&L, pidx andw = da = &L, dp; " dx;.

Proposition 8 (Darboux) Let (M;w) be a symplectic manifold. Then given any
point in M, there exists a local system of coordinates called Darboux coordinates,
(X1; 2355 %n; P1; 235 Pn) such thatw is given locally bya (L, dp; ~ dx;. (Hence the sym-
plectic geometry is a geometry with no local invariant).

De nition 12 Let(M;w) be a symplectic manifold and let X be a vector eld on M.
We note gw the interior product de ned byxw(Y) = w(X;Y) for any velctor eld

Y on M. LetH: M! R areal-valued function. The vector eld denoted Hyand
de ned by'i,(w) = dH is the Hamiltonian vector eld associated to H.(K; p)
is a Darboux coordinate system, then the Hamiltonian vector eld is expressed in

these coordinates as:
!H _dHT 9fH T

AT
De nition 13 LetFEG:M! R betwo me}ppings. We denoteftdy, Gg the Poisson-
bracket of F and G de ned bfyF; Gg= dF(G).

Proposition 9 (Properties of the Poisson-bracket)

1. The mappingF;G) 7! f F; Gg s bilinear and skew-symmetric.
2. The Leibniz identity holds:

fFG;Hg= GfF;Hg+ FfG;Hg:
3. In a Darboux coordinate system, we have

¢ 1GTF 9TGTF
fFRGg=a -—— ———:
9 Sl‘ﬂpi % 1% Tpi

I I ol
4. If the Lie bracket is de ned bB(F B lG] =G " F ~ G, then its relation with

F
|
the Poisson bracket is given bByE; G] = fF; Gg:
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5. The Jacobi identity is satis ed:
ff F;Gg;Hg+ ff G;Hg;Fg+ ff H;Fg;Gg= O:

|
De nition 14 LetH be a Hallmiltonian vector eld orfM;w) and F: I\I/I I R.We
say thatF is a rstintegral forH if F is constant along any trajectory ¢f , that is
dF(H)= fFHg= 0.
De nition 15 Let(x; p) be a Darboux coordinate system and M ! R. The co-
ordinate % is said to be cyclic i% = 0. Hence F: (x;p) 7! p1is a rstintegral.

De nition 16 Let M be a n-dimensional manifold and (e¢ p) be Darboux coordi-
nates on TM. For any vector eld X'on M we can de ne a Hamiltonian vector eld

Hx on T M by H(x; p) = hp;X(X)i; Hx is called the Hamiltonian lift of X and

"Hx=Xx& % p.ﬂlp. Each diffeomorphisijn on M can be lifted into a symplectic

diffeomorphismj on T M de ned in a local system of coordinates as follows. If
. | . . i1
x=j (y),thenj () 7' (xp)= j ()Y a .

Theoren|1 2 (Noether) Let(x; p) be Darboulx coordinates on M, X a vector eld
on M andH x its Hamiltonian lift. We assumi x to be a complete vector eld and
we denote by ; the associated one parameter group. LetF I\/II ! Randletus

assume that Fj ;= F forallt 2 R. Then H is a rstintegral for F .

De nition 17 Let M be a manifold of dimensidn+ 1 and letw be a2-form on
M. Then for all x2 M, wy is bilinear , skew-symmetric and its rank is2n. If for
each x, the rank i&n, we say thatv is regular. In this case kew is of rank one and
is generated by an unique vector eld X up to a scalaa lis a 1-form such thatla

is of rank2n, the vector eld associated wittia is called the characteristic vector
eld of a and the trajectories of X are called the characteristics.

Proposition 10 On the space TM R with coordinategx; p;t) the characteristics
of thel-form&L ;(pidx; Hdt) project onto solutions of the Hamilton equations:

X(t) = %(x(t);p(t);t); p(t) = %(X(t);p(t);t)i

De nition 18 Letj : (x;p;t) 7! (X;P,T) be a change of coordinatesonM R.
If there exist two functions &; P, T) and §X;P,T) such that

pdx Hdi= PdX KdT+dS

then the mapping is a canonical transformation and S is called the generating
function ofj .

Proposition 11 For a canonical transformation the equations

X(t) = %(x(t);p(t);t); p(t) = %(X(t):p(t);t)
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transform onto
dXx _IK ] .. dP _ IK ) .
E(T)_ ﬂ—P(X(T),P(T),T), E(T)— W(X(T),P(T),T)-

If T =t, and(x; X) forms a coordinate system, then we have

daX . K ) ., dpP o K ) )
= W(X(t),P(t),t), = W(X(t),P(t),t)
with
_ TS, v orey-ny- _ TIs D1
p(t) = ﬂ(x(t),P(t),t). P(t) = W(X(t),P(t),t),
H(X(); P(t);t) = K(X(t); P(t);t) jTtS(X(t): P(t);t):

Remark 2.1 (Integrability)Assume that the generating functiBiis not depending
ont. If there exist coordinates such th&(X;P) = H(x; p) is not depending oR,

we haveX(t) = 0, X(t) = X(0); henceP(t) = P(0)+ t%jx:x@)' The equations are
integrable. WithH(x; p) = K(X) we get

TS, :
HEG ) = KX):

we get solutions to the Hamilton equations. A standard method is by separating the
variables. This is called the Jacobi method to integrate the Hamilton equations. In
particular, this leads to a classi cation of integrable mechanical systems in small
dimension, se¢ [56].

De nition 19 A polysystem D is a familiM;; i 2 1g of vector elds. We denote by
the same letter the associated distribution, that is the mappifigspard V(x);V 2
Dg. The distribution D is said to be involutive[\f;;V;] D, for all Vj;V; 2 D.

De nition 20 Let D be a polysystem. We design hyDthe Lie algebra generated
by D, it is constructed recursively as follows:

D; = sparf Dg;
D2 = spari Dy +[ D1;Dq]g;

Dy = spariDy 1+[D1;Dx 1]g

and D .a: = [ k 1Dk. By construction the associated distribution.R is involutive.
If x2 M, we associate the following sequence of integege)r= dim Dy(X).

De nition 21 Consider a control system= f(x;u) on M with u2 U. We can
associate to this system the polysystem Df ( ;u); u constantu 2 Ug. We denote
by §(D) the set
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&
Sr(D) = fexptiVi  expteVi; k2 N;t; Oandg ti= T;V; 2 Dg
i=1

and by $D) the local semi-groupf 1t ¢Sr(D). We denote by (®) the local group
generated by @), that is

G(D) = fexptiVi  exptyVi; k2 N;t 2 R; V; 2 Dg:
Properties.
1. The accessibility set fromxy intime T is:
A(x0; T) = Sr(D)(x0):
2. The accessibility set fromy is the orbit of the local semi-group:
A(x0) = S(D)(xo):

De nition 22 We call the orbit of ¥ the set @xg) = G(D)(Xp). The system is said
to be weakly controllable if for every2 M; O(xp) = M.

2.2 Controllability Results

2.2.1 Sussmann-Nagano Theorem

When the rank condition is satis ed (rarix= constantD : x! Dyi.a:(X)) we get
from the Frobenius theorem a description of all the integral manifoldsxgedmwe
only need to construct the leaf passing througlthe rank condition is clearly too
strong. Indeed, iD = f Xg is generated by a single vector ek, there exists an
integral curve through. For a family of vector elds this result is still true if the
vector elds are analytic.

Theorem 3 (Nagano-Sussman Theorem [85Det D be a family of analytic vector
elds near 2 M and let p be the rank dD : x 7! D_.a:(X) at X%. Then through x
there exists locally an integral manifold of dimension p.

Proof. Let p be the rank oD at xp. Then there existp vector elds of D.a; :
X1, ;Xpsuch that spaiXi(Xo);  ; Xp(X0)d= D(Xo). Consider the map

a:(ty; tp) 7! exptiXy  exptpXp(Xo):

It is an immersion for(t;; ;tp) = (0; ;0). Hence the image denoted byis
locally a submanifold of dimensiop. To prove thaiN is an integral manifold we
must check that for eagh2 N nearxo, we haveTyN = D(y). This result is a direct
consequence of the equalities
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Dia(exptXi(x) = dexpX(DLa(X);i= 1, ;p

for x nearxp, andt small enough. To show that the previous equalities hold, let
V(X) 2 DL.a:(X) such thatv(x) = Y(x) with Y 2 D_.a.. By analycity and the ad-
formula fort small enough we have

k
dexx)(V(9) = & 12XV (exp (9):
i

Hence fort small enough, we have
(dexptXi)(Dr:a:(X))  Dia(exptXi(x)):

Changing to t we show the second inclusion.

C¥-Counter Example

To prove the previous theorem we use the following geometric propertyXét
be two analytic vector elds and assuiié€xg) 6 0. From the ad-formula, if all the
vector eldsad*X(Y);k 0 are collinear toX at xo, then fort small enough the
vector eldY is tangent to the integral curve ef(xo).

Hence is is easy to construcCi -counter example using at*-mappings. In-
deed, let us také : R 7! R a smooth map such th&f{x)= Oforx Oandf(x)6 0
for x> 0. Consider the two vector elds oR?: X = % andY = f(x)‘l}iy. At O, DA
is of rank 1. Indeed, we hay¥;Y](x) = fo(x).l}iy = O at0and hencgX;Y](0)= O.
The same is true for all high order Lie brackets. In this example the Bank is

not constant along exX(0), indeed forx > 0, the vector eldY is transverse to this
vector eld.

2.2.2 Chow-Rashevskii Theorem

Theorem 4 ([36/79]) Let D be a ¢ -polysystem on M. We assume that for each
X2 M; Dp.a(X) = TxM. Then we have

G(D)(X) = G(Dr:a:(X) = M;
for each X2 M.

Proof. SinceM is connected it is suf cient to prove the result locally. The proof
is based on the BCH-formula. We assuide= R® and D = f X;Yg with rank
fX;Y;[X;Y]g= 3 atxg; the generalization is straightforward. Llebe a real number
and consider the map
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j1 o (tastostz) 71 expl XexptsYexp | XexptoY exptiX(Xo):
We prove that for small but nonzelq j | is an immersion. Indeed, using the BCH

formula we have

1 (ititz) = exptiX +(ta+ t3)Y + I;[X;Y]+ )(Xo);

hence i
I
———(0;0;0) = X(x0);
g (0:0:0= X(%)
i
Mits
SinceX;Y;[X;Y] are linearly independent ag, the rank ofj | at0is 3 forl 6 0
small enough.

i hom= :
TtZ(O,O,O)— Y(XO),

(:0:0= Y(o)+ HDYI00)+ ofl )

2.3 Weak Maximum Principle

We consider the autonomous control system
x(t) = f(x(t);u(t)); X(t) 2 R u(t) 2 W (2.2)

wheref is aCl-mapping. The initial and target séiky; M; are given and we assume
they areCl-submanifolds oR". The control domain is a given sub&&t R™. The
class of admissible control$ is the set of bounded measurable mapg®; T (u)] !
W. Letu() 2 U andxg 2 R" be xed. Then, by the Caratheodory theorem![64],
there exists a unique trajectory pf (2.1) denatécixo; u) such that(0) = Xo. This
trajectory is de ned on a honempty subintendadf [0; T (u)] andt 7! x(t; xo; u) is
an absolutely continuous function solution [of {2.1) almost everywhere.

To eachu( ) 2 U de ned on[0; T] with corresponding trajectom( ; xo; u) issued
from x(0) = xp 2 Mg de ned on[0; T], we assign a cost

Z1
Cw= Fxm;uw) o (2:2)

where 0 is aCl-mapping. An admissible contral ( ) with corresponding trajec-
tory X (;%o;u) and de ned on[0; T ] such thatx (0) 2 Mg andx (T ) 2 My is
optimal if for each admissible contral ) with corresponding trajectony( ; Xo; U)
on|[0; T];x(0) 2 Mg andx(T) 2 My, then

C(u) C(u):
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The Augmented System

The following remark is straightforward but is geometrically very important to un-
derstand the maximum principle. Let us consifler( f; fo) and the corresponding
system orR™ 1 de ned by the equation§= f(X(t);u(t)), i.e:

x(t) = f(x(t);u(t)); (2.3)
Xty = O(x(t);u(t)): (2.4)

This system is called the augmented system. Sifids C!, according to the
Caratheodory theorem, to each admissible contfdl2 U there exists an admis-
sible trajectoryx(t; Xo; u) such Epaixé = (x0;x°(0));x°(0) = 0 where the added co-
ordinatex’( ) satis esX0(T) = 4 fO(x(t);u(t)) ct.

Let us denote by&M0 the accessibility s€t )2y X(T;%o;u) from Mo = ( Mg; 0)
and letM; = M1 R. Then, we observe that an optimal contwo{ ) corresponds
to a trajectoryx( ) such thatx” 2 Mg and intersectindl; at a point<”(T ) where
>g° is minimal. In particulax™(T) belongs to the boundary of the Accessibility set

AMo-

Related Problems

Our framework is a general setting to deal with a large class of problems. Examples
are the following:

1. Nonautonomous systems:

x(t) = f(tx(t);u(t):

We add the variableto the state space by settifg= 1;t(so) = so.

2. Fixed time problem. If the time domal@; T (u)] is xed (T(u)= T for all u())
we add the variableto the state space by setti§§= 1;t(s0) = spand we impose
the following state constraints ant = 0 ats= 0 andt = T at the free terminal
times.

Some speci ¢ problems important for applications are the following.

R
1. If f0 1, then ming fO(x(t);u(t)) dt = min T and we minimize the time of

global transfer.

2. If the system is 9_{ the fornx(t) = A(t)x(t)+ B(t)u(t), whereA(t); B(t) are ma-
trices andC(u) = OT L(t; x(t);u(t)) dt whereL( ;x;u) is a quadratic form for each
t, T being xed, the problem is called a linear quadratic problem (LQ-problem).
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Singular Trajectories and the Weak Maximum Principle

De nition 23 Consider a system &" : x(t) = f(x(t);u(t)) where f is a & -map
fromR" RM™into R". Fix X 2 R" and T > 0. The end-point map (for xedgxT)
is the map BoT :u() 2 U 7! x(T;Xo;u). If u() is a control de ned or{0; T] such
that the corresponding trajectory xxo; u) is de ned on[0; T], then BT is de ned
on a neighborhood V of(u) for the L¥ ([0; T]) norm.

First and Second Variations of EX'T

It is a standard result, see for instancel [84], that the end-point maCfsmaap
de ned on a domain of the Banach spdc&([0;T]). The formal computation of
the successive derivatives uses the conceptawé@uix derivative. Let us explain in
details the process to compute the rst and second variations.

Letv( ) 2 L¥([0; T]) be a variation of the reference contugl) and let us denote
by x( )+ x() the trajectory issued fromy and corresponding to the contna] ) +
v( ). Sincef is C¥, it admits a Taylor expansion for each xed

2
%%wa+%£me+%%%umXKw
19%F _ 19%F
+ EW(x, u)(x;x)+ Eﬁ(x’ u)(v;v) +

f(x+ x;u+v)= f(x;u)+

Using the differential equation we get
x(t)+ x(t) = f(x(t)+ x(t);u(t) + wv(t)):

Hence we can writ& as:dix+ dox+ whered; X is linear inv, d>X is quadratic,
etc. and are solutions of the following differential equations:

_ Tt 1f ..
dix= ﬁ(x, u)dix+ ﬂ(x, uv (2.5)

_f, 12f .
dox = ﬂ(x u)dox+ m(x u)(d1x;v) 2.6)
192f 19°f

+ 5 W(XJ u)(dgx; dox) + 2982

(x5 u)(v;v):

Using x(0) = 0, these differential equations have to be integrated with the initial
conditions
d1x(0) = dox(0) = 0 2.7)

Let us introduce the following notations:
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A(t) = %(x(t);u(t»; B(t) = 1JT—L(x(t);u(t»:

De nition 24 The system
dx(t) = A(t)dx(t)+ B(t)du(t)

is called the linearized system alofq );u( )).

Let M(t) be the fundamental matrix df; T] solution almost everywhere of
M(t) = A(t)M(t); M(0) = Id:

Integrating [(2.p) wittd1x(0) = 0 we get the following expression fdx:
Zt
dix(T)= M(T) M (1) B(t) v(t) dt: (2.8)
0

This implies the following lemma.

Lemma 1 The Fiechet derivative of &7 at u( ) is given by
. Z1
Eo“"T(v) = dix(T)= M(T) M Y(t)B(t)w(t) dt:
0

De nition 25 The admissible control(u) and its corresponding trajectory % xo; u)
both de ned on[0; T] are said to be regular if the Echet derivative goT is sur-
jective. Otherwise they are called singular.

Proposition 12 Let A(Xo; T) = [ y()2u X(T;%o; u) be the accessibility set at time T
from x. If u(') is a regular control or{0; T], then there exists a neighborhood U of
the end-point T; Xp; u) contained in Axg; T).

Proof. SinceE®T is surjective ati( ), we have using the open mapping theorem
thatE>'™ is an open map.

Theorem 5 Assume that the admissible contrdl)uand its corresponding trajec-
tory x( ) are singular on[0; T]. Then there exists a vecto( p2 R"nf0g absolutely
continuous orf0; T] such that(x; p;u) are solutions almost everywhere fihT] of
the following equations:

dx

_TH ey P TH
= ﬂfp(x(t),p(t),u(t)), = W(X(t),p(t),u(t)) (2.9)

TH Y o) et =
o KO ;) = 0 (2.10)

where HX; p;u) = hp; f(x;u)i is the pseudo-Hamiltoniaryi being the standard
inner product.
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Proof. We observe that the Echet derivative is a solution of the linear system
dx(t) = A(t)dix(t) + B(t)w(t):

Hence, if the pait(x( );u( )) is singular this system is not controllable f)T].

We use an earlier proof on controllability to get a geometric characterization of this
property. The proof which is the heuristic basis of the maximum principle is given
in detail. By de nition, sinceu( ) is a singular control of0; T] the dimension of the
linear space

Z1
M(T)M () B(t) v(t) dt; v( ) 2 L¥*([0;T])
0
is less tham. Therefore there exists a row vecto2 )R" nf0g such that
pM(T)M 1(1)B(t) = 0
for almost everywhere2 [0; T]. We set
p(t) = pM(T)M *(t):

By constructionp( ) is a solution of the adjoint system

plt) = p(t)’%(x(t); u(t):

Moreover, it satis es almost everywhere the following equality:

P(t)%(x(t);U(t)): o

Hence we get the equatiors (2.9) and (.18 (k; p;u) denotes the scalar product
hp; f(x; u)i.

Geometric interpretation of the Adjoint Vector

In the proof of Theorerﬁ]S we introduced a vecpdr). This vector is called an ad-
joint vector. We observe thatuf ) is singular ori0; T], thenforeach& t T; Ui,

is singular andp(t) is orthogonal to the image denotédt) of E%T evaluated at
Uiy If for eacht, K(t) is a linear space of codimension one th#t) is unique up
to a factor.
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The Weak Maximum Principle

Theorem 6 Let U ) be a control and &; Xg; U) the corresponding trajectory, both
de ned on|[0;T]. If x(T;Xo;u) belongs to the boundary of the accessibility set
A(xo; T), then the control (1) and the trajectory & Xo; u) are singular.

Proof. According to Propositioh 12, ifi( ) is a regular control of0; T] thenx(T)
belongs to the interior of the accessibility set.

Corollary 2 Consider the problem of maximizing the transfer time for system
x(t) = f(x(t);u(t));u() 2 U = L¥, with xed extremities ¥ x;. If u () and the
corresponding trajectory are optimal df;t ], then u( ) is singular.

Proof. If u () is maximizing therx (T) must belong to the boundary of the acces-
sibility setA(xp; T) otherwise there exises> 0 such thak (T e) 2 A(xp; T) and
hence can be reached by a solutidn)n time T : x (T €)= x(T). It follows
that the poink (T) can be joined in a tim& > T. This contradicts the maximality
assumption.

Corollary 3 Consider the systelx(qQ f(x(t);u(t)) where f ) 2 U = L¥([0;T])
and the minimization problem(n)gn 0 L(x(t) u(t)) dt, where the extremitiegxxy

are xed as well as the transfer time T. If (4) and its corresponding trajectory
are optimal on[0; T], then u( ) is singular on[0; T] for the augmented system:
x(t) = f(x(t);u(t)), xX°(t) = L(x(t);u(t)). Therefore there exis (t) = ( p(t); po) 2
R™1nf0gsuch that(X ;p ;u ) satis es

) M, . M.
X(t) = = (X(1); p(t); u(t)); p(t) = = (X(t); p(t); u(t))
o X 2.11)

TH ct): B0 Ut =
wherex = (x;x0) and H(X; p;u) = hp; f(x;u)i + poL(x;u). Moreover p is a non-
positive constant.

