R. Amadini, F. Biselli, M. Gabbrielli, T. Liu, and J. Mauro, SUNNY for Algorithm Selection: A Preliminary Study, CILC, 2015. Available at
URL : https://hal.archives-ouvertes.fr/hal-01227595

R. Amadini, M. Gabbrielli, and J. Mauro, Abstract, Theory and Practice of Logic Programming, vol.41, issue.4-5, pp.509-524, 2014.
DOI : 10.1007/s10601-008-9051-2

R. Amadini, M. Gabbrielli, and J. Mauro, A multicore tool for constraint solving, IJCAI, pp.232-238, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01227592

R. Amadini, M. Gabbrielli, and J. Mauro, Portfolio approaches for constraint optimization problems. AMAI, pp.1-18, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01088429

R. Amadini, M. Gabbrielli, and J. Mauro, SUNNY-CP, Proceedings of the 30th Annual ACM Symposium on Applied Computing, SAC '15, pp.1861-1867, 2015.
DOI : 10.1145/2695664.2695741

URL : https://hal.archives-ouvertes.fr/hal-01227589

B. Bischl, P. Kerschke, L. Kotthoff, M. Lindauer, Y. Malitsky et al., ASlib: A benchmark library for algorithm selection, Artificial Intelligence, vol.237, 2015.
DOI : 10.1016/j.artint.2016.04.003

C. Fawcett, M. Vallati, F. Hutter, J. Hoffmann, H. H. Hoos et al., Improved features for runtime prediction of domainindependent planners, ICAPS. AAAI, 2014.

I. P. Gent, C. Jefferson, L. Kotthoff, I. Miguel, N. C. Moore et al., Learning when to use lazy learning in constraint solving, ECAI, pp.873-878, 2010.

I. P. Gent, C. Jefferson, and I. Miguel, Minion: A fast scalable constraint solver, ECAI, pp.98-102, 2006.

C. P. Gomes and B. Selman, Algorithm portfolios, Artificial Intelligence, vol.126, issue.1-2, pp.43-62, 2001.
DOI : 10.1016/S0004-3702(00)00081-3

I. Guyon and A. Elisseeff, An Introduction to Variable and Feature Selection, Journal of Machine Learning Research, vol.3, pp.1157-1182, 2003.

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann et al., The WEKA data mining software, ACM SIGKDD Explorations Newsletter, vol.11, issue.1, 2009.
DOI : 10.1145/1656274.1656278

M. A. Hall, Correlation-based Feature Subset Selection for Machine Learning, 1998.

R. Holte, Very simple classification rules perform well on most commonly used datasets, Machine Learning, pp.63-91, 1993.

H. Hoos, M. T. Lindauer, and T. Schaub, Advances in algorithm selection for answer set programming, TPLP, vol.2, issue.144-5, pp.569-585, 2014.

B. Hurley, L. Kotthoff, Y. Malitsky, and B. O. Sullivan, Proteus: A Hierarchical Portfolio of Solvers and Transformations, CPAIOR, pp.301-317, 2014.
DOI : 10.1007/978-3-319-07046-9_22

F. Hutter, H. H. Hoos, and K. Leyton-brown, Sequential Model-Based Optimization for General Algorithm Configuration, LION, pp.507-523, 2011.
DOI : 10.1007/978-0-387-84858-7

F. Hutter, H. H. Hoos, and K. Leyton-brown, Identifying Key Algorithm Parameters and Instance Features Using Forward Selection, LION, pp.364-381, 2013.
DOI : 10.1007/978-3-642-44973-4_40

F. Hutter, L. Xu, H. H. Hoos, and K. Leyton-brown, Algorithm Runtime Prediction: The State of the Art, 1211.

S. Kadioglu, Y. Malitsky, M. Sellmann, and K. Tierney, ISAC -Instance- Specific Algorithm Configuration, ECAI, 2010.

K. Kira and L. A. , A Practical Approach to Feature Selection, 9th International Workshop on Machine Learning, pp.249-256, 1992.
DOI : 10.1016/B978-1-55860-247-2.50037-1

I. Kononenko, Estimating attributes: Analysis and extensions of RELIEF, pp.171-182, 1994.
DOI : 10.1007/3-540-57868-4_57

L. Kotthoff, Algorithm Selection for Combinatorial Search Problems: A Survey, AI Magazine, vol.17, issue.10, pp.48-60, 2014.
DOI : 10.1007/978-3-642-31612-8_18

C. Kroer and Y. Malitsky, Feature Filtering for Instance-Specific Algorithm Configuration, 2011 IEEE 23rd International Conference on Tools with Artificial Intelligence, pp.849-855, 2011.
DOI : 10.1109/ICTAI.2011.132

C. M. Li and F. Manyà, Maxsat, hard and soft constraints, Handbook of Satisfiability, pp.613-631, 2009.

N. Nethercote, P. J. Stuckey, R. Becket, S. Brand, G. J. Duck et al., MiniZinc: Towards a Standard CP Modelling Language, CP, 2007.
DOI : 10.1007/978-3-540-74970-7_38

L. Pulina and A. Tacchella, A self-adaptive multi-engine solver for quantified Boolean formulas, Constraints, vol.2, issue.1, pp.80-116, 2009.
DOI : 10.1007/s10601-008-9051-2

J. Reunanen, Overfitting in Making Comparisons Between Variable Selection Methods, Journal of Machine Learning Research, vol.3, pp.1371-1382, 2003.

J. R. Rice, The Algorithm Selection Problem, Advances in Computers, vol.15, pp.65-118, 1976.
DOI : 10.1016/S0065-2458(08)60520-3

M. Robnik-sikonja and I. Kononenko, An adaptation of relief for attribute estimation in regression, pp.296-304, 1997.

K. Smith-