Proof. We have thak (T) belongs to the boundary of the acceSS|b|I|tyA©?o T).

Applying (2 ) 2. 1])) we get the equat|o 2.11) whpges #—;'0 = OsinceH is
independent ofP.

Abnormality

In the previous corollaryp 7)) is de ned up to a factor. Hence we can normalfze
to 0 or -1 and we have two cases:

Case 1: u() is regular for the systex(t) = f(x(t);u(t)). Thenpy & 0 and can be
normalized to -1. This is called the normal case (in calculus of variations), see
[30].
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Case 2: u( ) is singular for the system(t) = f(x(t);u(t)). Then we can choose
po = 0 and the Hamiltoniam evaluated alongx( ); p( );u( )) doesn't depend
on the cost.(x;u). This case is called the abnormal case.

2.4 Second order conditions and conjugate points

In this section we make a brief introduction to the concept of conjugate point in
optimal control, in relation with second order conditions, generalizing the similar
concepts in calculus of variations presented in se€fion|2.5.7.

The underlying geometric framework is elegant and corresponds to the concept
of Lagrangian manifold [73] and singularity of projection of Lagrangian manifold
[8,190]. They can be numerically computed using rank tests on Jacobi elds which
is one of the key components of tilamPath code [38]. Also this concept is well
known to be related to the zero eigenvalue of self-adjoint operators associated to the
intrinsic second order derivative [52].

2.4.1 Lagrangian manifold and Jacobi equation

De nition 26 Let (M;w) be a (smooth) symplectic manifold of dimensim A
regular submanifold L of M of dimension n is called Lagrangian if the restriction of
wto kL TyL is zero.

De nition 27 LetL be a Lagrangian submanifold of M and letP :z=(x;p) 7! x

be the canonical projection. A tangent non zero vector v of L is called vertical if
dP (v) = 0. We call caustic the set of points x of L such that there exists at least one
vertical eld.

| |
De nition 28 LetH be a (smooth) Hamiltonian vector eld on M, j { = exptH
the associated one parameter group,the ber TyM and L = j {(Lo). The set of
caustics is called the set of conjugate loci of L.

|
De nition 29 LetH be a (smooth) IHamiltonian vector eld on M and let £t) =
(x(t); p(t)) be areference trajectory ¢ de ned on[0; T]. The variational equation
|

dz(t) = %(z(t»dz(t)

is called Jacobi equation. We called Jacobi el¢t))= ( dx(t);d p(t)) a non trivial
solution of Jacobi equation. It is said to be vertical at timedx{t) = 0. A time t
is called conjugated if there exists a Jacobi eld vertical at tindegnd t. and the
point Xtc) is called geometrically conjugate t¢®.
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2.4.2 Numerical computation of the conjugate loci along a
reference trajectory

Verticality test

Letz(t) = ( x(t); p(t)) be areference trajector)!/ of andxg = x(0). The set of Jacobi
elds forms ann-dimensional linear subspace. I(e{;:::; e,) be a basis oTXOM and
letJ(t) = (dx(t);dpi(t));i = 1;:::;nthe set of Jacobi elds (vertical &&= 0), such
thatdx(0) = 0;dp;(0) = g. Therefore the timé&: is geometrically conjugate if and
only if the rank of

is strictly less tham.

2.5 Sub-Riemannian Geometry

In this section a quick introduction to sub-Riemannian (SR-geometry) is presented
which is the proper geometry framework for the swimming problem at low Reynolds
number.

2.5.1 Sub-Riemannian manifold

De nition 30 A sub-Riemannian manifold is a trip{&1; D; g) where M is a smooth
connected manifold, D is a smooth distribution of rank m on M and g is a rieman-
nian metric on M.

An horizontal curveis an absolutely continuous curvé ,g(t), t 2 | such that

g(t) 2 D(g(t)). The length of a curve is de ned byl(g) =  g(g(t))*?dt and its
Z |

T

energyis given byE(g) = 1=2  g(g(t)) dt where the nal timeT can be xed at
0

1.

2.5.2 Controllability

LetD1 = D, Dk = D1+[Dg;Dk 1]. We assume that there exists for each M an
integerr(x), called thedegree of non holonomguch thaD,,) = TxM. Moreover at
a pointx 2 M, the distributiorD is characterized by thgrowth vector(ny; nz; :::;ny)

wheren, = dim Dg(X).
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2.5.3 Distance

According to Chow's theorem, for each pdix;y) 2 M, there exists an horizon-
tal curveg:[0;1]! M such thatg(0) = x; g(1) = y. We denote byd the sub-
Riemannian distancéSR-distance):

d(xy) = ir;ff [(9); gis an horizontal curve joining to yg:

2.5.4 Geodesics equations

According to Maupertuis principle the length minimization problem is equivalent to
the energy minimization problem. Additionally if we parametrize the curves by arc-
length, then the length minimization problem is equivalent to the time minimization
problem.

To compute the geodesics equations it is convenient to minimize the eBergy
We proceed for the calculations as follows. We choose a local orthonormal frame

Xiy= & wORMD):  min ‘g ()t
E - i§1 I I ' u(:) E 0 i ! '

According to the weak maximum principle (corresponding to a control domain
U = R™M) we introduce the pseudo-Hamiltonian:

m m
H(xp;u)= & uHi(xp)+ pod u2
i=1 i=1

whereH;(x; p) = hp; K (X)i is the Hamiltonian lift ofF. By homogeneitypg can be

normalized to O or 3.

Normal case:pp= 1=2.

According to the maximum principle the conditigfy = 0 leads tou; = H;. Plug-
ging this last expression fag into H leads to the true Hamiltonian in the normal
case:

1p
Ha(2) = 5 & HE(D
i=1

wherez = (x; p). A normal extremal is a solution of the Hamiltonian system asso-
ciated to the true Hamiltonian, and its projection on the state space is called a normal
geodesic.
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Abnormal case:pg = 0.

de ning implicitly the abnormal curves related to the structure of the distribulion
The solutions are called abnormal extremals, and their projections on the state space
are the abnormal geodesics.

Next we introduce the basic de nitions related to the analysis of the geodesics
equations and generalizing the Riemannian concepts.

!
De nition 31 Parametrizing the normal geodesics squtEoan(z) and xing x2

M, the exponential map is de ned lexp, : (p;t) ! P (exptHn(2)) where z= ( x; p)
andP is the projection(x;p) ! x.

De nition 32 Letx2 M be xed. The set of points at a SR-distance less or equal to
r from x form the ball of radius r centered at x and the sphepe 1§ is formed by
the set of points at a distance r from x.

2.5.5 Evaluation of the Sub-Riemannian ball

The computation of the Sub-Riemannian ball (SR-ball), even with small radius is
a very complicated task. One of the most important result in SR-geometry is an
approximation result about balls of small radius, in relation with the structure of the
distribution.

De nition 33 Let x2 M, and let f be a germ of a smooth function at x. The multi-
plicity of f at x is the numbem(f) de ned by:

« m(f)= minfn; there exist X;:::;; Xn 2 D(X) such that:(Lx, ::: Lx,f)(X) & Og,

o if f(xX) 6 Othenm(f)= 0, andm(0) = + ¥.

De nition 34 Let f be a germ of a smooth function at x, f is called privileged at x
if we have thatm(f) is equivalent taminf k; df,(DX(x)) 6 Og. A coordinate system

fxi;:%0: V! R denedon an open subset V of x is called privileged if all the
coordinates functionsixl i n are privileged at x.

2.5.6 Nilpotent Approximation

Let us x a privileged coordinate system &t= ( X1;:::;Xn), Where the weight of
X is given bym(x;). Each smooth vector el&/ atx has a formal expansiov

&; 1V, where eaclvi = &1L, P/(xs; 5 %) k- is homogeneous of degrgefor
the weights associated with the coordinate system, and the Weigi@t isf m(x;).
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Proposition 13 Letf Fy;:::; Fng be the orthonormal subframe of the distribution D

order approximation of Fq;:::; Fng at x since they generate a nilpotent Lie algebra
with a similar growth vector. Moreover, for small x it gives the following estimate of
the SR-normixj = d(0;x) j Xgj¥™L + 1:5jxqj .

See [13], [55] and [49] for the details of the construction of privileged coordi-
nates. In addition, note that [[71] contains also the relation of the integrability issues
which is important for the practical implementation.

2.5.7 Conjugate and cut loci in SR-geometry

The standard concepts of conjugate and cut point from Riemannian geometry can be
generalized in optimal control and thus in SR-geometry. Consider the SR-problem:

m Z1 m b1
x(t)= & u®RX®); min a u(t) dt:
i=1 u@ 0 =1

De nition 35 Let X:) be a reference (normal or abnormal) geodesic de ned on
[0; T]. The time¢ is called the cut time if the reference geodesic stops to be optimal
att=tc, i.e.isnolonger optimal for® t., and Xt¢) is called the cut point. Taking all
geodesics starting fromyx= x(0), their cut points will form the cut locusg(xo).

The time {; is called the rst conjugate time if it is the rst time such that the
reference geodesic is no longer optimal fo¥ tt1 for the C'-topology on the set

of curves, and the point(t:) is called the rst conjugate point. Calculated over
all geodesics, the set of rst conjugate points will form the ( rst) conjugate locus

C(x0)-

An important step is to relate the computation of the geometric conjugate lo-
cus (using a test based on Jacobi elds) to the computation of the conjugate locus
associated to optimality. It can be done under suitable assumptions in both the nor-
mal and the abnormal case [21] but for simplicity we shall restrict ourselves to the
normal case.

2.5.8 Conjugate locus computation

Using Maupertuis principle, the SR-problem is equivalent to the (parametrized) en-
ergy minimization problem:
|
Z 1 m ’
min Q W)
u:) 0 =1
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whereT is xed, and we can choosg = 1.

Let Hi(2) = hp;R(X)i and letH(2) = %éi’ﬂlHiz(z) be the Hamiltonian in the
normal case. Take a reference normalI geoddsjade ned on|0; 1] and letz(:) =
(x(:); p(:)) be a symplectic lift solution oH . Moreover assume thaf:) is strict,
which means that it is not a projection of an abnormal curve. Then the following
proposition holds.

Proposition 14 The rst conjugate timest along X:) corresponds to the rst geo-
metric conjugate point and can be computed numerically using the test of Section
24.

2.5.9 Integrable case

If the geodesic ow is Liouville integrable, then the Jacobi equation is integrable
and the conjugate points can be computed using the parametrization of the geodesic
curve. This result is a consequence of the following standard lemma from differen-
tial geometry.

Lemma 2 Let Jt) = ( dx(t);d p(t)) be a Jacobi curve along®) = ( x(t); p(t)), t 2
[0;1] and vertical attime & 0, i.e.dx(0) = 0. Leta(e) be any curve in JM de ned
by p(0)+ edp(0)+ o(e). Then:

J(t) = d%je=oeXptH”(X(o) ;a(e)):

2.5.10 Nilpotent models in relation with the swimming problem

The models in dimension 3 are related to the classi cation of stable 2-dimensional
distributions, see [91], and will be used for the copepod swimmer. See also [31] for
the analysis of the Heisenberg case.
Contact caseA pointxp 2 R2 is acontact pointof the distributionD = spari Fy;
Fog if [F1; F2](%0) 2 D(Xp) and the growth vector i€;3). A normal formatxg O
is given by:
X=(X1;X2;X3); D= kera; a = xdx;+ dxs:

Observe that

¢ da = dxo” dx; : Darboux form,
. ."lXS is equal to the Lie brackgF;; F,] and is the characteristic direction cd d

This form is equivalent to the so-call&ldo representation

D=kera® a®= dxg+(xidxs Xo0x1)
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i 1 1 1 1
D=sparF;;Fg Fi= —+x—; = —  Xg—:
pariF; g F1 I F o
If we setks = ﬂiXS we have thafF;; ] = 2F; and the corresponding so-called
Heisenberg SR-case given by:
Z1

X0= & WORKWD): min (0 + WD) o
i=1 Ut

It corresponds to minimizing the Euclidean length of the projection of the curve
t! x(t) on the(xs;X2)-plane. Starting from the origi0; 0; 0), we observe that

Z
BM= a0 ewa)d

is proportional to the area swept by the cutve (xi(t);x2(t)). The Heisenberg
SR-case is therefore dual to the Dido problem: among the closed curves in the plane
with xed length, nd those for which the enclosed area is maximal. The solutions
are well known and they are arcs of circles. They can be easily obtained using simple
computations as follows. The geodesic equations written ir{tft¢) coordinates
where H = (H1; Hz; Hs); Hi = hp;Fi; i= 1;2;3 are given by:

X1=Hi; X =H x3= HiXo Hoaxg;
Hy = 2H2H3; Ho = 2H1H3; Hs = 0:

SinceHs is constant we can"introdudég = | =2 with| 2 R, and we obtain the
equation of a linear penduluii, + | 2H; = 0. The integration can be done directly
since we can observe that:

doe+d)=o

8 2

Sincel 6 0, which can be assumed positive, we obtain the well known parametriza-
tion for the geodesics:

x(t) = ;ﬁ(Sin(I t+j) sin(j))

()= 1 (cogl t+]) cogj )

2 2

x3(t) = T‘—t %sin(l t)

q
with A= HZ+ HZand] is the angle of the vectqxy; X2).
If I = 0, the geodesics are straight lines.
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Conjugate pointsComputations of rst conjugate points are straightforward us-
ing the parameterization above for the normal geodesics. Only geodesics whose
projections are circles have a rst conjugate point giveridy 2p= which corre-
sponds to the rstintersection of the geodesic with the &xis. Geometrically, it is
due to the symmetry of revolution along this axis which produces a one-parameter
family of geodesics starting from 0 and intersecting at such point. This point is also
a cut point and a geodesic is optimal up to this point (included).

Note that the SR-Heisenberg case will lead to interesting geometric conse-
guences in the swimming problem: the circles projections correspond to the concept
of stroke But while this model can provide some insights on optimal swimming, it
is too primitive because:

1. The geodesic ow is integrable due to the symmetries and gxgry,) motion
is periodic;

2. The model is quasi-homogeneous wheyp, are of weight 1 ands is of
weight 2.

Martinet caseA point xg is aMartinet pointif at Xg, [F1; 2] 2 spari Fy; F,g and
at least one Lie bracki; F]; F1] or [[F1; F]; F2] does not belong tB . Hence the
growth vector i2; 2; 3). Then, there exist local coordinates ngaidenti ed to the

origin such that:
2

D= kerw; w = dxs X—szxl

where T 2 ¢ T q
- * ) _ . T E— .
e 2 Mo RTIRRIZeg

The surfacesS : def(Fy;F;[F1;F2]) = 0 is identied tox, = 0 and is called the
Martinet surface.This surface is foliated by abnormal curves which are integral
curves ofﬂixl. In particular abnormal curves passing through the origin and param-
eterized by arc-length corresponds to the ctirve(t;0;0).

Those two cases are nilpotent Lie algebras associated to nilpotent approximations
of the SR-metric in the copepod swimmer and are respectively the Heisenberg case
and the Martinet at case. Also it can be easily checked that this second case leads
to integrable geodesic ow using elliptic functions.

2.6 Swimming problems at low Reynolds number

2.6.1 Purcell's 3-link swimmer.

The 3-link swimmer is modeled by the position of the center of the secondxstick
(x;y) as well as the angla between the-axis and the second stick (the orientation
of the swimmer). The shape of the swimmer is modeled by the two relative angles
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q: andgy (see Fid Z.]1). We also denote respectivelyLbgndL, the length of the
two external arms and central link. In what follow&(resp x° corresponds t¢x; y)
(resp. to(a;q1;G2)).

Fig. 2.1 Purcell's 3-link swimmer.

Dynamics via Resistive Force Theory.

We approximate the non local hydrodynamic forces exerted by the uid on the
swimmer with local drag forces depending linearly on the velocity. For é&ch

f1;2; 39, we denote byeqk ande’ the unit vectors parallel and perpendicular to the
i-th link, and we also introducg(s) the velocity of the point at distansfrom the
extremity of thei-th link, that is:

vi(s) = x %aez sa aqu)e]; s2[0;L];

va(9) = x (s %)aeg?; s2 [O;Ly];

V(9= x+ Zagd+sa @)l s2[0L)
The forcef; acting on thé-th segment is taken as:

fi(9:= o vi(y & & c vi(9 & €

wherec; andc, are respectively the drag coef cients in the directiong‘b&nde,? .
Neglecting inertia forces, Newton laws are written as:

f=0;

6 T.= 0 (2.12)

wheref is the total force exerted on the swimmer by the uid agd e g,
Z, Z, Z
f= f1(s)ds+ fao(s)ds+  fz(g)ds
0 0 0



2.6 Swimming problems at low Reynolds number 33

andTy is the corresponding total torque computed with respect to the central point
X5

z L z Lo
Tx=  (Xu(9) x1) fi(g)ds+ (x2(9) x1) fo(s)ds
0 0 7,
+ . (x3(s) x1) f3(9)ds

wherex; = ( x;Vi), fori = 1;2;3, corresponds to the left-end point of thth link,
andx;(s) = x + s8.
Since thefj(s) are linear inx; a; qi1; gz, the systen(2.12) can be rewritten as

B@@ * =0

X
A
@ %

whereq(t) = ( g1;02; % y;a)(t). The matrixA(q) is invertible (seel5]). Then, the
dynamics of the swimmer is nally expressed as the system

q(t) = f(a:g1;92) = qa(t) Fa(q(t)) + gz(t) F2(q(t))

where F1(q) F2(q) := A 1(112)B(q) with 1, the 2 2 identity matrix. The equa-

tions of the dynamics take the form

0 1 0 1
@XA 1 @911 gle o
yA = —Ra @21 022 ;
a G 031 032 a2 (2.13)
q=u= )t

0 1
coga) sin(a) 0
wheret is the torqueR , is the rotation matribR, = @sin(a) coga) 0A and
0 0o 1
gij; G andSare functions depending only ¢qz;gz) which have long expressions
(cf. [76] for a details).
The cost functioru is minimizing the expanded mechanical power
Zq

t udt (2.14)
0

wheretu= uH luandH 1(q) is the symmetric matrix described [n]76]. It can be

computed as
Z: Z, z, Z,
fi vi+ fa vot f3 vs

0 0 0
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Expressions of the controlled vector elds and the mechanical energy.
NormalizingL = 2,L, = 1, ¢ = 1;¢, = 2, we write the swimming control system
@13 as
2
at)= & uMFR(aw); (2.15)

i=1
and we obtain the following expressions of the vector efds:
F= +

F2:

f13+ %f14+ ﬂla f15; (216)

+ f23+ %f24+ ﬂla f25 (217)

1T 4+ 1
o~ X
1T 4+ 1
Taz = Mx
where

d= 1692+ 336 cogq:1 Q)+ 84coq2q;) 24coqqi+ 2q2) 48coqqi+ )
+ 816 coggp) + 72coq 202+ 1)+ 816 cogd1) 6cog2q:+ 202)

+18coy 2qgz+ 2q1)+ 84coq2qz) 24 coq2qi+ o)+ 72coy G2+ 271)
in

fi3= 1=d 4sin(a 2qg2) sin(a+2qg; 0gi1)+ 18sin(a q1 0Q2)
+3sin(a g1 2q2)+ 2sin(a  2q1+ 202) 9sin(a+qr  202)
21lsin(a+ g1+ 2qp) 126sina+ g+ g2) 30sin(a Qi+ O2)
2sin(a+2q1 2qp)+ 2sin(a  2q;) 78sin(fa+ g Q)
+16sin(a 02) 104sina+gz) 8sin(a+ 291 Qg2 24sin(a+ 202)
18sin(a + 2q;) 36sin(a) 262sina+ gi)+ 26sin(a Q1) ;
fia= 1=d 18coqa + 2q1)+ 24 coqda + 202)+ 30coga Qi1+ Q)
3coga @i 202)+ 126cofa+ gi+ gz)+ 78cofa+ i O)
18coda g1 Q)+ 21lcoga+ i+ 202)+ 9coga+ ar  202)
26coga (qi)+ 104coqa+q2) 16coga O2)+ 8coga+ 201 Q)
4coqa 2qp)+ 36coga)+ 262coga+ 1)+ cos(a+ 2q2 Qi)
2cofa 2q;) 2coga 2qi+ 20p)+ 2cofa+ 201 202) ,
fis=1=d 216 4coq2qi)+ 6coyd1+ 20z)+ 12 cogds+ 02)
204 cogqi) 18coy 20+ Q1) 84cofdr C2) 4coy 202+ 2q1)+
8 coy20p) ,
fog=1=d 21sin(a+ qx+ 201) 2sin(a+ 201 2q2) 2sin(a 2qp)
+9sin(a+ g2 2q1)+ 2sin(a 291+ 202)+ 30sin(a+ g1 Q2)
+8sin(a+2g2 qi) 3sin(@a o2 2q;) 18sin(a a1 o)
+126sin(a+ gu+ o)+ 78sin(a i+ Gp)+ sin(a + 241 02)
+262sia+ qx)+ 104sifa+ q1) 4sin(a 2q1) 16sin(a Q1)
26sin(a )+ 24 sin(a + 2qg;) + 18sin(a + 20g2) + 36 sin(a)
fog=1=d 4coqda 2q;) 2coqa 20:+2q2) 8coqda+ 202 Q1)
+2coga 2q2) 18coga+ 2(p)+ 26coda (o) 24coda+ 201)
cos(a+ 201 Q)+ 2coya+2qr 2qz) 30cofa+qr Qp)
2lcoqa+ g2+ 2q1) 126cofa+ i+ gp) 78coda gi+t gz)
+3cofa g2 2d1) 9cofa+ g 2qi)+ 18cofa a1 )
+16coqda Qi) 104coga+ q;) 262coga+ g) 36codqa) ,
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fas=1=d 2168 cog2q:)+ 12 coqqs+ 02)+ 6 cog201+ 02) 4 cog2qy)
18 coq20q1 d2) 204cofq) 4coy 202+ 201) 84cofth ) -

Moreover, writing the integrand of the cost functipn (2.14)pag+ 2buyu, + cu3,
the coef cientsa; b; c are given by

- a(g) = 1=k 3cod2q1+2qp) 6coy 2qp+201) 12coq2q1 Qo)
+ 24 coq2q1+ o)+ 72coqg2q1) 84coq2qp) 492cogqy) 1233,
- b(o)= 1=k cos(2a:1+ 2gp) 246 cogq:) 246 cogdz)+ 12 cog20; + 02)
6cog20y Q)+ 12cogoy+ 2G2)+ B4cofau+ O2) 276cofan o)
6coqd 202+ 01) 4coq2qg2) 4coq2q;) 153,
- ¢(g) = 1=k 3cod2q:+ 2q2) 492cogq;) 6coy 202+ 2q1)
+24coqqi+ 202) 12coy 202+ ql)+ 72coq2qp) 84coq2q;) 1233.

wherek = 36 codg1 2qp) 222cog2qgi) 1116cog02) 222 cog20qp)
+18coq 202+ 201) 72cod2q:+ Gp) 72cogqi+ 202) 180 cogq;+ gp)
+36c0920:1 02) 1116cogqr)+ 36codqg:r 02) 12coq2qg:+ 2q2) 3258.

2.6.2 Copepod swimmer

It is a simpli ed model proposed by [87] of a symmetric swimming where only
line displacement is authorized, see alsd [10]. It consists in two pairs of symmetric
links of equal lengths with respective angtpsg, with respect to the displacement
directionsOx while the body is assumed to be an in nitesimal sphere, se¢ Fig. 2.2.

(1)
11(t)

Xo(t)
(1)
()

Fig. 2.2 (Symmetric) copepod swimmer.
The swimming velocity axg is given by

_ Gusinq: + g2sing,
2+ sirf oy + sirf g

(2.18)

and
01 = Ug; 02 = U2
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The mechanical energy is the quadratic fayi o' whereq = ( Xo;qz; ) is the
state variable an is the symmetric matrix

0 ) 1

2 1=2(cogqi+ cosqp) 1=2singq; 1=2sing

M= @ 1=2sinqy 1=3 0o A
1=2singy 0 1=3

The corresponding Riemannian metric de nes the associated SR-metric thanks to
the relation betweery andqs; gp.

2.6.3 Some geometric remarks

In order to analyze the swimming problem one must introduce the concept of stroke.

De nition 36 A stroke is a periodic motion of the shape variables associated with
a periodic control producing a net displacement of the displacement variable after
one period. Observe that due to the SR-structure one can x the period of the stroke
to 2p.

A rst geometric analysis is to consider bang-bang controls and the associated
strokes. For a single link one gets the fameuaallop theorem

Theorem 7 A scallop cannot swim.

Proof. The relation between the displacement and angular velocity is given by the
relation

_ sin(@)q .

2 co¥(q)’

whereq is the angle of the symmetric link with respect to the axis. d.&ie the
angle with respect to the vertical and a stroke is given by

qg=u

u=1: q:p=2 g! p=2
u= 1: q:p=2! p=2 ¢
and the control = 1 produces a displacement;! x; while the controlu= 1

reverses the motion; !  Xg. The net displacement of the stroke is zero and clearly
is related to the reversibility of the SR-model.

A similar computation can be done on the Purcell swimmer using a square stroke
like in the original paper [([78]). Considering the controlled system {2.15), the dis-
placement associated with the sequence stroke described[in Fig.2.3 is given by

b(t) = (exptF; exp tF exp tF exptF1)(q(0)); 9=(qu;dz;xy,a);

and using Baker-Campbell-Hausdorff formula one has
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Fig. 2.3 Purcell stroke.

b(t) = exp(t[F; Rzl + o(t%))( q(0))
which gives for small strokea displacement of
b(t) a(0)+ t’[Fi;F)(a(0)):

This shall be compared with [12]. Hence for a small square stroke the displacement
can be evaluated using (2]16), (2.17).

In the case of the copepod swimmer, due to the constrgir240;p], q1 02
on the shape variable, a geometric stroke corresponds to a triangle in the shape
variable and is dened by, : 0! p; g1:0! pandgi=0g2:p! 0. Seein
the speci ¢ analysis of the copepod swimmer the interpretation of this stroke (see

Fig[2.20(right)).

2.6.4 Purcell swimmer

Due to the mathematical complexity of the expressions of the vector Eldmd

F, (cf. Sectiorj 2.6 J1) employed in this model, the nilpotent approximation will play

a crucial role in our analysis. First, as a consequence of the integrability of the
associated normal extremals in the class of elliptic functions, the nilpotent approxi-
mation will allow us to make a micro-local analysis of the different kinds of strokes
and to establish the existence of conjugate points using a suitable time rescaling.
Second, the abnormal extremals forming piecewise smooth strokes can be easily
computed in this approximation and, then, the optimality of these strokes can be
studied using the concept of the (corresponding) conjugate point.
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The at nilpotent model

The Purcell systen] (2.13) can be written as a control system of the dorm
F(qu = éizzluiF.(q); whereq = (qi;02;xy;a) 2 R>. Even though the vectors
elds Fi;F have a complicated expression, they provide a 2-distribution with
growth (2;3;5) (see[[15]). There exists a unique nilpotent model associated with a
2-dimensional distribution in dimension 5 with growth vec{@r3;5), seel[33, 811].

De nition 2.1. We call the at Cartan model the 2-dimensional distribution in di-
mension ve de ned by the two vector elds:

. il il T . 21

— —+ X+ R+ X
% 1% % % %

Fi(R) = Fa(%) = (2.19)

1 for X3 andx3, 2 for X3, and 3 fon andxXs.

Computations of the nilpotent approximation

The nilpotent approximation of the Purcell model is computed at the origin. It
Erovides a nilpotent approximation for the SR-problem with the simpli ed cost
2p
o (UE(t) + (1)) .
The two-jets ofF; andF atq=( 0;0;0;0;0) are given by:

il 1 4 2 9
Fi(0) = —— 05 = = e
1(9) 'ﬂq1+ 6% 7% % T
1 1.2 2 A 1,2 1 1.2 T
6 12Q5 27Q5Q2 27Q5Q1 27Q1 27Q1Q2 36q2 T
2 , 2 5 , 1 -
?7+ Q_Ql Q_QMZ EZQZ ﬁ*’o(lq)
T 1 4 2 9
=T —+ IOt —Cpt —
Fa(a) 1% g0t 57 %Rt 5o o
1 1 4 2 1 1 1 9
+ 6+T2qsz+ EQSQZ*’ EQSQH 3730112*' EQ1Q2+ quz T
7 5 .2 2 2 2 T 5ty -
57 1eoM  grWGet g ﬂq5+o(qu)'

The local diffeomorphisn , which transformg-; F, into the nilpotent approxima-
tion Fy; P>, can be explicitly written using a sequerjces j N 0::0j 1:R%! RS,
whereN = 13 (see([1b]). This leads to a complicated transformation whose role
is to relate the privileged coordinates to the physical coordin@gsy,; x;y;a) in
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particular we have a “stability' property for the shape variables as stated in the next
proposition.

Proposition 2.1. The shape variables = ( g1;q) corresponds to thék;; %) coor-
dinates.

Integration of normal extremal trajectories

Computing with [[2.1P), we obtain:

== 1. SO O O TS I
R = g PR = g+ g+ Roq + g
RO | T L N | I
[F]_,FZ](X)— ﬂ)’z‘?’ 2Xlﬂ)251 [[Fl,FZ],Fl](X)— 21.[7),&51

[[Fy: Bl Bol(R) = 1&4:

All brackets of length greater than 3 are zero. Let us introduceX; p). Employing
the corresponding Hamiltonian lifts, we have:

Hi(2) = hB;F(R)i = pr; Ha(d) = B R(R)i = P+ Pafa+ Pafa+ Psid;
Ha(2) = hp;[FRI(R)i = Ps 2%Ps;  Ha(d = hi[[Fu R F(R)i = 2ps;
Hs(2) = hp; [[Fy; Pl F21(R)i = pa:
The SR-Cartan at case is
2 . Z 5
R(t) = izfilui(t)l:.(i(t)); min (U0 + u3() dt

and the normal Hamiltonian takes the form
Hn = 1=2(HZ + H2): (2.20)

More precisely, using the Poin@coordinates, the control system can be written

as: . . . .
>f1 = H1;A >f2 = H2;A2 X3 = HoXy; (2.21)
X4 = HoXz; X5 = HoX{:

By differentiating with respect to the time variable, we obtain:
1 PR
Hi = dH1{Hn) = fH1;HagH2 = hp;[F; F2](R)iHz = HaH;

Ho = HsHy; Hz = HiH4+ HoHs;
Hs=0 hence Hy=c¢4; Hs=0 hence Hs= cs:
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We x the energy leveH?+ HZ to 1, and we introduckl; = cosJ andH; = sinJ
which implies:

Hi= sinJJ = HoHz = sind Ha:
It follows that] = Hzand
J = (Hics+ Hocs)= cacos)  cssind = w?sin(Jd + f) (2.22)

wherew andf are constant. More precisely, we have:
. o 1= L4
w= Pho+4ps 5 f = arctan( 2Pso=pao):

« First, we consider thdegenerate casehich corresponds td = 0. Therefore,
J (t) = pPeot+ Jo Wheredg, p3p are constant and fquzg 6 0, the solutiony’} X,
of (2.27) are expressed as:

R1(t) = X0+ 1=P3p Sin(Pzot + Jo);
A1( ) K0 rfso (IC130 0) (2.23)
Ro(t) = %20  1=P3o cO{ P3ot + Jo)

wherexig, X0 are constant. )
« Second, the case correspondinglté O leads to a pendulum equation. Indeed,
by introducingy = J + f , (2.22) becomes:

1=2y > w?cogy)= B; (2.24)
whereB is the constant
B= 1=2(fizo+ 2%0Ps0)°> ProPao 2Ps0P20 2 Ps0 Paoao:

We have the following two possible cases.
— Oscillating caseWe introducek? = 1=2+ B=(2w?) with 0< k< 1 so that

(2.24) becomes
y2=4w? K sirf(y =2)

and, using standard relations on elliptic functions (cfl [63]), we obtain
sin(y =2) = ksn(u;K); coqy =2) = dn(u; k)

whereu= wt + j ¢. cnanddn are elliptic functions of the rst kind and the
solutions of [[2.2]L)x1} X2, are expressed as

wXi(u) = wxXgo+ 2ksin(f )en(u)+( u+ 2E(u)) cos(f )

- . , (2.25)
wXo(U) = WX+ 2kcos(f)cn(u)+(u  2E(u)) sin(f)

wherexjp andxyg are constant, anH(:) is the elliptic integral of the second
kind.
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— Rotating caseWe introducek?® = 2w?=(B+ w?) with 0< k< 1 so that[(2.24)
becomes
y2=4w?=k® 1 Ksirf(y =2) :

Invoking again elliptic functions properties ([63]) we have
sin(y =2) = sn(u=k;Kk); cogy =2) = cn(u=k;Kk)

whereu = wt + j o. Still snandcn are elliptic functions of the rst kind. The
solutions of [[2.2]1)x1} %o, satisfy the relations

WS Whot 1 G+ 2y cod)us § co)z st )an § (2.26)
wXa(U) = WRo+ @ 1 %I?k) sin(f)u E sin(f )z E + cos(f ) dn E

wherexig andxxg are constani(k); E(k) are respectively the complete ellip-
tic integrals of the rst and second kind(:) is the Jacobi's Zeta function.

Computations of strokes with small amplitudes using the nilpotent
approximation

We recall that the physical variablgsare related ta Using the transformatiop.
The adjoint variableg are obtained by a Mathieu transformation associated with
j - More precisely, according to Proposition]2.1, recall that the shape varigbles
(g1;02) correspond to théx;; %) coordinates.

Strokes with small amplitudes such tiggd) = 0 are computed from the nilpotent
approximation in the following way:

» Degenerate casefhe corresponding solutiong(?); i = 1;2 of (2.23) yield the
periodic shape variablag(t) = Xi(t); i = 1;2 of period D»=p30. Moreover, the
constantqp; X20; J o may be chosen so thgf0) = ( q1(0); g2(0);x(0)) = 0.

¢ Oscillating case:

The modulus can be expressed as
V _g

U &————
1? 2 P§o+4p§o: P3o  2P0Pao  4Ps0Po
5 4

(2.27)

k(p(0)) =

N

Plo+ 402,
and, computing«(p(0)) such that the linear terms gf(t) = Xy(wt+ j o); qo(t) =
Ro(Wt+ | o) of (2.28) vanish, leads to periodic strokes with eight shapes of period

~ ® 1=4
T = 4K(K)= Po+ 4P% -

The constantxip; Xo¢ are chosen such thdt(0) = 0. The initial adjoint vec-
tor p(0) has to verify the condition$d1(X(0); p(0))2 + Ho(R(0); p(0))2 = 1,
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k((0)) 2 (0;1) andpjo+ 42,6 O.
We integrate numerically the stroke in the physical variables starting from
(9(0) = 0; p(0)) and show that the stroke has a conjugate poirfOph].

« Rotating caseThe modulusk can be expressed as

<

H 4 A2 4 A2
R P20t 4 P50
KpO)= 2! g——— (2.28)
2 Pagt 4Ap2,t P, 2PoPao 4PsoPo

We haveqi(t) = Xi(wt + j 0);q2(t) = Xe(wt + j o) wherexi; X are explicitly
written in (2.28). We choosp(0) so thatH1(X(0); p(0)) %+ Ha((0); p(0))? = 1,
k(p(0)) 2 (0;1) and such that the denominatorkgf(0)) is nonzero. Ak(H(0))
tends to O, the linear terms &f(U); X2(u) of (2.28) tend to 0. This is the case
whenpae! Oandpsy! O, and at the limit, equatiof (2.22) reduces to the equa-
tion of the degenerate cask= 0.

Abnormal case

We can reduce the problem by considering the minimal time problem for the single-
input af ne system (cf.[[21]):

R(t) = FLXD)+ ut)R(K(1))

whereu(:) is now a scalar control. We denote kf)"a reference minimum time
trajectory, and since we consider abnormal extremals it follows from the Pontryagin
maximum principle that along the extremal lift &:), the identityHx(X; p)= 0

must hold and, differentiating with respectttoit implies thatf Hi; Hog(X; p) = O

must hold too. Differentiating once more time, the extremals associated with the
controls:

Ua(X; P) = f Hy;fH2 H1g9(X; P) =f Hz; f H1;H209(X; P) = 2P5=p4

satisfy the relationd, = fHq; Hog= 0 along(X(:); p(:)) and are solutions of:

THa orvoaieny: gy s THa gy s
P (X(1); p(1)); A1) = % (X(); p(1));

whereH, is the true Hamiltonian:

R(t) =

Ha(% P) = Hi(% P)+ UaH2(R P) = Pr+ 205 Po+ Pafu+ Pafe+ PsRe =Pa:

From the Pontryagin maximum principle, we also have H&(:); p(:)) = 0. The
extremal system subject to the constraiitss H, = f Hi; Hog= Ois integrable and
the corresponding solutions can be written as:
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X(t) = t+ %0, Re(t) = 2Ps0=Pact + Xoo;
R3(t) = Pso=Pact®+ 2 Psof10=Pact + Rao;
Ra(t) = 2=3P5=Pact®  2Ps0=P0 PsoRip+ PaoRio+ Pro t
Pso Pao=Pot? + Ruo;
R5(t) = 2=3 Pso=Paot® + (4 PsoR10+ Pao) =Pact’
+2 2Ps0%5o+ PsoRio+ RaoPao+ P20 =Pact + Rso;
put)=  2PsoPs0 4PEpRe0 =Pact+ Pro;
P2(t) = Poo; Ps(t) = 2Psot + Pso; Pa(t) = Pao; Ps(t) = Pso
with (R10; %20; X30; Xa0; %50, P10; P20; P3o; Pao; Pso) are constant satisfying

Pro= 0; Poo= PsoRey  Paokao; Peo= 2Psofio:

Remark 2.2The g-projection of abnormals are straight lines and form triangular
strokes.

2.7 Numerical results

This section presents the numerical simulations performed on the Purcell swimmer
problem. Simulations are performed using both direct and indirect methods, respec-
tively with the solver8ocop andHamPath . We use the multipliers from the solu-
tions of the direct method to initialize the adjoint variables in the indirect approach.
We display the optimal trajectories obtained for both the nilpotent approximation as
well as for the true mechanical system.

Bocor

Bocop (www.bocop.org | [19]) implements a so-called direct transcription me-
thod. More precisely, a time discretization is used to rewrite the optimal control
problem as a nite dimensional optimization problem (i.e nonlinear programming),
solved by an interior point methodAOPT). We recall below the optimal control
problem, formulated with the state= ( g1;q2;X;y;a) and controlu = ( q1;Q):

8 Z
gmuin . E(u(t)) dt

q(t) = Fa(a(t)) ua(t) + F2(a(t)) uz(t) (2.29)
2 X(0)= ¥(0)= 0; X(T) = Xt

Y(T) = ys; a(T)= a(0); gi(T) = qi(0);i= L2


www.bocop.org
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HamPath .

The HamPath software [ottp://www.hampath.org/ , [38]) is based on in-
direct methods to solve optimal control problems using simple shooting methods
and testing the local optimality of the solutions. More precisely two purposes are
achieved wittHamPath :

* Shooting equationsto compute periodic trajectories for the Purcell swimmer,
we consider the true Hamiltoniath given by the Pontryagin maximum principle
and the associated transversality conditions associated. The normal and regu-
lar minimizing curves are the projection of extremals solutions of the following
boundary value problem:

(;) 1111'; ’ rz:) . (0) (T)

X(0) = x0; X(T)=x; WO)= Yo, ¥(T)= s

2 qgi(T)= qi(0);i= L2 a(T)= a(0); (2.30)
. in(T): pq.(o). i=12 pa(T): pa(o)

whereq = (qi;d2;%¥;a), P=( Pqg;; Pgys Px; Py; Pg) and the nal timeT > 0 is
xed. Due to the sensitivity of the initialization of the shooting algorithm, the
latter is initialized with direct methods namely tBecop toolbox.

» Local optimality: to show that the calculated normal stroke is optimal, we per-
form a rank test on the subspaces spanned by the solutions of the variational
equation with suitable initial conditions [21].

IH.
1q9°

Using propositioi 14, in the normal case it allows us to check the necessary opti-
mality condition related to the concept of conjugate point. The same holds in the
abnormal case using [21].

2.7.1 Nilpotent approximation

Notatlons The state variables are given By="X1;%0;X3;X4; X5), the adjoint by
= ( P1; Po; P3; Pa; Ps), andFr; R are the vector elds of the normal form given
by (2:19). The Hamiltonian lifts are respectively denatbdandHs.

Normal case

In the normal case, we consider the extremal system given by the true Hamiltonian
described in[(2.30). We compute the optimal trajectories WiimPath , and we
display on Fig.2.J4 the state and adjoint variables as functions of time. We also illus-
trate the conjugate points computed according to the algorithin In [27], as well as
the smallest singular value for the rank test.


http://www.hampath.org/
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Fig. 2.4 Nilpotent approximation (normal case): state, adjoint variables and rst conjugate point
(blue cross), with the smallest singular value of the rank test.

Property on the rst conjugate pointLet us consider the xed energy level
(HZ+ H2)j=0 = 1 along the extremals and the initial stag®) = 0. We take a
large number of random initial adjoint vectop§0) and numerically integrate the
extremal system. For each normal extremal, we compute the rst conjugatétime
the pulsationw = ( pZ,+ 4 p2,)*™, and the complete elliptic integri(k), wherek
is the amplitude

o

g
2 PRt 4Pt P 2Pofao 4PsoPao  4Ps0Paokao ]

[ ===

1
k= =
2

) 2
Pao* 4 P50

Let g(:) be a normal extremal starting at= 0 from the origin and de ned on
[0;+¥[. As illustrated on Fi5, there exists a rst conjugate point algrgrre-
sponding to a conjugate tintg satisfying the inequality:

0:3wty; 0:4< K(k) < 05wty 0:8:

Remark 2.3In sectiof 2.6 41 = wt + ] ¢ is the normalized parametrization of the
solutions.

Fig. 2.5 Computations of the complete elliptic integka{k; wt;) and of the rst conjugate point
t1c for normal strokes on the energy levéf + HZ = 1. We observe: Bwty;  0:4 < K(K) <
0:5wt;c  0:8.
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Abnormal case

Fig[2.6 illustrates the time evolution of the state variables for an abnormal extremal.
We check the second order optimality conditions with the algorithm described in
[21]. The determinant test and the smallest singular value for the rank condition
both indicate that there is no conjugate time for abnormal extremal§ (fig.2.7).

Fig. 2.6 Abnormal case: state variables for Fi9- 2.7 Abnormal case: the second order
%(0) = ( 1;0;1;0;0), p(0) = (0;0; 2;1;1). suf cient condition indicates there is no con-
jugate point.

2.7.2 True mechanical system

We now consider the optimal control problgm (3.29) consisting in minimizing either
the mechanical energly (2]14) or the criterjajf.

Direct method.In the rst set of simulations performed bBocop , we set
T = 10, x; = 0:5, and the bounda = 3 large enough so that the solution is ac-
tually unconstrained. The state and the control variables for the optimal trajectory
are shown on Fip.2l§, 3.9 apd 2.10, and we observe that the trajectory is actually
a sequence of identical strokes. Fig.2.11 displays the phase portrait for the shape
anglesqs; gz, which is an ellipse. The constant energy level satis ed by the opti-
mal trajectory implies that the phase portrait of the controls is a circle fopujfie
criterion, but not for the energy criterion. The adjoint variables (or more accurately
in this case, the multipliers associated to the discretized dynamics) are shown on

Fig[ZT22.1B.
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TIME

Fig. 2.8 Optimal trajectory foijuj? (left) and the energy criterion (right) - displayed are the state
variablesy;a.

e

Fig. 2.9 Optimal trajectory foijuj? (left) and the energy criterion (right) - displayed are the state
variablesgs; gp.

B
TiME

Fig. 2.10 Optimal trajectory fofuj? (left) and energy criterion (right) - displayed are the control
variables.
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Fig. 2.11 Optimal trajectory forjuj? (top) and the energy criterion (bottom) - displayed are the
phase portrait (ellipse) and the controls.

..............................

Fig. 2.12 Optimal trajectory fofjuj? (left) and the energy criterion (right) - displayed are the ad-
joint variablespy; py andpa .

Fig. 2.13 Optimal trajectory fofjuj? (left) and the energy criterion (right) - displayed are the ad-
joint variablespg, ; pg, -

Indirect methodNow we use the multipliers from thBocop solutions to ini-
tialize the shooting algorithm dflamPath . Fig[2.14[2.1p and Fig.Z.]L6 represent
respectively non intersecting strokes and an eight shape stroke. We check the second
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order optimality conditions according to [27] and observe that there is no conjugate
point on[0; 2p] for the non intersecting case while a conjugate point is found on
[0; 2p] for the eight shape stroke.

Fig. 2.14 (Left) State and adjoint variables for the Purcell swimmer minimizing the mechanical
cost.(Right) Test of conjugate points (no conjugate point0r2p]).

Fig. 2.15 (Left) State and adjoint variables for the Purcell swimmer minimizing the mechanical
cost.(Right) Test of conjugate points (no conjugate poin{0r2p]).
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Fig. 2.16 (Left) State and adjoint variables for the Purcell swimmer minimizing the mechanical
cost.(Right) Test of conjugate points. The cross on the trajectories on the left indicates the location

of the rst conjugate point.

Continuation method

Finally, we construct for the Purcell swimmer, a one parameter family of simple
loops strokes using continuation methods.

R
Fig. 2.17 Continuation on the amplitude(T)2+ y(T)2 = c; for the o (u2+ u3) dt cost.
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E;g. 2.18 Two families of strokes for the mechanical cost obtained by continuation from the
o (U2 + u3) dt cost to the mechanical cost.

For the Purcell swimmer, the two families presented inFig]2.18 are compared in
Fig[2.19 using the ef ciency concept de ned as

q___
E(g()) = x(T)2+ ¥(T)%=(9())

wherel(g()) is the length of the stroke.

Fig. 2.19 Ef ciency curves for the two families of strokes presented in.18.

2.7.3 Copepod swimmer

Geometric analysis of a copepod swimmer

In [87], two types of geometric motions are described.

First case: (Fig[2.20(left) ) The two legs are assumed to oscillate sinusoidally
according to

g1 = Fi+acoqt); qx= Fa+ acoqt+ ky)
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witha= p=4,F 1= p=4,F = 3p=4 andk, = p=2. This produces a displacement
Xo(2p) = 0:2.

Fig. 2.20 Different geometric motions of the Copepod swimn{gft) Two legs oscillating si-
nusoidally according t@; = F1+ acost andqg; = F,+ acoqt + p=2), wherea= p=4 is the
amplitude andF 1;F ) is xed. The displacement after one cyclexg(2p) = 0:2. (right) Two

legs paddling in sequence. The legs perform power strokes in sequence and then a recovery stroke
in unison, each stroke sweeping an argle

Second case: (Fig[2.20(right)) The two legs are paddling in sequence followed
by a recovery stroke performed in unison. In this case the contxofs qi,
U2 = gp produce bang arcs to steer the angles between the bougdar® of
the domain to the boundary = p, while the unison sequence corresponds to a
displacement fronp to O with the constraing; = qp.

Our rst objective is to relate these properties to geometric optimal control.

Abnormal curves in the copepod swimmer

Let q| =(X0;01;02), then the system takes the form:

2
qt) = & u()FR(q(t)
i=1

where the control vector elds are given by:

_ SIBQi &Jr ﬂlqi; D= 2+ sinfqy + sirf gy

The Lie brackets in the copepod case are easily calculated and are given by:

2sing; singp(cosg;  Cosgp) |
D2 ’

Fa=[FuFl = f(ql;qz)% with £(qy;q2) =
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N UNNE (NN I I
[Fi; Rl Rl = ﬂql(Ql'QZ)‘ﬂXo' [[F1; Rl Fol ﬂqz(ql’qZ)‘ﬂXo'

Lemma 3 The singular sets : fq; det(Fi(q); F(0);[F1;F](q)) = Og, where the
vector elds R; F;[F; ] are coplanar, is given b2 sings singz(cosg:s  cosge) =
0 which is equivalent to:

e gi=0orpi=1;2
* 1= Q
and corresponds to the boundary of the physical domai [0;p];q1 g2, with

respective controlsiu= 0; u; = 0 or u; = up forming a stroke of triangular shape
in the phase portait of the variableg; g..

Remark 2.4Each point of the boundary is a Martinet point except at the non smooth
points (vertices).

The previous lemma provides the interpretation of the triangle shape stroke in terms
of abnormal curves.

To understand smooth stroke strategies via optimal control we must introduce
the cost function related to the mechanical energy. Recall that according to [76] the
mechanical energy of the copepod swimmer is given by:

Z1
. g'Mqat

whereq = ( Xp;d1;q2) andM is the symmetric matrix:

° 2 1=2(cos(qy)+ cos(qp)) 1=2sin(qy) 1=25in(qz)1
M= @ 1=25sin(qy) 1=3 0 A  (2.31)
1=2sin(qp) 0 1=3

Taking into account the constraints on the velocities, the integrand can be written
as:
a(a)uf + 2b(a)ustz + c(q)u3

where
gz 1 sirf g, b= sing singy _
3 202+ sin2q1+ sinzqz)' 2(2+ Sin2q1+ sinzqz)'
o= } sin2q2 .
3 2(2+ sirPoy+ sirfgp)

The pseudo-Hamiltonian is then expressed as:
H(a; p; p°) = uiHi(g; p) + uaHa(q; p)+ p° a(q)ui+ 2b(Q)urtiz + S(Q)U5

Takingp” = 1=2, the normal controls are computed by solving the equations:
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TH TH
Moo Moo
Tug Tuz

We obtain:

3(4H1 + 2H; sirfqy + 3Hzsinggsinge  Hisirfap)
sitqy + sirfgy 4 ’
9H; singy singz + 6Ho(2+ sirPqp)  3H,sirf gy
sirfqy + sirfqy 4 '

us =

and plugging this controli back into the pseudo-Hamiltonian provides the true
Hamiltonian which we denote k.
Note also thaH, can also be obtained by constructing an orthonormal basis of
the metric using a feedback transformation b (g)v to transform the problem into:
Zq
a=(Fb(a)(V); r{gl)n . (Vi()+ V3(t)) ot

whereF is the matrix(Fy; F2). Writing Fb = (F2F), F2 F2will form an orthonor-
mal frame. The computation is straightforward and the normal Hamiltdtidakes
the formHp = 2(H¥ + HF) whereH?is the Hamiltonian lift ofF%

The concept of ef ciency

To compare strokes with different amplitudes we introduce the following de nition
of ef ciency [69].

De nition 37 The ef ciency of a strokg( ) is de ned by:

E(9()) = %(T)=L(g())

where ¥ is the displacement of the swimmer and L is the length of the gfrye

The transversality condition given in Exercjse]1.1 can be generalized, See [89].
For instance, for the copepod swimmer, considering the augmented adjoint vector
(p; %), the transversality condition implies that:

(p(T); p°(T)) is collinear to the gradient of the s& = c; where c is a constant

Geometric classi cation of smooth strokes

The expected strokes are related to the classi cation of smooth periodic curves in
the plane up to a diffeomorphism, assuming that in our discussion we relax the state
constraints on the shape variable. This problem was studied by Whitney (1937) and
Arnold (1994) , se€ [14]. In this classi cation we have in particular the three cases

of Fig[2.2].
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Fig. 2.21 Closed periodic planar curves: non intersecting curve, eight curve and limagon curve.

Each of this curve has a speci ¢ physical interpretation for the swimmer problem.

Numerical computations

Micro-local analysis First, we compute the normal strokes using the Maximum
Principle to recover the strokes displayed in[Fig.P.21. Below, we present the nu-
merical calculations of these strokes using the weak Maximum Principle.

An important point is to account for the transversality conditions associated with
the periodicity requiremert; (0) = q;j(2p); i = 1;2 which are given by:

Pgi (0) = pgi(2p); i= L2

The solutions are computed via a shooting method usingHtraPath code.
Finally, we evaluate numerically the value function which reducetd,2he

given reference geodesic, sindgis constant.

Second order optimalityConjugate points are computed for each type of stroke
which leads to select simple loops as candidates for minimizers, spe Fig.2.22.
Abnormal triangle.To deal with the global optimality problem we use the-
ometric ef ciency E= Xp=L for single loops constrained in the triangle (see
Fig[2.24 and Tablg 2/1). From our analysis we deduce that the (triangle) abnor-
mal stroke is not optimal. Indeed, one can choose a normal stroke (inside the
triangle) such that the displacementxis=2 with X = 2:742 and length L=2
whereL =length of the triangle. Applying twice the normal stroke, we obtain
the same displacemenry than with the abnormal stroke but with a lengthL.
Therefore, we proved the following theorem.

Theorem 8 The abnormal triangle is not optimal for both costs: minimizing
length with xed displacement or maximizing the ef ciency.
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Fig. 2.22 (Left) Normal stroke where the constraints are satis ed: simple loop with no conjugate
point on[0; T]. (Right) Limagon with inner loop with one conjugate point hT].

Fig. 2.23 Normal stroke for the mechanical cost: eight case. We xed the displacenmeyi2m) =
0:25.

Fig. 2.24 Ef ciency curve for the mechanical cost (top) and the corresponding maximizing curve
(bottom). The ef ciency of the abnormal curve iSBe 2.
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Types ofg X0 L(g) | *o=L(9)
Abnormal 2:742e-1 4:933 |5:558e-2

Simple loop (Fid.2.22, left) 2:600e-1 3:046 |8:536e-2
Limagon (Fid.2.2P, right) 2:500e-1 3:353 |7:456e-2
Simple loop with small amplitud®:500e-19:935e-1 5:033e-2

Table 2.1 Ratioxp=L for the abnormal stroke and different normal strokes corresponding to the
mechanical cost.

So far, the copepod microswimmer was analyzed using mainly simulations but a
complete analysis can be obtained combining mathematical analysis based on nu-
merical evidence. We proceed as follows.

First, to simplify the computations and to have a clear interpretation of the pic-
tureszig the Euclidean frame, we replace the mechanical energy by the Euclidean

cost  ju(t)j’dt. Note that the true cost case can be analyzed using a numerical

continuation between the two costdgmPath software).
Using the nilpotent approximation and Lemfrja 3, one must consider two cases
with respect to the triangl€ associated with the state constraints: @1 g2 p.

Point interior to the triangle Take such a poirg=( Xp; g1; g2). Then near the chosen
point, there exists privileged coordinates ( X1;X2;X3) such that the nilpotent SR-
model is given by the Dido model:

Zt
%= wh(R+ (R min  (u(t)?+ ) ot
0
with q q q q
T e PR Mk

This model implies that starting from eaghwe have a one parameter family of
symmetric simple strokes (see [Fig.2.25)

Fig. 2.25 One parameter family of circles which are the geodesics of the Heisenberg-Brockett
problem.

Points on the sides of the triangle but different of the vertidege such a point
q=(X0;01;02). Then the SR-nilpotent model is the Martinet at case. Thus, one
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can nd privileged coordinates = ( X1; Xo; X3) such that the model is:

Zt
K= UFL(R) + WFa(R); min . (UB(t) + U(t)) ot
where 5
N R IS |
Fi= &+ 2% =
! ﬂ>?1+ 2 %3 1%

This model leads to the calculation of eight strokes parameterized by elliptic
functions which correspond to lemniscates of Bernoulli.

All these models are not stable models and higher order approximations can be
used to generate strokes with small amplitudes. Also by perturbation at a interior
point of the triangle, we can obtain limacon's strokes by doubling the period. This

is indeed con rmed by numerical simulations using the true model and represented

on Fig[2.26.

Fig. 2.26 One parameter family of simple loops, limagons and Bernoulli lemniscates normal
strokes.

Moreover for the true system with the Euclidean cost, the numerical simulations
show the existence of a one-parameter family of simple strokes symmetric with
respect to the axi® : g2 = Qi+ p. They are obtained by integrating frob
identi ed to a cross-section and with a tangent vector taken nornial ach stroke
being associated with a different energy level, seq Fig.2.27.
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Fig. 2.27 One parameter family of simple loops symmetric with respect to the straighDline
g2= Qi+ p with converges to a point when the displacement tends to 0.

It leads to the following proposition.

Proposition 15 There exists a one parameter family of simple strokes, symmetric
with respect to thé -axis and foliating the interior of the triangl& , each asso-
ciated to a different energy level.

The nal result of our analysis is captured in the following theorem.
Theorem 9 Among this family of strokes, there exists a un'%ue stroke with maximal
T

ef ciency among all the strokes of the copepod swimmer for th(auf(t)+ u%(t)) dt
0
cost.

Sketch of the proof
First we have the following lemma.

Lemma 2.1.For the Euclidean case (or the mechanical energy case) the geodesic
ow is invariant under the transformatiod : (g1;02;%0) 7! (P d2;P  d1;Xo0)-

From this, we deduce that the one parameter family of simple loops represented
on Fig[2.2] is symmetric with respect to the straight Ibe The center of this
family can be calculated as follows. We choose a pgqif@) = ( q1(0);g2(0)) on

the lineD which can be identi ed to(0;0) if we introduce the new coordinates
x=0q1 01(0); y= g2 02(0). Using a transformation of the forth= z c1x ¢y

we get a graded set of coordinafasy; Z) with weights(1;1;2) establishing a link
between the physical coordinat@g; g.;Xp) and the privileged coordinates identi-

ed to (X;y;Z). Using this gradation, the nilpotent (ordefl) SR-model is given by

the Dido model. This model is not stable under perturbation and higher order terms
have to be taken into account. In particular, using the wei¢hts; 2) the model

of order 0 can be computed. Using the analysid of [31], the model of order zero
can be identi ed with the model of order1 using diffeomorphism and feedback
preserving the Euclidean energy. A precise computation detailédlin [16] shows that
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the only pointg(0) such that the diffeomorphism is not mixing the shape variable

g with the displacement variabbe corresponds to the centg(0) ' (0:72;,2:41)

of Fig[2.27. Hence, we proved that there exists only one point to generate such a
family of simple loops (compare with Fjg.Z]18 in the Purcell case).

Now, we must prove that the only strokes candidates as minimizers in the interior
of the triangle are simple strokes. This can be proved using the Stokes theorem and
the following lemma.

. g sing; .
Lemma 2.2.Consider the smooth one-form &%: w := § wdqi with D(q) =
i=1
2+ sirf gy + sirfgy and introduce £q) = 2sings singx(cosq:  cosgp)=D(q)2.
Then,

1.dw=f(qi;02)dgr” dope.
2. For any bounded Stokes domain CR?, we have

I z
w=  dw
D D
and ifg is a piecewise smooth stroke wil= D the associated displacement
is z
X(T)=  dw:
D

3. dw < Ointhe interior of the triangleT :0 g1 g2 p, anddw vanishes on
the boundary off formed by the abnormal stroke.

In particular this lemma allows to compare ef ciency of simple loops versus
limacons and eight shape strokes in the interior of the triangle.

Another method from optimal control theory is to compute conjugate points. This
can be performed by numerical computations but more theoretical computations are
related to conjugate loci computations on the SR-sphere. In particular, for limacons
with small amplitudes, conjugate points can be estimated as follows. According
to the Dido model, the only strokes with small amplitudes can be either simple
loops or limagons, obtained by perturbation of a simple loop followed twice. For
the Dido model, using the explicit computation, the rst conjugate point appears
on a simple loop after exactly one period. By perturbation, for a simple stroke with
small amplitude, the rst conjugate time corresponds approximately to the period.
Hence a limagon of small amplitude produced by period doubling has necessarily a
conjugate point. This gives a rigorous proof of the existence of conjugate point for
limacons with small amplitude.

2.8 Conclusion and bibliographic remarks

We made a short presentation of the problem of microswimming using the Purcell
and the copepod case in the frame of SR-geometry, combining analytic and numeric
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methods in optimal control based on the analysis of the geodesic ow to determine
the most ef cient stroke. A different approach combining Stokes theorem to deter-
mine the shape of optimal strokes and direct numeric methods using Fourier analysis
were used earlier in a series of articles, see for instance [10].

Note also that the copepod case is the analog of a limit of symmetric Purcell
swimmer described and analyzed[in/[10].

The approaches are complementary. The main result of this theory is the exis-
tence of center of swimmings from which are emanating a one parameter family of
simple strokes to compute the most ef cient stroke. $ée [6] for an earlier computa-
tion using a shooting method.

Note also the (geometric) link of microswimmers in SR-geometry with the
geodesic motion of a 2D-particle in a magnetic eld very well presented_in [74].
This leads to a ne and technical study in [2] as a generalization of the Dido prob-
lem, to compute conjugate and cut loci for small lengths. Such results being ap-
plicable to generate in general conjugate and cut loci, using numeric continuation
methods.






Chapter 3

Maximum Principle and Application to Nuclear
Magnetic Resonance and Magnetic Resonance
Imaging

3.1 Maximum Principle

In this section we state the Pontryagin maximum principle and we outline the proof.
We adopt the presentation from Lee and Markus [64] where the result is presented
into two theorems. The complete proof is complicated but rather standard, see the
original book from the authors [77].

Theorem 10 We consider a system Bf : x(t) = f(x(t);u(t)), where f: R™ ™M1

R"is a Cl-mapping. The family of admissible controls is the set of bounded mea-
surable mappings(u), de ned on[0; T] with values in a control domaikv =~ R™
such that the responsé xxo;u) is de ned on[0; T]. Letu( ) 2 U be a control and

let x( ) be the associated trajectory such thé&f) belongs to the boundary of the
accessibility set £o;T). Then there existg( ) 2 R"nf0g, an absolutely contin-
uous function de ned off0; T] solution almost everywhere of the adjoint system:

PO= PO (R0: @) (3.)
such that for almost every2 [0; T] we have
H(X(); p(t); u(t)) = M(X(t); p(t)) 3-2)
where
H( p;u) = hp; f(x; u)i
and

M(x; p) = Lr;%(H(x; p;u):
Moreover t7! M(x(t); p(t)) is constant orf0; T].

Proof. The accessibility set is not in general convex and it must be approximated
along the reference trajectoxy ) by a convex cone. The approximation is obtained
by usingneedle type variationsf the controlu(’) which are closed for th&!-

63
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topology. (We do not usk* perturbations and the &chet derivative of the end-
point mapping computed in this Banach space.)

Needle type approximation

We say that0 t; T is aregular timefor the reference trajectory if

d i
T f(X(t);0(t))dt = f(X(t1);U(t1))
=ty O

and from measure theory we have that almost every poiftt; @f is regular.

At a regular timet;, we de ne the followingL!-perturbatiorug( ) of the refer-
ence control: we xlI;e 0 small enough and we set

u; 2 Wconstant orft;  le;tq].

Ue(t) = u(t) otherwise or0; T]

We denote by ( ) the associated trajectory startingx@{0) = xo. We denote by
e 7! at(e) the curve de ned bya;(e) = Xe(t) fort t;. We have
_ Zy o
Xe(t1) = x(t.  le)+ - f(Xe(t); Ue(t)) dt
1 le
whereug = u; onft; le;ty], Moreover
4 t
X(t1) = Xt le)+ f(x(t); u(t)) ot
t1 le

1

and sincd; is a regular time fox(') we have

Xe(t1)  X(t1) = le(f(x(t);ur)  F(x(ta);u(ta)) + ofe):

In particular if we consider the cune?! ay, (e), it is a curve with origir(t;) and
whose tangent vector is given by

v=1(f(x(t) )  f(X(t);u(ta))): (3.3)

Fort ty, consider the local diffeomorphisrfi(y) = x(t;ty;y;u) wherex( ;t1;y; )
is the solution corresponding t§ ) and starting att= t; fromy. By construction we
havea;(e) = fi(ai(e)) for e small enough and moreover for ti, v = d%jezoat(e)

is the image oW by the Jacobiar%f—x‘. In other wordsy; is the solution at time of

the variated equation

av _ 1f )
i ﬁ(f(t)ﬂ(t))V (3:4)
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with conditionv; = v for t = t;. We can extend; on the whole interval0; T]. The
construction can be done for an arbitrary choicg dfandu;. LetP = ft.l;u;g be
xed, we denote bwp (t) the corresponding vectey.

Additivity property

Letts;to be two regular points af(") with t; < t, andlq; 12 small enough. We de ne
the following perturbation

8

< uonfty lie;ty]
Ue()= . weonftz laety]

" 0(t); otherwise orf0; T]

whereus; U, are constant values & and letxe( ) be the corresponding trajectory.
Using the composition of the two elementary perturbatiBns= fty;l1;u1g and

Po = fty;l2;uxg we de ne a new perturbatioR : fty;t;11;12;u1; u2g. If we denote

by vp, (t);vp,(t) andvp (t) the respective tangent vectors, a computation similar to
the previous one gives us:

Ve (1) = vp, (t)+ vp,(t); fort ty:

We can deduce the following lemma.

Lemma4 LetP = fty; ;t5;l1l1;  ;ldls;ur;  ;usgbe aperturbation at regular

times f;t; < <tgli 0]; 0&%,li=1and corresponding to elementary
perturbationsP; = ft;;1;; u;g with tangent vectorspy(t). Letxe( ) be the associated

response with perturbatioR . Then we have

%(t)= KO+ & elive, )+ ofe) (3.5)
i=1

WhereL‘f)! 0, uniformly for0 t Tand0 I; 1.

De nition 38 Letu( ) be an admissible control and ) its associated trajectory
dened forO t T. The rst Pontryagin's cone K);0<t T is the smallest
convex cone ak(t) containing all elementary perturbation vectors for all regular
times .

De nition 39 Letw; ;v be linearly independent vectors ofti, each v being
formed as convex combinations of elementary perturbation vectors at distinct times.
An elementary simplex cone C is the convex hull of the vectors v

Lemma 5 Letv be avector interior to k). Then there exists an elementary simplex
cone C containing v in its interior.

Proof. In the construction of the interior &f(t), we use the convex combination of
elementary perturbation vectors at regular times not necessarily distinct. Clearly by
continuity we can replace such a combination wittistinct times.
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Approximation lemma

An important technical lemma is the following topological result whose proof uses
the Brouwer xed point theorem.

Lemma 6 Let v be a nonzero vector interior to(g, then there exists > 0 and
a conic neighborhood N df v such that N is contained in the accessibility set

A(xo; T).

Proof. Seel[64].

Separation step

To nish the proof, we use the geometric Hahn-Banach theorem. Indedd jf2™
TA(Xo; T) there exists a sequengg2 A(Xo; T) such tha,! Xx(T) whenn! +¥

and the unit vector iﬁ% have a limitw whenn! ¥. The vectomw is not interior

to K(T) otherwise from Lemmfa 6 there would exist 0 and a conic neighborhood
of Iw in A(xp; T) and this contradicts the fact that 2 A(xo; T) for anyn. Let p
be any hyperplane aT) separating<(T) from w and letp be the exterior unit
normal top atx(T). Let us de nep(') as the solution of the adjoint equation

f
PO=  p() 1 (K0
satisfyingp(T) = p. By construction we have

p(TIW(T) 0

for each elementary perturbation vectgii) 2 K(T) and since fott 2 [0;T] the
following equations hold:

f_ fo_
D= RO (6D V= T KoV
we have d
aﬁ(t)v(t): 0:

Hencep(t)v(t) = p(T)W(T) 0;8t. Assume that the maximization conditign (3.2)
is not satis ed on some subs8bf0 t T with positive measure. Lét 2 Sbe a
regular time, then there existg 2 W such that

p(t1) f(X(t1); u(ts)) < p(ta) f(X(t1);u):

Let us consider the elementary perturbation= fti;1;u;g and its tangent vector

Ve, (t) = ITF(X(t);ur)  F(x(ta);u(ta))] :
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Then using the above inequality we have that

p(t)ve,(t1) > O

which contradictg(t1)ve, (t1) 0, for allt. Therefore the inequality

H(X(t); p(t); u(t)) = M(X(t); p(t))

is satis ed almost everywhere on 0t T. Using a standard reasoning we can
prove that 7! M(x(t); p(t)) is absolutely continuous and has zero derivative almost
everywhereon0 t T, seel[64].

Theorem 11 Let us consider a general control systextt) = f(x(t);u(t)) where f

is a continuously differentiable function and lepW; be two G submanifolds of

R". We assume the g8t of admissible controls to be the set of bounded measurable
mappings u [0;T(u)] ! W2 R™, whereW is a giyen subset d®™. Consider the
following minimization problemﬂgiUnC(u), C(u) = OT fO(x(t); u(t)) dt where £ 2

CL;x(0) 2 Mo;x(T) 2 M1 and T is not xed. We introduce the augmented system:

X(t) = foxu);  x%0)=0; (3.6)

x(t) = F(x(t); u(t); 3.7
K(t) = OO(t): x(t)) 2 R™ L f = (£9;f). If (x ();u () is optimal on[0;T ], then
there existsp ()= (p%p()) : [0;T ]! R™1nf0g absolutely continuous, such
that(X ();p ();u ()) satis es the following equations almost everywheredon
t T:

o TH o T
A= 5 XOPOUO) PO= 2 (03 PO;u(D) (3.8)
H(x(t); p(t); u(t)) = M(x(t); p(t)) (3.9)

where A A i i
H(X(t); p(t); u(t)) = hd; O u)is M(X;p) = Lg%\;(H(i; p; u):
Moreover, we have
M(x(t); p(t)) = 0;8t; p° 0 (3.10)

and the boundary conditions (transversality conditions):

X (0) 2 Mg; x (T ) 2 My; (3.11)

p (0) ? Ty (@Mo; p (T ) ? Ty (myMu: (3.12)

Proof. (For the complete proof, see_[64] ar [77].) SinGe( );u ()) is optimal
on [0;T ], the augmented trajectoty7! X (t) is such thatx(T) belongs to the
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boundary of the accessibility sé(x (0);T ). Hence by applying TheoreE]lO to

the augmented system, one gets the conditlon (, (3.9Ylamhstant. To show
thatM 0, we construct an approximated cdt¥T) containingK (T) but also the

two vectors f(x (T);u (T)) using time variations (the transfer time is not xed).

To prove the transversality conditions, we use a standard separation lemma as in the
proof of Theorenh T)0.

De nition 40 A triplet (x(); p();u()) solution of the maximum principle is called
an extremal.

3.2 Special cases

Minimal Time

Consider the time minimum casé® = 1. In this case, an optimal contral on
[0;t ]is such that the corresponding trajectary:) is such that for each> 0, x (t)
belongs to the boundary of the accessibilityAet (0);t). The pseudo-Hamiltonian
of the augmented system is written:

H(k; p;u) = H(x; p;u)+ po

with H(x; p; u) is the reduced pseudo-Hamiltonian and sipge O, condition,
[3.10 become
H(x (t);p (t);u (1) = M(x (t);p (1) ae

with M(x; p) = l\%\)/(H(x; p;u) andM(x (t); p (t)) Ois constant everywhere.
u.

Mayer Problem

A Mayer problemis an optimal control problem for a systeﬁﬁ = f(x;u); u2
W, x(0) = Xg, where the cost to be minimized is of the form:

Min c(x(t))

wherec: R"! R is smooth the transfer timg is xed and the nal boundary
conditions are of the forng(x(ts)), with g: R"!  R¥is smooth.

In this case the maximum principle and the geometric interpretation of this principle
lead to the following:

< Each optimal controli on[0;t¢] with response (:) is such thak (t¢) belongs
to the boundary of the accessibility #ixo;ts) and at the nal point the adjoint
vector p (t¢) is orthogonal to the manifold de ned by the boundary conditions
and the cost function:
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M :fx g(X)=0; c(X)= mg
wheremis the minimum.
Introducing the pseudo-Hamiltonian
HO p;u) = hp; £(x; )i
the necessary optimality conditions are:
dx
dt
H(x :p u)= maxH(x ;p ;u)

v ..dp _ TH
—ﬂip(x,p,u),?— W(erlu)v

and the following boundary conditions
f(x (t1))= 0;
_ . Tc g .
p (t) = m.ﬂ(x (tr)) + d-ﬁ(x (tr));

po O (transversality conditions)

69

(3.13)
(3.14)

(3.15)

(3.16)

Exercise 3.1.Write the necessary optimality conditions foBalza problenwhere

the cost problem is of the form:

Z f
) = g0x(tn) + Ot FO(x(t): u(D)) dit:

3.3 Application to NMR and MRI

Optimal control was very recently applied very successively to a general research
project initiated by S. Glaser: the control of spins systems with applications to Nu-
clear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI). Such
success is partially explained by an accurate representation of the control problem
by the Bloch equationsntroduced in 1946 and F. Bloch and E.M. Purcell were
awarded the 1952 Nobel Prizes for Physics for “their development of new ways and
method for NMR”, Purcell providing a nice link between our two working exam-

ples.

Next, we make a mathematical introduction of Bloch equations and the concept of
resonancein order to model the class of associate problems objects of our research

program.
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3.3.1 Model

The Bloch equations are a set of macroscopic equations which accurately describe
the experimental model in NMR and MRI[66] based on the concept of the dynamics
of a spin-1/2 particle. At this level it is represented bynagnetization vector M

(Mx; My; M) in thelaboratory reference framehich evolves according to

?TIIA = gM~ B+ R(M) (3.17)
whereg is the gyromagnetic ratip B = ( By; By; B;) is the applied magnetic eld
which decomposes into strong polarizing eld B = By in the z-direction, while
By, By are the components of Rf-magnetic eldin the transverse direction and
corresponds to the control eld ariR{M) is the dissipation of the form:

My, My (M Mo)
T T Ty

whereT;, T, are thdlongitudinal and transverse relaxation parametetwracteris-
tic of the chemical species, e.g. water, fat, blood.
The parameteMy is normalized to 1 up to a rescaling bf. We denotewng =
0Bo the resonant frequencynd let introduce the control componenitgt ) =
gBy andv(t) = gByx. The Bloch equations in the stationary frame can be written
in the matrix form:

2 3 2 32 3 2.3
SAME=4 w0 uD)E4MS 8 W (3.18)
M, u(t) v(t) 0 M, ;"1
1

The Bloch equations can be represented motating frame of referenceS(t) =
exp(twWz), M = §t)q, 4= (xV;2),

2
1
WZ:4

or o
© B %w

0
0
and introducing the control representation:

Ui = ucoswt vsinwt
Uz = usinwt + vcoswt;

one gets the Bloch equations in the moving frame:

23 2 32 3
d X 0 Dw uy X
74>/5 = 4DW 0 u15 4y5

dtz u u 0 z ZTf

O

e
._‘N“<N‘><

ON W

(3.19)
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whereDw= wy Ww is theresonance offset

The control is bounded by, m= 2p  32:3Hz being the experimental intensity
of the experiments. Assumirigw = 0 (resonance), and using the normalized time
t = t m, denotingG = 1=mT,, g= 1=mT; and the physical parameters satisfying the
constraint: & g O, the system is normalized to:

%X = Gx+ Wz

%y = Gy uwz (3.20)
dz

@ =g(1 2+ wy uwx

wherejuj 1. Moreover since@ g 0, one has that thBloch balljgj 1 is
invariant for the dynamics.

This equation describes the evolution of the magnetization vector in NMR. The
choice ofw = wg corresponding to resonance neutralized the existence of the strong
polarizing eld Bp, except the side effect of a stable unique equilibrium, correspond-
ing to the North polé = ( 0; 0; 1) of the Bloch equation for the uncontrolled motion.

In MR, the situation is more complex due to the spatial position of the spin in the
image and one must control an ensemble of spins corresponding to each pixel. Due
to this localization they are sonuistortionscorresponding td®g and B, inhomo-
geneitiesThe variation 0By producing a resonance offset abev belongs to some
intervals, whileB;-inhomogeneity introduces a scaling factpr 0 depending on
the spatial position of the spin in the image modeling the distortion of the amplitude
of the control eld and the equation transforms into

%: Gx+ ajuxz

diy = Gy auz (3.21)
dt

dz

G- 91 D+ a(ny wX):
In the general case one must consider both inhomogeneities producing a detuning
and amplitude alteration. Note that such distortions cannot be modelized and have
to beexperimentally determined

To relate Bloch equation to imaging we associate to the amplitgidef the
normalized magnetization vectorggey level wherggj = 1 corresponds to white
while the center of the Bloch ball de ned Iy = O corresponds to black.



72 3 Maximum Principle and Application to NMR and MRI

3.3.2 The problems

Having introduced the control systems in relation with Bloch equations taking into
accounBy andB; inhomogeneities one can present the fundamental problems stud-
ied in NMR and MRI.

Saturation problem

The objective of the saturation problem for a single spin is to bring the magnetization
vectorg from the North poleN = ( 0; 0; 1) of the Bloch ball (which is the equilibrium
of the free system) to the centér= ( 0;0;0) of the Bloch ball, recalling thajgj
corresponds to a grey level where the splgjre 1 corresponds to white aijgy = 0
to black.

A direct generalization being to consider ansemble of spin particlesorre-
sponding to the same chemical species and to bring each spin of this ensemble from
the North pole to the center, corresponding torthdtisaturation problem

The contrast problem

In the contrast problem in NMR calleideal contrast problenwe consider two
pairs of (uncoupled) spin-1/2 systems corresponding to different chemical species,
each of them solutions of the Bloch equatiohs (B.21) with respective parameters
(;Q) and(p; &) controlled by the same magnetic eld. Denoting each system
by % = f(gi;Li;u), Li =(g:G) andqg = (Xi;Vi;z) is the magnetization vector
representating each spin particles 1;2. This leads to the consideration of the
system abbreviated a§ = f(q;u), whereq=(qz;02) is the state variable. The
constrast problem by saturation is the following optimal control problem: starting
from the equilibrium pointjy = (( 0;0; 1); (0; 0; 1)) where both chemical species are
white and hencéndistinguishablereach in a given transfer tinig the nal state

au(tf) corresponding to saturation of the rst spin while maximiziog(ts)j, the

nal observed contrast beingjy(ts);.

Obvious generalization of the problems in MRI, taking into accdyand B,
inhomogenetities, is to consider in the image an ensembli¢ pdirs of chemical
species, e.g. water or fat, and distributed in the image and the objective is to provide
multisaturation of the ensemble of spins of the rst species and to reach for the
second species a small ball centeredaaft;)j wherejg(ts) corresponds to the
contrast calculated in NMR.

The objective in MRI is to produce mbust controltaking into account th&g
andB; inhomogeneities.

In the sequel and in order to present the concepts and the theoretical tools, we shall
restrict to the saturation problem of a single spin and the contrast problem by satura-
tion in NMR. Itis the preliminary step to the analysis of an ensemble of spins which
is in the applications treated numerically using adapted softwardBeapp and
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HamPath representative respectively of direct and indirect methods in numeric op-
timal control.

3.3.3 The saturation problem in minimum time for a single spin

The saturation problem in minimum time was rst analyzed[inl[57] and was an
important step to the applications of geometric optimal control to the dynamics of
spins particles.

Preliminaries

First of all, since the transfer is from the North pde= ( 0;0;1) to the center of

the Bloch ballO = ( 0; 0; 0) which belongs to the z-axis of revolution of the system
corresponding to polarization the system can be restricted to the two-dimensional
plane of the Bloch ball and the conto¥ ( ug; up) reduces to theycomponent. The
system is compactly written a%% = F(q) + u1G(q), while the control is bounded
byju 1andg=(y;2).We have

F= Gyg ol 2
y (3.22)
G= zi+yi:
iy "1z

According to the maximum principle an optimal trajectory is a concatenation of
bang arcs wherne(t) = signhp(t); G(q(t))i and singular arcs whehp(t); G(q(t))i =

0. The following Lie brackets are relevant in our analysis. Dendalirgg G, we
have

1 1
G:F]= d2) — + dy—
[GFl=( g+ 3ﬂy+ yﬂz

[GiFI:F]=(g(g 2G) dzz)ﬂiywy—

[[G;F];G] = 2dy%+(g 2dz)ﬂiz:

Singular trajectories and optimality

The singular trajectories are located on theSsetle{ G;[G; F]) = 0 which is given
byy( 2dz+ g)= 0. Hence itis formed by

 the z-axis of revolutiong = 0,
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 the horizontal linez= g=(2d). This line intersects the Bloch batlj < 1 when
2G > 3g and moreover is negative.
The singular control is given bp%+ usD = 0, whereD = de{ G;[[G;F];G]) and
D= de{ G;[[G;F];F]).

« fory=0,D= zg 2dz) andD®= 0. The singular control is zero and a singular
trajectoryisasolutionof= y;, z= g(1 2) where the equilibrium poin(0; 1)
is a stable node i 6 0.

« forz= g=(2d), D= 2dy? D°= yg(2G @) andus= g(2G g)=(2dy), 2G
g 0. Hence along the horizontal direction, the ow= Gy 9224(32)? and
jug! ¥ wheny! 0.

An easy computation gives the following proposition.

Proposition 16 If g 6 0, the singular control along the singular line ig' but not
L2,

The maximum principle selects the singular line but the high order maximum prin-
ciple and the so-called generalized Legendre-Clebsch condition [53] has to used to
distinguish between small time minimum and maximum solution. It can be easily
understood using the two seminal examples:

x=1 u% Xx= 1+ U%

y=uju 1 y=ujuy 1

where in both case the x-axis is the singular line and is time minimizing in the rst
case and time maximizing in the second case. The optimality condition takes the
following form in our case. LeD%= de{G;F) = gz(z 1)+ G¢. The setC :
D%= 0 is thecollinear set If g6 0, this set forms an oval joining the North pole
to the center of the Bloch ball and the intersection with the singular line is empty.
DenotingD = de{G;[[G; F]; G]) the singular lines are fast displacement direction if
DD%% 0 and slow ifDD% 0. From this condition, one deduces that the z-axis of
revolution is fast if 1> z> z= g=(2d) and slow ifz= g=(2d) > z> 1, while the
horizontal singular line is fast.

From the analysis we deduce rst

Lemma 7 If the condition2G > 3g is not satis ed the horizontal singular line
doesn't intersect the Bloch bajfj < 1 and the optimal solution is the standard
inversion sequence used in practices: apply a bang control to édegyto (0; ).
Followed by u= 0to relax the system t®; 0) along the z-axis.

If 2G > 3g the existence of the fast displacement horizontal line will determine
the optimal policy. First of all observe that sinag! ¥, whenq! 0 along this
line, it is saturating the constraijij < 1 at a point of this line. Hence this line has
to be quitted before this point. The exact exit point is determined by the maximum
principle because such point has to be a switching point at both extremities for the
corresponding bang arc. Such an arc is cadidlidge
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Note that in this analysis we assume that the applied RF- eld is large enough,
which correspond to the experimental situation.
We deduce the following theorem, seel[57] for further details.

Theorem 12 If 2G > 3g, in the time minimal saturation problem is of the form:
d. dl'd. dY, concatenating the bang arc to quit the North pole to the horizontal sin-
gular line, followed by the bridge and relaxation®@along the z-axis of revolution.

Fig. 3.1 (left) Time minimal solution compared witttight) inversion sequence .

Remark 3.1The bridge can be empty and in this case the optimal polidy @'

This gives a complete solution to the saturation problem using a careful geomet-
ric analysis to understand the interaction between the two singular lines. Moreover
a similar analysis leads to a complete understanding of the time minimum synthesis
to transfer any point of the Bloch ball to the center.

Extension of this type of results to an ensemble of two or more spins is an im-
portant issue. The complexity is related to the analysis of singular extremals at two
levels. First of all, in general the symmetry of revolution due to z-polarization cannot
be invoked to reduced the bi-inputs case to the single single-input case. Secondly,
in dimension 3, the analysis of the singular ow even in the single-input case is
a complicated task. Next, we shall present this complexity in the contrast problem
and present some achievements.

3.3.4 The maximum principle in the contrast problem by saturation

The system is written as:

q= Fo(a)+ uF(a) + uR(q); juj 1
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whereq=(q:;02) 2 f joij 1, jooj 19 andqs;02 represents the normalized
magnetization vector of the rst and second spip,= ( %;Vyi;z); i = 1;2. Us-
ing the notation of the section 3.2 for a Mayer problem, the cost function is
c(q(ts)) = j o(tf)j? and the nal boundary condition i§(q(tf)) = gu(tf) = O.
Splitting the adjoint vector intp = ( p1; p2) 2 R® R3, the transversality condition
is:

Pa(tr) = 2p°(tr); P° O

and if p° 6 0 it can be normalized tp® = 1=2.

We Idenotez: QQ; p); Hi = hp; F(q)i; i = 0;1;2, the Hamiltonian lift of the sys-
temz= Ho+ &2, Hi(2). If (H;H) 6 0, the maximization condition of the maxi-
mum principle leads to the following parametrization of the controls

H H
U= ———; U= e
HZ+ H2 HZ+ H2

De ne the switching surface
S:Hi=H;=0:

alugging suchuinto the pseudo-Hamiltonian gives the true Hamiltonidp= Ho+

HZ+ H2. The corresponding extremal solutions are called zero.

Besides those generic extremals, additional extremals are related to Lie algebraic
properties of the system and a careful analysis is the key factor to determine the
properties of the optimal solutions.

Lie bracket computations

Due to the bilinear structure of the Bloch equations, Lie brackets can be easily com-
puted, which is crucial in our analysis.

Recall that the Lie bracket of two vectors eld#sG is computed with the con-
vention

= TF 16
[F;G](a) = .ﬂq(q)G(q) ﬂq(q)F(OD

and ifHg ;Hg are the Hamiltonian lifts, recall that the Poisson bracket is

FHE HoO(2) = dHE(G)(2) = Hipgy(2):

To simplify the computation, each spin system is lifted ongbmi-direct Lie prod-
uct GL(3;R) R3 acting on the g-space using the act{éna):q= Aq+ a. The Lie
bracket computation rule {§A; a); B;b) = ([ A;B];Ab Ba) where[A;B]= AB BA
Introducing Fp = (Ag;ap), with Ag = diag G; G; a; & G; @) and
ap = (0;0;01;0;0; ) whereas the control eldgF;;F,) are identied toB; =
diag(C1;C1) and B, = diagCy;Cy) whereCy;Cy are the antisymmetric matrices
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Ci= E3 Ep3,Co=(Ez Easg) with Ej = (djj) (Kronecker symbol). Seé [24] for
more details.

Next, we present in details the Lie brackets needed in our computations, each
entry form by a couplév;;Vv,) and we use the notation omitting the indices. We set
d=g G.

e Length 1:
Fo=( Gx Gyg(l 2)
FL=(0; zy)
F=(z0;, x:

e Length 2:
[Fo;F1]=(0,g dz dy)
[Fo;R2]=( g+ dz0;dx)
[FiR]=( ¥x0):

e Length 3:

[Fi; Rl Fo]l = O

[F,, Rl Fl= R

[Fi,RLFl= Fi

[[Fo;Fil;Fil=(0; 2dy, g+ 2d2)

[[Fo; Fa]; F2] = (dy; dx; 0) = [[ Fo; Fol; Fal
[[Fo; Rl Rl = ( 2dx;0;2dz @)
[(Fo;Fil;Fo] =(0; g(g 2G)+ d’z d?%)
[(Fo; Rl Rl =(9(g 2G) d®z0;d%X):

3.3.5 Strati cation of the surfaceS : H; = H, = 0 and partial
classi cation of the extremal ow nearS

| | |
Letz=(q; p) be a curve solution’ofl o+ u3 H 1 + Uz H . DifferentiatingH; andH,
along such a solution, one gets:

Hi1 = fHy; Hog+ uxf Hy; Hog

(3.23)
Ho = fH; Hog+ uif Hp; H10:

Hence we have:

Proposition 17 Letz S; = SnfHj;H,g= 0and de ne the control yby:
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(f Ho;H29(2);fHo; H19(2)) .
fH1; H20(2)

us(z) = (324)

and plugging suchdinto H de nes the true Hamiltonian
Hs(2) = Ho(2) + us1(2H1(2) + us2(2)H2(2)

which parameterizes the singular solutions of the bi-input system contair®&d in

This gives the rst stratum of the surfa& Moreover, the behaviors of the ex-
tremals of order zero near a poigtof S; can be easily analyzed usirig (3.23) and a
nilpotent model where all Lie brackets#t2 S; of length 3 are zero. Denoting:

fH1;Hog(20) = a1;  fH2 Hog(20) = a2;  fHzHig(z0) = b
and using polar coordinatét = r cosqg, Hz = rsing; then [3.28) becomes:

r = a;cosq+ azsing

1 (3.25)
q= ?(b a;sing + axcosq):
To analyze this equation, we write:
a;sing agcosq = Asin(q+ f)
with Atanf = ay=a;, A= | a§+ a%. Hence the equatiom= 0O leads to the relation

Asin(g+f)= b;

which has two distinct solutions df; 2p[ denotedyo, q; if and only if A> jbj, one
solution if A= jbj and zero solution ifAj < jbj. Moreoverq; qo = p if and only if
b= 0. Plugginggo, g1 in (3:29), one gets two solutions ¢f (3]25). Hence we deduce:

Lemma 8 If a§+ a% > jbj and b& 0O, we have a broken extremal formed by con-
catenating two extremals of order zero at each poyfzS;.

At such a pointz of Sy, the singular contro[ (3.24) is such that

2 2

2 > 1

2 2 _
usl"’ US;Z -

andhence is not admissihle
Next we analyze more degenerated situations and one needs the following con-
cept.
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Goh condition

Higher order necessary optimality conditions along singular extremals in the bi-
input case are related to niteness of the index of the quadratic forms associated
with the second order derivativie [22] known@sh conditiorwhich is the relation:

fH1;Hg= O (3.26)
UsingHy = Hp = fH1;Hog = 0 and [3:2B), one gets the additional relations:
fH1;Hog= fHo;H1g= fHg;H2g= O (3.27)
Then differentiating again along a solution leads to the relations:

ff Hy;H20;, Hog+ usff HyjHogy Hig+ uoff HisHog Hog= 0 (3.28)

ff Ho; H10; Hog+ uiff Ho; Hig; Hig+ uoff Ho;Hig;Hog= 0

ff Ho; Hag; Hog+ uaff Ho;Hag; Hig+ uaff Ho;HagiHog = O (3.29)

This leads in general tilreerelations to computéwo control components, and for
a generic system such conditions are not satis ed [35], but in our case, according to
Lie brackets computations, we have:

Lemma?9 IfH; = Hy = 0, one has
ff H1;H20;Hog = ff Hy;Hog Hig = ff Hi;HzgH2g= 0

and ([3:29)is satis ed.

The equatior{(3.29) are then writtéh+ Buand if detB) 6 0, the corresponding
singular control is given by:

W= B Y2A@D (3.30)
Using the relations:
Hi= Hz= fH1;H2g= fHo;H1g= fHo;H2g = O;
the vectorp is orthogonal td=, P, [F1; ], [Fo; F1l, [Fo; F2]. Introducing:

A= 2; . B= S;Sj ; C=(Fy Ry [Fu Rl [Fo; Fuls [Fos F2D);

with
A1 = del(C;[[Fo; Fil;Fol); A2 = del(C; [[Fo; Fal; Fol);
and
By = de(C;[[Fo;F1];F1]); B2 = de{(C;[[Fo; B2 Ful);
B3 = de{(C;[[Fo; F1]; Fol);  Ba = del(C;[[Fo; Fol; Fal);



80 3 Maximum Principle and Application to NMR and MRI

the relation[(3.29) leads to:
A+ Bu= 0;

and if deB 6 0, one gets the singular control given by the feedback:

W= B gA@) (3.31)
and the associated vector eld:

0= Fo+ Wd,F + Ul

Moreover, the singular control has to be admissipi§: 1. We introduce the stra-
tum:
Sz :Hy = Hp = fHy;Hag= fHo;Hig= fHo;HogndetB = O:

Hence we have:

Lemma 10 1. On the stratun$,, there exists singular extremals satisfying Goh
condition where the singular control is given by the feedb@cBQ)
2. For the contrast problem:

detB=(xy2 Xoy)*(dh h)(2hzr @)(2hz @)

, ) . (3.32)
2dipzr diiz) p(di do) 2di0x(ize @z1) ;

The behaviors of the extremals of order zero near a EpdtS; is a complicated
problem. Additional singular extremals can be contained in the surface:
Sz :Hi = Hy= fHi;Hg = fHo;H1g= fHo;Hog= detB= 0;

and they can be computed using the property that the corresponding control has to
force the surface d&= 0 to be invariantSome have an important meaning, due to
the symmetry of revolution of the Bloch equatiohisey correspond to control the
system, imposing, = 0. In this case, one can restrict the system to

Q=fa=(qu) 2 R": jaij L jop 1 x1=x = 0g:

The computations of the corresponding extremals amount to replace in the relations;
H, by eH, and to impose = 0. The remaining relations are then:

Hi = fHo;Hig=0
and from [[3.2P) one gets the relations:
ff Ho;H19; Hog+ uysff Ho;Hig;H19= 0; (3.33)
and thus, this de nes the singular control:

ff Ho;H10; Hog
ff Ho;H10; H1g
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and the associated Hamiltonibh.s = Ho + upsH1. We have the following result:

Proposition 18 The singular extremals of the single-input case wigh u0 are
extremals of the bi-input case with the additional conditior=xpx, = X2 = px, = 0.

Moreover from the geometric interpretation of the maximum principle for a
Mayer problem, in order to be optimal the generalized Legendre-Clebsch condition
has to be satis ed:

2
ﬂlm%%_'l = fHq;fH1;Hogo(2) O (3.35)
Observe that if we imposag = 0, the classi cation of the extremals near the switch-
ing surface, which reduces iy = 0, is a standard problern [54].

Finally, another important property of the extremal ow, again a consequence
of the symmetry of revolution is given next, in relation with Goh condition. It is a
consequence of Noether integrability theorem.

I
Proposition 19 In the contrast problem, for the Hamiltonian vector ‘eltl, whose
solutions are extremals of order zero, the Hamiltonian lifz= f Hy;Hog(2) =

(PY1 Py X))+ ( PxY2 Py,X2)isa rstintegral.

Exercise 3.2 (Generalization to the case d@; and By inhomogeneities)lt is in-
teresting to compare to the case of an ensemble of two spins of the same spin particle
with Bp andB; inhomogeneities which is left to the reader. More precisely:

e Bsj-inhomogeneities
In this case, the control directions of the second spin are relaxed by a factor and
the Lie brackets computations can be used to strati ed. It can be applied to the
multisaturation problem.

e Bp-inhomogeneities
In this case the vector eldr of the second spin contains a non-zero detuning.
Clearly this introduces modi cations in the Lie brackets computations. Again it
can be applied to multisaturation problem. It explains the following phenomenon:
in the precense of detuning both contr@ls; u,) have to be used

Next, motivating by the fact that due to the symmetry of revolution and the ob-
served numerical experiments, we shall restrict our study to the single-input case.
It is an important theoretical step since we can reduce the analysis of the singular
ow for a 4-dimensional system with one input vs a 6-dimensional system. This
complexity will be illustrated by the computations presented next.
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3.3.6 The classi cation of the singular extremals and the action of
the feedback group

Preliminairies

Restricting to the single input case, the research program concerning the contrast
problem or the multisaturation problem for an ensemble of two spins is clear.

Saturation problem for a single spin and bridge phenomenon

In the case of a single spin the complete geometric analysis requires the compu-
tations of the two singular line and the understanding of the singularity associated
with their intersection, which causes the saturation of the singular control and the
occurrence of a bang arc called a bridge to connect both singular arcs. This phe-
nomenon generalizes to higher dimension and it tells you that the analysis of the
singular ow codes all the information of the optimal solution which is a sequence
of arcs of the fornd dsd :::ds, whered denotes bang arcs with= 1, whileds
are singular arcs.

This will be presented in details next, in relation with the action of the feedback

group.

Computations of the singular ow

Consider a control system of the form:

d
o = F(@+ us(d); g2 R"

and relaxing the control constraints2 R. DenotingHr andHg the Hamiltonian
lifts of F andG, if the denominator is not vanishing, a singular control is given by:

ff Ho;Hrg HFQ(2) .
ff Hg;HFg;Heo(2)
Plugging suchug into the pseudo-Hamiltonian one gets the true Hamiltortkie

Hr + usHg and the singular extremals are solutions of¢hastrained Hamiltonian
equation:

(3.36)

us(2 =

!
%Z:' Hs(2); 22 S°: Hg = fHg;Heg= O:

This set of equations de nes a Hamiltonian vector eld on the surface

SO ffHg;Heg;Heg= 0

, restricting the standard symplectic fram= dp” dg.
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We use the notatio® = ff Hg;Hrg;Hgg andD %= ff Hg;Hrg;Hrg. The dif-
ferential equatior{ (3.36) can be desingularized using the time reparametrization

ds= dt=D («(t))

which amounts to analyze the one dimensional foliation.
We get the system:
dg 1F ,olG

.dp _ 1F
& PF D‘F,£_ p Dﬂq '

restricted to the surfacg®

In the contrast problem, since the state space is of dimension four, using the two
constraintsHg = fHg;HFg = 0 and the homogeneity with respect gpequation
(3:38) can be reduced to the explicit form:

dg _ Dqq;!)
@~ "D BN

wherel is a one-dimension time-dependant parameter whose dynamics is deduced
from the adjoint equation.

Using the previous remark, the optimal problem can be analyzed by understand-
ing the behavior of the corresponding trajectories and the singularities of the ow
near the seD = 0, which codes the switching sequence.

This is a very complicated task, in particular because the system is depending
upon four parameters and simpli cations have to be introduced to simplify this
task. Two simpli cations can be introduced. First, we can restrict to some speci c
parameters corresponding to some experimental cases. For instance, in the water
case, saturation of a single spin amounts to the standard inversion sequence. Sec-
ond, a projection of the singular ow which is physically relevant can be intro-
duced. A natural choice is to consider the case where the transferismet xed.

Then according to the maximum principle this leads to the additional constraint:
M = M(agx Hg + uHg = 0, which gives in the singular case the additional constraint:
(-

G(q)

He(2) = 0. This case is called thexceptional casasing the terminology of [29].
With this constraint, the adjoint vector can be eliminated and the singular control
in this exceptional case is the feedback:

D(a)
whereD = de(F;G;[G;F];[[G;F];G]); D°= de(F;G;[G;F];[[G;F];F]) with the
corresponding vector elK® de ned by

dg _ DYa)
&= F@ 5o
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which can again be desingularized using the reparametrizagiendt=D(q(t)) and
this gives the smooth vector eld

X¢= DF DEG:

Feedback classi cation

De nition 41 Let E and F be twdR-vector spaces and l&b be a group acting
linearly on E and F. A homomorphisk : G! Rnf0gis called a character. A
semi-invariant of weighX isamapl :E! R suchthatforalld2 G and all x2 E,

I (g;X)= X(g)! (X);itisaninvariantifX= 1. Amapl :E! F isasemi-covariant
of weightX if for all g 2 G and for all x2 E, | (g:X) = X(g)g:l (X); it is called a

covariantifX = 1.

More about invariant theory can be found[in[39].

The key concept in analyzing the role of relaxation parameters in the control
problem is the action of thieedback grou® on the set of systems. We shall restrict
our presentation to the single-input case and we de@otef F; Gg the set of such
(smooth) systems on the state sp&ce R", see[[20] for the details.

De nition 42 Let (F;G);(F®GY be two elements & . They are called feedback
equivalent if there exist a smooth diffeomorphjsiof R" and a feedback @ a (q)+
b(q)v, b invertible such that:

« FO=j F+j (Ga);G=j (Gb).
wherej  z denotes the image of the vector eld.

De nition 43 Let (F;G) 2 C andI letl 1 be the map which associated the con-
strained Hamiltonian vector eldHs;S9 (see(@.38) to (F;G). We de ne the
action of(j ;a;b) of G on(Hs;S9 to be the action of the symplectic change of
coordinates:

] S9=]) ;o P= x
in particular the feedback acts trivially.
Theorem 13 ([20]) The mappind 1 is a covariant.

Next, we detail the induced action restricting to exceptional singular trajectories
when dimQ = 4.

The exceptional singular trajectories and the feedback classi cation
Notation. Letj be a diffeomorphism of). Thenj acts on the mapping : Q! R

according tg :F = Foj and on vector eldsX asj :X =] X (image ofX): this
corresponds to the action on tensors.
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The feedback group acts on the vector ef§ by change of coordinates only
and this can be checked as a consequence of the following lemma.
Lemmalle DF*aGbG= p4phC,
. Dd:+aG;bG: b3 Dd:§G+ aDFG |
. . PR o~ .
» D Pl ()= det 3§ © DO (q)).
Lo T .
- DY T S(g)=det 7 DT ().
From which we deduce the following crucial result in our analysis.

Theorem 14 We have the following:

* |l2:(F;,G)! Xtisacovariant.
e I3:(F,G)! Disasemi-covariant.
+ 14:(FG)! X®=DF D% isa semi-covariant.

The classi cation programHaving introduced the concepts and results, the con-
trast problem is related to the following classi cation program (up to change of
coordinates)

+ Classi cation of the vector eldsX®= DF DF%and the surface® = 0,D =
D%= 0.

Interpretation.

» The singular control is§ = %0 and will explode aD = 0 except ifD°= 0,
taking into account the (non isolated) singularitiegfif D = D°= 0; X®= 0).
Collinear set. The collinear set oF; G is a feedback invariant which has also an

important meaning in our classi cation.

Remark 3.2In our classi cation program we use semi-covariants and in the set of
parameters = (o1;G; ;&) it amounts to work in the projective space. It is also
clear from our reparametrization of time.

Now, the problem is to test the computational limits of our program which is
clearly:

« Compute the surfacds= 0; D= D%= 0,

» Compute the equilibrium points o°.

Clearly, in the framework of computational methods in real algebraic geometry it is
a complicated task which has been achieved in two cases.

< The multisaturation problem of two spins taking into accdBgitnhomogeneity.

e The contrast problem when the rst spin system corresponds to w@gter G).
The second problem has application in in vivo, where the parameters are varying,
in particular in the brain.

We shall present the results in details in the rst case.
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3.3.7 Algebraic classi cation in the multisaturation of two spins
with B;-inhomogeneity

The pointN = (( 0;1);(0; 1)) is a singular point oK and under a translatioN is
taken as the origin of the coordinates. We have:

Fo=( Gyn 9z; Gy 9z);

Fi=(( (zz+ Diy1):(1 e)( (z2+ 1):y2)

where(1 e) denotes the control rescaling of the second spin.
We haveD =(1 €)D, whereD is a quadric which decomposes itto+ hz+ hy
whereh; are the homogeneous part of degree

h,=(2G g)h,

h=G(2G g(e Dyi+y)’+d(e 1’Z ¢ 2 2e+€ zna+¢3

hs=2(g G)hg

hs=(g 2G) g+2G(e 1)° 2yi+(g 2G)(g+2G)(e 1 (Yoz+ 22Y2)y1
de(e 2zZ+ (g 26) 2G+(e 1)°g ya+d’e(e 23 z

ha= 4g G)%hs

ha= g+(e 1°G Byi+2(e 1)(g+ G zy.zyi+ G+(e 1)°g V32

D%= 2¢%(G g)(2G g)(1 e)z z)(e Lzy+ zy1):

In particular we deduce (compare with [23] in the contrast problem):

Proposition 20 The quadric Mreduces to a cubic form which is factorized into a
linear and a quadratic (homogeneous) forms.

Singular analysis

We assum@> 0 and L5 > 3g. Itimpliesg6& G andg6é 2G. The main result is the
following:

Theorem 15 Providede 6 1 the equilibrium points of X= DRy D%, are all
contained inf D = D°= 0Og.

A simple proof exists, but we present a method based on symbolic computation and
Grobner basis.

Proof. Obviously, every point of D = 0g\f D°= Ogis a singularity ofX;.
Conversely, letus assuneés 1. We rstdivideX{ by 1 e. We still assume that

G 6 0. We consider the equatiofigXy)y, = 0;(Xg)z = 0;(Xg)y, = 0;(Xd)z = 0g

and remark that the last third are dividable gyBy homogeneity, changinginto
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gG, we get rid ofG. So we may assum@ = 1. The resulting system is denot8d
We add the two polynomialfe 1) zy>+ zy;)a; land(zz z)a; 1, and
the polynomialgyg 1,(g g1 1,(g 2)g2 1. We denoté, this new system,
involving four new variableg);; g2; a;;a2. We compute a Gibner basis with total
degree with reverse lexicographic order @m;Y2; 21;22;€; 0; g1, 02; a1;82) and get
f1g. Hence, providedy is different from 01;2, there is no singular point ofg
outside off D = 0g\f D°= Og.

The remaining of the section is devoted to the singularity resolution. From the
factorized form oDP (Propositior} 2P) we get:

Proposition 21 f D = 0g\f D%= Ogis an algebraic variety of algebraic dimension
2 whose components are located in the hyperplare z and in the hypersurface
(e Dazy:+2y1=0.

These components are studied in the following analysis, and explicitly expressed

in Lemmas 1P, 13, 14, 15.

« Case A: components 6D = 0g\f D°= Ogin z = 2.
Under the constrairt; = z», we have a factorizatioD = p; p2 with:

p1=2(g G)zn+g 2G
and:

p= 2(g G) g+(e 1)°G z+G(e 1*(g 2G) yi+
(4(g G)(g+G)(e Dz+2G(e 1)(g 2G))yayi+
2(g G) G+(e 1)%g z1+G(g 20) v&

The rst polynomial has one roah = zyg

_12G ¢
" 29 G

4G

which corresponds to the plane-solutioiys; Zgc; Y2; Zga); (Y1:Y2) 2 R?g.
We put:

do(yy2)= g+(e 1°G yi+2(e 1)(g+G)yayr+ G+(e 1)%g v

The discriminant ofi, with respecttois 4 (e 2)29 G éy% which is strictly
negative provide@ 6 0. Sod, is non-zero outsidg; = y» = 0.

So, provided/ + y3 6 0,d, 6 0, andp, = 0 is solved with respect ta. We get
71 = r2(y1,Y2) with

G(2G g ((e Dyi+yy)?
2(g G)da(y1;y2)

ra(ys;y2) =
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and ()61;rz(yl;yz);yz;rz(yl;yz)) (de ned for (y1;y2) 6 ( 0;0)) vanishes bottD
andD”.

Finally, if y; = y» = 0, we have the solutio(0;z0;2); z2R.

We summarize the cagg= 2z in:

Lemma 12 fD = 0g\f D°= 0g\f z = zgis the union of an af ne planez
7 = ZgG, a rational surface z= 2 = ry(y1,y2) (de ned for (y1;y2) 6 (0,0)),
and the linef (0;70;2); z2 Rg.

« Case B: components 6D = 0g\f D= Ogin (e 1)z1y»+ zoy; = O.
— Assume rstthaty; = 0 andz 6 z. We havezyy, = 0.
If y1 = zz = 0, then:
D=(g 26) G(2G 95+ ¢’Z

Since B> g, fD = 0g\f y; = z = Og corresponds to the North palé
If y1 = y2 = 0, then let us put

di(z)=2e(e 2)(g G)za+2G g
We have:
D=¢"(zz z L(d(z)z (¢ 1’(2G g
Observe that the polynomidi vanishes if and only if; equalszgc with

. _ 1 g 2G
4G~ 26 2(g O

and in this case, there is no solution such h#& z;.
Providedd;(z;) 6 0, one gete, = r1(z1):

(e 1?(2G gz
di(z1)

which is a rational function of;. And the intersection witliD = Og\
fD%= Og s the curve (0;21;0;r1(z1)) z1 2 RnfZ5cQg0.
Lemma 13 fD = 0g\f D°= Og\f y; = Og\f (zz 2z) 6 Ogis the union
of two lines offy; = z; = Og intersecting at N and a rational curve
f(0;z1;0;r1(z1)) 22 2 RnfZc99.
— Letus assumg 6 0.
We can eliminate, using:

ri(z) =

_ay:(1 e
Y1

and, substituting iy2D we get the factorizatiog?D = gy gz, with:
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@=G(e 1)(2G Qgyi+d?(e DB+ (e 1)°Zy,
+(2Ge(e 2(g Gz G(g 26)y¥

and:

R=(e 1)(g 2G)y1+(2e(2 e)(g G)a+g 206)y.
=(e 1)(g 2G)y1+ di(z)yz:

Providedd; 6 O (that isz; & Zgc), we solvegy = 0 with respect toy,, and
then we get the value fy; ):
!
(e 1)(g 2G)yi (e 1*(2G gz .
di(z1) ’ di(z1) '

Lemma 14 fD = 0g\f D%= Og\f (zz 2)yi0:i(z1) 6 Ogis a rational sur-
face(y2 = ra(y1;21);22= r1(z1)y1 6 021 6 Zgg).

We putds

ds=(2Ge(e 2(g Gz G(g 206)¥i+d(e 1’F
Its discriminant with respect ty, is:

4 2G 4gzie+2gze® g+ 4Gzie 2Gne’ GdZ(e 1)?

4(2G g+2e(2 e)(G 9a)GdZ(e 1)°

and its sign changes whenreacheggc.
Providedds(y1;z) 6 0, we solveq; with respect toy,, and then we get the
value of(ys; 2):
!
G(2G 9yi+dZ (1 ey, GG 9yi+¢Z (e D’z |

da(y1;21) ’ da(y1;21)

Lemma 15 fD = O0g\f D%= Og\f (zz 2)yids(z1) 6 Ogis a rational sur-
face with parameterizatio(y, = r3(Y1;21);22 = 1 a(y1;21)).

* Analysis of the behaviors of the solutionsX§ near O.
We setz’'= 1+ z and we have the following approximations:

- D=(1 e)D,D=hi+ hy,

hi=g?e(e 2)(g 2G) (& %)
h,=G(e 1)?(g 26)%¥;+2G(g 2G)%*(e 1)yoyn
+G(g 26)%% (e D’(g 20)F

0’(g 26)B+¢ e*+2 2e (g 26)za%
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- D%=2g%(G g)(2G 91 e)(Z Z)( 1+ Z)y.(e D+( 1+ Z)yil

Conclusion: these computations allow to evaluate the equilibrium points and the
behaviors of the solutions near such point, using linearization methods. A rst step
towards the global behavior is the following result.

Lemma 16 The surface y= y» = 0 s foliated by lines solutions connecting O to
the north pole N, the singular control being zero.

Proposition 22 Singular points on y= y> = 0, z = 2 = Z are such that: in the
coordinatesy=(y1;y2;21  2;z) the system takes the form

q= Agq+ R(Q)
where 0 1
0 0 00
_Bo 0 0
A‘<E@o 0 og'

0 ¢’eZ(e 2)(2d+g+2zd) 00
« Atthe North Pole, A& 0, Rg= O(jG%).
» Atthe point S=( 0; z; 0; z5) where g= 2%(372(;)’ A= 0,R(@) = O(g?).

Locally the trajectories can be computed using a blowing-up.

3.3.8 Numerical simulations, the ideal contrast problem

This section is devoted to numerical simulation in the ideal control problem using
three complementary softwares:

» Bocop : direct method,
* HamPath : indirect method,
e GloptiPoly  : Lmitechnique to estimate the global optimum.

The algorithms based on the softwares are presented in details in [25].
The ideal contrast problem by saturation in the single-input case, can be summa-
rized this way:

8
3 o(at)) = | ()i miny; xed t;

q = Fo(q) + uiFi(q);
50 = (ICPs)
" ou(te) =0

whereq=(q1;q), 6 =(vi;z) 2 R%,jgj 1,i= 1;2. The initial condition for each
spinisqi(0) = ( 0;1). The vector eldsk, andF; are given by:
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- 3 3 3.
Fo(q) = i=a1;2( Gyu)ﬂyi’f(g(l Z'))ﬂz;’

o 1‘[ ﬂ
F = e T Vieos

whereL; = ( g;G) are the physical parameters representing each spin.

We present the simulations using the numerical methods|(ske [25] for a complete
description of the algorithms).

The simulations correspond to the two following sets of experimental data, with
the relaxation times in seconds afgl, the solution of the time minimal saturation
problem for a single spin, from sectipn 3]3.3.

P:: Fluid case.
Spin 1: Cerebrospinal uidT; = 2, T, = 0:3;
Spin 2: WaterT; = 25= To.
Tmin = 26:17040.

P,: Blood case.
Spin 1: Deoxygenated bloodj = 1:35, T, = 0:05;
Spin 2: Oxygenated bloody = 1:35,T, = 0:2.
Tmin = 6:7981.

Optimal solutions of the contrast problem are concatenations of bang and singu-
lar extremals. For the following sections, we introduce some notations. We note BS
the sequence composed by one bang drcar d ) followed by one singular arc
(ds), andnBS,n> 1, the concatenation ofBS-sequences.

First results with xed nal time

The rst dif culty comes from the discontinuities of the optimal control structure.
We need to know the control structure (meaning the number of Bang-Singular se-
quences) before calling the multiple shooting method. The indirect method also
typically requires a reasonable estimate for the control switching times, as well as
the states and costates values at the initial and switching times. We WBedbge
software based upon direct methods to obtain approximate optimal solutions in or-
der to initialize the indirect shooting, within tHéamPath code. We recall that

the costate (or adjoint state) for Pontryagin's Principle corresponds to the Lagrange
multipliers for the dynamics constraints in the discretized problem, and can there-
fore be extracted from the solution of the direct method.

The only a priori information is the value of the minimum time transkgf,,
used to set the nal timeé; in the [Tyin; 3Tmin] range. We notés = | Ty, with |
in [1;3]. The state variables are initialized as constant functions equal to the ini-
tial state,i.e. ()= y2()= 0,z1() = z() = 1. For the control variables we use
the three constant initializationg( ) 2 f 0:1;0:25;0:5g. The discretization method
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used is implicit midpoint (2nd order) with a number of time steps sét to100. In
order to improve cogvergence, we add a small regularization term to the objective

to be minimizedgrey o ju(t)j2dt, with eeg= 10 3,

We repeat the optimizations fbrin f 1:1; 1:5; 1:8; 2:0; 3:0g with the three control
initializations, see Tabl¢. 3.1. The solutions fr@acop are used to initialize the
continuations inHamPath , and we discuss in the following sections the results
obtained with the indirect method. Both methods con rm the existence of many
local solutions, as illustrated on F[g. B.2 for= 1:5, due in particular to symmetry
reasons.

| 1.1 15 1.8 2 3

Uit : 0:1 |0.636 ¢+ )[0.678 ¢ +) |0.688¢ +) [0.702( +) [0.683( + +)
Uinit - 0:25| FAIL 0.661 ¢+ +)|0.673 ¢+ +)[0.691( ++)|0.6944 +)
Uinit : 0:5 |0.636 f++ )|0.684 (++ ) 0.699 ( +) 0.697 ¢+ ) |0.698 f++ )

Table 3.1 Fluid case: Batch optimizations (Direct method)For each value of we test the
three initializations for the contral, and record the value of the objectiviee(the contrast), as
well as the control structure.¢. the signs of bang arcs). CPU times for a single optimization are
less than one minute on a Intel Xeon 3.2GHz.

Fig. 3.2 Fluid case: Two local solutions fol = 2:0. Trajectories for spin 1 and 2 in the (y,z)-
plane are portrayed in the rst two subgraphs of each subplot. The corresponding control is drawn
in the bottom subgraph. The two bang arcs have the same sign for the left solution, whereas for the
right solution, the two bang arcs are of opposite sign.

Second order conditions

According to proposition 3.2 from_[26], the non-existence of conjugate points on
each singular arc of a candidate solution is a necessary condition of local optimal-
ity. See [26] for details about conjugate points in the contrast problem. Here, we
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compute for each singular arc of all the solutions from subseftion|3.3.8, the rst
conjugate point along the arc, applying the algorithm presented in Sect. 4.3 from
[26]. None of the solutions has a conjugate point on a singular arc. Hence all the
solutions satisfy the second order necessary condition of local optimality. Fjg. 3.3
represents the computations of the two conjugate points (since the structure is 2BS)
of the best solution with = 2:0 from subsection 3.3.8.

Fig. 3.3 Fluid case: second order conditionsSecond order necessary condition checked on the
best solution with = 2:0 from subsectioh 3.3.8. The rank condition from the algorithm presented

in subsection 4.3 from_[26] is evaluated along the two singular arcs.[See [21] for details on the
concept of conjugate times. On the left subplot, for each singular arc, the curve is reparameterized
so that the nal time corresponds to the abscissa 1 (vertical blue dashed line); the determinant
associated with the rank condition is plotted (top subgraph), so there is a conjugate time whenever
it vanishes (vertical red dashed lines). One observes that conjugate times on each arc are located
after the (normalized to 1) nal time, satisfying necessary condition of local optimality of the
trajectory. At the bottom, the smallest singular value of the matrix whose rank we test is plotted,
extracting only the relevant information to detect the rank drops. On the right subplot is presented
a zoom of top-left subgraph near the two conjugate times.

In uence of the nal time

Given that the initial point (the North pole) is a stationary point, the constrast is
an increasing function df acting as a parameter. Indeed, applying a zero control
att = O leaves the system in its initial state so there is an inclusion of admissible
controls between problems when the nal time is increased (and the bigger the set
of controls, the larger the maximum contrast). Having increasing bounded (by one,
which is the maximum possible contrast given the nal condition on spin no. 1)
functions, it is natural to expect asymptotes on each branch.

In both case®, andP;, the contrast problem has many local solutions, possibly
with different control structures. Besides, the structure of the best policy can change
depending on the nal time. The possible change of structure along a single path of
zeros is emphasized in F[g. B.4. In this gure, the branch made of 2BS solutions is
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represented in blue, whereas the 3BS branch is the dashed red line. We also show a
crossing between two value functions of two different paths of zeros i Fig. 3.5.

Then for each solution of each branch the second order necessary condition is
checked as in subsectipn 3]3.8: the rst conjugate point of each singular extremal is
computed. There is no failure in this test, hence all the solutions satisfy the neces-
sary second order condition of local optimality. Hig.|3.6 presents the second order
conditions along the extended path from 3.4.

Fig. 3.4 Fluid case: in uence of the nal time. On the left subgraph are shown the control laws

of solutionsat = 2 andl = 1:32 from path from the right subplot. Fbr= 1:32, we can see the
saturating singular arc around the normalized tin¥e 0:92 (the time is normalized to be between

0 and 1 for each solution). The 2BS solutiod at 1:32 is used to initialize a multiple shooting

with a 3BS structure and then to perform a new homotopy from 1:32 tol = 1. On the right
subgraph is portrayed the two homotopies: the rst fron¥ 2 tol = 1:32 and the second to

| = 1, with one more BS sequence. The value function, the norm of the initial adjoint vector, the
norm of the shooting function and the switching times along the path are given. The blue color
represents 2BS solutions while the red color is for 3BS structures. The dashed red lines come from
the extended path after the change of structure detected aroar32.

Sub-optimal syntheses in uid and blood cases

We give the syntheses of locally optimal solutions obtained in the blood and uid
cases. Note that in the special case Tnin, for both cases the solution is 2BS and
of the formd, dsd: ds.

For the uid case, the left subplot of Fig. 3.7 represents all the different branches
we obtained by homotopy dn. The greatest two value functions intersect around
ts = 1:048Tyin. The right subplot shows the sub-optimal synthesis. The best policy
is:

d: dsd. ds for| 2 [1:000 1:004;
ds dsd: dsd ds for | 2 [1:006,1:048];
d:dd dsd dsforl 2 [1:0481:351];
d: dsd ds for| 2 [1:352;3:000:

(3.37)
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Fig. 3.5 Fluid case: in uence of the nal time. Crossing between two branches with 3BS so-
lutions. The crossing is arourdd= 1:0484, see top subgraph. Thus for 1:0484, the best so-
lution, locally, has a 3BS structure of the fomia dsd: dsd ds (bottom-left subgraph) while for

| 2 [1:0484 1:351] the best solution is of the foreh. dsd dsd ds (bottom-right subgraph). On the

two bottom subgraphs, the trajectories for spin 1 and 2 in the (y,z)-plane are portrayed with the
corresponding control, both fbr= 1:0484.

Fig. 3.6 Fluid case: in uence of the nal time. Second order necessary condition checked along
the extended path from Fifj.8.4. For all solutions frone 1 tol = 3 are computed the rst
conjugate times along each singular arc. Fa2 [1;1:32], the structure is 3BS and there are 3
singular arcs. For 2 [1:32 3], there are 2 singular arcs. Each singular interval is normalized in
such a way the initial time is 0 and the nal time is 1. The lower dashed horizontal line represents
the nal time 1. There is no conjugate time before the normalized nal time 1 which means that all
solutions satisfy the second order necessary condition of local optimality. Note that at a magenta
cross, around1:32; 1), the control of the rst singular arc saturates the constraint 1, and so

no conjugate time is computed after this time.

For the blood case, the results are excerpted from [38]. The left subplot pf Fig. 3.8
shows the contrast for ve different componentsfdf= Og, for nal times ts 2
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Fig. 3.7 Fluid case, sub-optimal synthesidllustration on the left subplot, of local solutions (each
branch corresponds to a control structure). The suboptimal synthesis is plotted on right subplot. The
colors are blue for 2BS structure, red for 3BS and green for 4BS. The best pdlicgldd: dsd ds

forl  1:0484,andl, dsd dsd dsforl 2 [1:04841:351]. Then, forl 2 [1:351; 3], the best policy

is 2BS and of the fornal; dsd ds.

[1; 2]Tmin- The three black branches are made only of BS solutions whereas the two
others are made of 2BS and 3BS solutions. To maximize the contrast, the best policy,
drawn as solid lines, is:

d; dgd+ dg forl 2 [1:000,1+ e]; e> 0 small

ds ds forl 2 [1+ e;1:294; (3.38)
dy dsd ded dsfor| 2 [1:294 2:000:

Fig. 3.8 Blood case, sub-optimal synthesidllustration on the left subplot, of local solutions
(each branch corresponds to a control structure). Best policy as solid lines, local solutions as dashed
lines. The suboptimal synthesis is plotted on right subplot. The colors are black for BS structure,
blue for 2BS and red for 3BS. The best policy is BStfoR (1;1:294 Tmin and 3BS of the form

ds dsd dsd ds for ts 2 (1:294 2] Trin. In the special casg = Tmin, the solution is 2BS and of the

form d; dsd: dg
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Sub-optimal syntheses compared to global results

We now apply thémi method to the contrast problem, described ifi [25], in order
to obtain upper bounds on the true contrast. Comparing these bounds to the contrast
of our solutions then gives an insight about their global optimality.

Table[3.2 shows the evolution of the upper bound on the contrast in function of
Imi  relaxation order, for the uid case witty = Tpin. As expected, the method
yields a monotonically non-increasing sequence of sharper bounds. Relaxations of
orders 4 and 5 yield very similar bounds, but this should not be interpreted as a
termination criterion for thémi  method.

1”3~ |
0:8474| 63 | 0:7
0:7552| 378| 3

0:6226|1386 14
0:6069|3861] 332
0:6040{9009 8400

O WNEI—

Table 3.2 Fluid casets = Tnin: upper bounds on contragt Jy, humbers of moments, and
CPU timesg; in function of relaxation order.

Figs.[3.9 and 3.70 compare the tightest upper bounds found blynihe me-
thod with the best candidate solutions foundBncop andHamPath , in both the
blood and uid cases. The gures also represent the relative gap between the meth-
ods de ned agC v CH)=Cy, wWhereCyy is thelmi upper bound an@y is the
contrast found wittHamPath . As such, this measure characterizes the optimal-
ity gap between the methods. It does not, however, specify which of the method(s)
could be further improved. At the fth relaxation, the average gap is around 11%
in the blood case, which, given the application, is satisfactory on the experimental
level. For the uid case, the average gap on the contrast is about 2% at the fth re-
laxation, which strongly suggest that the solution is actually a global optimum. The
gap is even below the 1% mark fgr 2 Tpyin.

3.3.9 Numerical simulations, the multisaturation of two spins with
B;-inhomogeneity.

In this section we give an illustration of our techniques applied to the saturation of
two spins combining geometric analysis and numerical simulations to deduce the
solution. We proceed in two steps.

e Step 1: Time minimal saturation of a single spinin the single-spin case the
time minimal solution is described in Hig.B.1 leads to construct the optimal solu-
tion for a continuation on the set of parameters where 0 corresponds to the
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Fig. 3.9 Fluid case Best upper bounds (dashed line) by the method compared with best
solutions byHamPath (solid line), and relative gap between the two.

Fig. 3.10 Blood caseBest upper bounds (dashed line) by the method compared with best
solutions byHamPath (solid line), and relative gap between the two.

case of deoxygenated blodd= 1 corresponds to the cas&2 3gandl =1 ¢

is the water cases = g. According to Fig$.3.7[[-3.12-313, due to the control
bound, the bifurcation occurs not exactlylat 1 when the horizontal singular
line z= g=2=d leaves the Bloch ball but &' 0:99, since fol > | thislineis
no more accessible from the north pole.

» Step 2: We describe in Figs.3.14-3]{5-3][[6-3.17 the BC-extremal for the mul-
tisaturation problem wittB;-inhomogeneity using the same continuation on the
set of parameters. The control is computed usiiagnPath software in combi-
nation withBocop in order to determine the structure of the extremal trajectory
for| = 0. Figd.3.1}-3.15 show a control with the same struatiuigad; dsd. ds,
that is a sequence of three bang-singular arcs. A bifurcation occlurs @:94
where the rst singular arc disappears. Higs.H.1643.17 show a control with a dif-
ferent structurel, dsd: ds. In each picture, we have represented the critical alti-
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State

Control

Time ((323 2p] 13)
Fig. 3.11 Time-minimal saturation of a single spih € 0).

State

Control

Time (323 2p] 19

Fig. 3.12 Time-minimal saturation of a single spih € 0:9941' I_).

State

Control

Time (323 2p] 19

Fig. 3.13 Time-minimal saturation of a single spih € | ¢).

tudez= g=2=d (on horizontal dotted line). At = | ¢, the extremal is simply
d. dod+ do: singular arcs are obtained by applying a zero control.
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Control

Reference matter With B;-inhomogeneity

Time (323 2p] 19

Fig. 3.14 BC-extremal for the multisaturation problem with= 0.

Reference matter With B;-inhomogeneity

Control

Time (323 2p] 19

Fig. 3.15 BC-extremal for the multisaturation problem with= 0:943< .

Reference matter With By-inhomogeneity

Control

Time (323 2p] 19

Fig. 3.16 BC-extremal for the multisaturation problem with= 0:948> .

Reference matter With B;-inhomogeneity
Control

Time (323 2p] 1y

Fig. 3.17 BC-extremal for the multisaturation problem with= | ¢.



Chapter 4
Conclusion

The two cases studied in this book show the practical interest of combining geo-
metric optimal control with numeric computations using the developed software to
solve industrial type problems.

The application to microswimmers is very recent and validate results obtained from
uid mechanics practitioners based on curvature control and Fourier analysis. The
SR-geometry framework allows to compare different strokes difidrent swim-

mers using the mechanical energy cost. The copepod mathematical swimmer is the
simplest slender body model. Normal and abnormal strokes have interpretation in
terms of sinusoidal and sequential paddlings. This leads to design a simple macro-
scopic copepod robot to validate the theoretical computations of the most ef cient
stroke. Another validation of the mathematical model using Resistive Force Theory
for Stokes' ow is coming from the observations [65] showing the agreement be-
tween observed and predicted displacements. The mathematical developments lead
to solve the inverse problem of identifying the cost used for the copepod nauplii
displacement.

The developments motivated by MRI are more profound and lead to intricate nu-
merical investigations to deal with an highly complex optimal control problem with
many local optimal solutions. Nevertheless we believe that the techniques validate
by in vitro and in vivo experiments realized under the auspices of the ANR project
DFG Explosy will nd in a very near future applications in MRI diagnosis.

101



102 4 Conclusion

References

1. Agrachey, A., Chtcherbakova, N.N., Zelenko, I.: On curvatures and focal points of dynamical
Lagrangian distributions and their reductions by rst integrals. J. Dyn. Control $¥sho.3,
297-327 (2005)

2. Agrachev, A., Gauthier, J.P.: On the Dido problem and plane isoperimetric probAetas,
Appl. Math.57, no.3, 287-338 (1999)

3. Agrachev, A., Sarychev, A.: Abnormal sub-Riemannian geodesics: Morse index and rigidity.
Ann. Inst. H. Poinca Anal. Non Lireairel3, 6 635-690 (1996)

4. Aleexev, V., Tikhomirov, V., Fomine, S.: Commande Optimale. Mir, Moscow (1982)

5. Alouges, F.; DeSimone, A.; Giraldi, L.; Zoppello, M.: Self-propulsion of slender micro-
swimmers by curvature control: N-link swimmers. Int. J. of Non-Linear Mé&h132-141
(2013)

6. Alouges, F., DeSimone, A., Lefebvre, A.: Optimal strokes for low Reynolds number swim-
mers: an example. J. Nonlinear St8, 277—-302 (2008)

7. Arcostanzo, M.,Arnaud, M.-C., Bolle, P., Zavidovique, M.: Tonelli Hamiltonians without con-
jugate points an@%-integrability. Math. Z.280no.1-2 165-194 (2015)

8. Arnol’d, V. ., Gusen-Zade, S.M., Varchenko, A.N.: Singularities of differentiable maps.
Birkhauser Boston, Inc., Boston MA. (1985)

9. Arnol™d, V.I.: Mathematical methods of classical mechanics. Second edition. Graduate Texts
in Mathematics, 60. Springer-Verlag, New York, (1989) 508 pp.

10. Avron, J. E., and Raz, O.: A geometric theory of swimming: Purcell's swimmer and its sym-
metrized cousin. New Journal of Physi§ no. 6 (2008): 063016

11. Batchelor, G.K.: Slender-body theory for particles of arbitrary cross-section in Stokes ow. J.
Fluid Mech.44, 419-440 (1970)

12. Becker, L.E., Koehler, S.A., Stone, H.A.: On self-propulsion of micro-machines at low
Reynolds number: Purcell's three-link swimmer. J. Fluid Met90, 15-35 (2003)

13. Belldche, A.: The tangent space in sub-Riemannian geometry. J. Math. Sci. (New3&rk)
461-476 (1997)

14. Berger, M.: La taxonomie des courbes. Pour la science, 297 56-63 (2002)

15. Bettiol, P.; Bonnard, B.; Giraldi, L.; Martinon, P.; Rouot, J.: The three links Purcell swimmer
and some geometric problems related to periodic optimal controls. Rad. Ser. Com.8App.
Variational Methods, Ed. by M. Bergounioux et al. (2016)

16. Bettiol, P., Bonnard, B., Nolot, A., Rouot, J.: Sub-Riemannian geometry and swimming at low
Reynolds number: the copepod case, AcceptdsSAIM Control Optim. Calg(2017)

17. Bettiol, P., Bonnard, B., Rouot, J.: Optimal strokes at low Reynolds number: a geometric and
numerical study of Copepod and Purcell swimmers, to appear SICON 2018.

18. Bloch, F.: Nuclear induction. Physical review, 7-8 460 (1946)

19. Bonnans, F., Giorgi, D., Maindrault, S., Martinon, P.glard, V.: Bocop - A collection of
examples, Inria Research Report, Project-Team Comma&088(2014)

20. Bonnard, B.: Feedback equivalence for nonlinear systems and the time optimal control prob-
lem. SIAM J. Control Optim29, no.6, 1300-1321 (1991)

21. Bonnard, B., Caillau, J.-B., &lat, E.: Second order optimality conditions in the smooth case
and applications in optimal control. ESAIM Control Optim. Calc. VB3, no. 2, 207-236
(2007)

22. Bonnard, B., Chyba, M.: Singular trajectories and their role in control theory. Springer-Verlag,
Berlin (2003)

23. Bonnard, B., Chyba, M., Jacquemard, A., Marriott, J.: Algebraic geometric classi cation of
the singular ow in the contrast imaging problem in nuclear magnetic resonance. Math. Con-
trol Relat. Fields3, no.4 397-432 (2013)

24. Bonnard, B., Chyba, M., Marriott, J.: Singular Trajectories and the Contrast Imaging Problem
in Nuclear Magnetic resonance. SIAM J. Control Optt, no.2 1325-1349 (2013)

25. Bonnard, B., Claeys, M., Cots, O., Martinon, P.: Geometric and numerical methods in the
contrast imaging problem in nuclear magnetic resonance. Acta Appl. Math. (2013)



References 103

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.
43.

44,

45,

46.

47.

48.

49.

50.

51.

Bonnard, B., Cots, O.: Geometric numerical methods and results in the control imaging prob-
lem in nuclear magnetic resonance. Math. Models Methods Appl. Z¢ino.1 187-212
(2014)

Bonnard, B., Faubourg, L., 8lat, E.: Mecanique €leste et coniile des hicules spatiaux.
Mathématiques & Applications, Springer-Verlad, Berlin (2006)

Bonnard, B., Jacquemard, A., Rouot, J.: Optimal Control of an Ensemble of Bloch Equations
with Applications in MRI. 2016 IEEE 55th Conference on Decision and Control (CDC), Las
Vegas, NV, USA (2017)

Bonnard, B., Kupka, |.: Téorie des singulais de I'application enée/sortie et optimait

des trajectoires sing@ies dans le probie du temps minimal. Forum Math.no.2 111-159
(1993)

Bliss, G.A.: Lectures on the Calculus of Variations. Univ. of Chicago Press, Chicago (1946)
Brockett, R.W.: Control theory and singular Riemannian geometry. Springer, New York-
Berlin, 11-27 (1982)

Caillau, J.-B., Cots, O., Gergaud, J.: Differential continuation for regular optimal control prob-
lems. Optim. Methods Softw27no.2 177-196 (2012)

Cartan, E.: Les syames de Pfaff a cing variables et keguations aux derées partielles du
second ordre. Ann. SdEcole Normale?7, 109-192 (1910)

Chambrion, T., Giraldi, L., Munnier, A.: Optimal strokes for driftless swimmers: A general
geometric approach, Accepted&$AIM Control Optim. Calc. Va2017)

Chitour, Y., Jean, F., €lat, E.: Genericity results for singular curves. J. Diff. Ged8. 1
45-73 (2006)

Chow, W.L.:Uber Systeme von linearen partiellen Differentialgleichungen erster Ordnung,
Mathematische Annalen, 117 98—105 (1939)

Conolly, S., Nishimura, D., Albert, A.: Optimal control solutions to the magnetic resonance
selective excitation problem. Medical Imaging, IEEE Transactions on,vob.2 106-115
(1986)

Cots, O.: Conéile optimal gonetrique: néthodes homotopiques et applications. PhD thesis,
Universié de Bourgogne (2012)

Dieudoni, J.A., Carrell, J.B.: Invariant theory, old and new. Academic Press, New York-
London (1971)

Gamkrelidze, R.V.: Discovery of the maximum principle. J. Dynam. Control Sysfes
437-451 (1977)

Gelfand, I.M., Fomin, S.V.: Calculus of Variations. Prentice Hall Inc., Englewood Cliffs, New
Jersey (1963)

Godbillon, C.: Geogtrie differentielle et recanique analytique. Hermann, Paris (1969)
Gregory, J.: Quadratic form theory and differential equations. Mathematics in Science and
Engineeringl52, New York-London (1980)

Hancock, G.J.: The self-propulsion of microscopic organisms through liquids. Proc. R. Soc.
Lond. A217, 96-121 (1953)

Happel, J., Brenner, H.: Low Reynolds number hydrodynamics with special applications to
particulate media. Prentice-Hall, Inc., Englewood Cliffs, N.J. (1965)

Helgason, S.: Differential geometry, Lie groups, and symmetric spaces, Pure and Applied
Mathematics, 80. Academic Press, Inc., New York-London, (1978) 628 pp.

Henrion, D., Lasserre, J.-B.: GloptiPoly: global optimization over polynomials with Matlab
and SeDuMi. ACM Trans. Math. Softwag$, no.2 165-194 (2003)

Hermes, H.: Lie algebras of vector elds and local approximation of attainable sets. SIAM J
Control Optim.16, no.5 715-727 (1978)

Jean, F.: Control of Nonholonomic Systems: from Sub-Riemannian Geometry to Motion Plan-
ning. Springer International Publishing, SpringerBriefs in Mathematics (2014)

John, F.: Partial differential equations, reprint of 4th edition. Applied Mathematical Sciences
1, Springer-Verlag, New York (1991)

Jurdjevic, V.: Geometric control theory. Cambridge Studies in Advanced Matherbafics
Cambridge University Press, Cambridge (1997)



104 4 Conclusion

52. Klingenberg, W.: Riemannian geometry. de Gruyter Studies in Mathematics, Walter de
Gruyter and Co., Berlin-New York (1982)

53. Krener, A.J.: The high order maximum principle and its application to singular extremals.
SIAM J Control Optim.15, 2 256-293 (1977)

54. Kupka, |.: Geometric theory of extremals in optimal control problems. i. the fold and Maxwell
case. Trans. Amer. Math. Sd299, 1 225-243 (1987)

55. Kupka, I.: Geongtrie sous-riemannienne. &stsque, 8minaire Bourbakil995/9¢ 351-380
(1997)

56. Landau, L., Lipschitz, E.: Physiqueatbrique. Ed. Mir (1975)

57. Lapert, M.: Bveloppement de nouvelles techniques de émwptimal en dynamique quan-
tique : de la Rsonance Magrtique Nuckairea la physique méculaire. Phd thesis, Labora-
toire Interdisciplinaire Carnot de Bourgogne, Dijon (2011)

58. Lapert, M., Zhang, Y., Glaser, S.J., Sugny, D.: Towards the time-optimal control of dissipative
spin-1/2 particles in nuclear magnetic resonance. J. Phys. B: At. Mol. Opt.£2hi& (2011)

59. Lapert, M., Zhang, Y., Janich, M.A., Glaser, S.J., Sugny, D.: Exploring the physical limits of
saturation contrast in magnetic resonance imaging. Scienti c Reportg,(20/12)

60. Lasserre, J.-B.: Moments, positive polynomials and their applications. Imperial College Press
Optimization Series, Imperial College Press, Londoii+361 (2010)

61. Lasserre, J.-B., Henrion, D., Prieur, C.efat, E.: Nonlinear optimal control via occupation
measures and LMI-relaxations. SIAM J. Control Opt#ii.no.4 1643—-1666 (2008)

62. Lauga, E., Powers, T.R.: The hydrodynamics of swimming microorganisms. Rep. Progr. Phys.
72,9 (2009)

63. Lawden, D.F.: Elliptic functions and applications. Applied Mathematical Sciences, Springer-
Verlag, New York80 (1989)

64. Lee, E.B., Markus, L.: Foundations of optimal control theory, Second edition. Robert E.
Kreiger Publishing Co., Inc., Melbourne (1986)

65. P.H. Lenz, D. Takagi, D.K. Hartline, Choreographed swimming of copepod nalgqliinal
of The Royal Society Interfade, 112 20150776 (2015)

66. Levitt, M.H.: Spin dynamics: basics of nuclear magnetic resonance. John Wiley and Sons
(2001)

67. Li, J-S., Khaneja, N.: Ensemble control of Bloch equations. IEEE Trans. Automat. Control,
vol.54, no.3 528-536 (2009)

68. Liberzon, D.: Calculus of Variations and Optimal Control Theory: A Concise Introduction.
Princeton University Press, (2011)

69. Lighthill M. J.: Note on the swimming of slender sh, J. Fluid Me@n305-317 (1960)

70. Lokeac, J., Scheid, J.-F., Tucsnak, M.: Controllability and time optimal control for low
Reynolds numbers swimmers. Acta Appl. Mat23175-200 (2013)

71. Maciejewski, A.J., Respondek, W.: The nilpotent tangent 3-dimensional sub-Riemannian
problem is nonintegrable. 2004 43rd IEEE Conference on Decision and Control (2004)

72. Milnor, J.: Morse theory. Annals of Mathematics Studids Princeton University Press,
Princeton (1963)

73. Mishchenko, A.S., Shatalov, V.E., Sternin, B.Y.: Lagrangian manifolds and the Maslov oper-
ator. Springer Series in Soviet Mathematics, Springer-Verlag, Berlin (1990)

74. Montgomery, R.: Isoholonomic problems and some applicat@osymun. Math. Phy4.28
no.3, 565-592 (1990)

75. Or, Y., Zhang, S., Murray, R.M.: Dynamics and stability of low-Reynolds-number swimming
near a wall. SIAM J. Appl. Dyn. Sysi.0, 1013-1041 (2011)

76. Passov, E., Or, Y.: Supplementary notes to: Dynamics of Purcells three-link microswimmer
with a passive elastic talEPJ E351-9 (2012)

77. Pontryagin,L.S., Boltyanskii, V.G., Gamkrelidze, R.V.: The Mathematical Theory of Optimal
Processes. John Wiley and Sons, New York (1962)

78. Purcell, E.M.: Life at low Reynolds number. Am. J. Ph45.3-11 (1977)

79. Rashevskii, P.K.: About connecting two points of complete non-holonomic space by admissi-
ble curve, Uch. Zapiski ped. inst. Libknexta 2 83-94 (1938)



References 105

80.

81.

82.

83.

84.

85.

86.

87.
88.

89.

90.

91.

92.

Rouot, J., P. Bettiol, B. Bonnard, A. Nolot. Optimal control theory and the ef ciency of the
swimming mechanism of the Copepod Zooplanktdo,appear in Proc. 20th IFAC World
CongressToulouse (2017)

Sachkov, Y.L.: Symmetries of at rank two distributions and sub-Riemannian structures.
Trans. Amer. Math. So&56, 457-494 (2004)

Sclattler, H., Ledzewicz, U.Geometric optimal control. Theory, methods and examptes.
terdisciplinary Applied Mathematics, 38. Springer, New York, (2012)

Skinner, T.E., Reiss, T., Luy, B., Khaneja, N., Glaser, S.J.: Application of optimal control the-
ory to the design of broadband excitation pulses for high-resolution NMR. Journal of Magnetic
Resonance, vd63 no.1, 8-15 (2003)

Sontag, E.D.: Mathematical control theory. Deterministic nite-dimensional systems, second
edition. Texts in Applied Mathematid; Springer-Verlag, New York (1998)

Sussmann, H.J.: Orbits of families of vector elds and integrability of distributions. Trans.
Am. Math. Soc180, 171-188 (1973)

Sussmann, H.J., Jurdjevic, V.: Controllability of non-linear systems. J Differential Equations
12,95-116 (1972)

Takagi, D.: Swimming with stiff legs at low Reynolds number. Phys. Rev. E 92. (2015)

Tielat, E.: Contdle optimal, Matiématiques Conetes. [Concrete Mathematics], vi+246
(2005)

Vinter, R.: Optimal control. Systems & Control: Foundations & Applications, Bidger
Boston, Inc., Boston, MA xviii+507 (2000)

Zakaljukin, V.M.: Lagrangian and Legendre singularities. Funkcional. Anal. iZenld.0,
26-36 (1976)

Zhitomirski, M.: Typical singularities of differential 1-forms and Pfaf an equations. Ameri-
can Mathematical Society, Providence, K13 176 (1992)

Zhu, J., Telat, E., Cerf, M.: Geometric optimal control and applications to aerospace, Paci ¢
J. Math. for Industry9 8 (2017).






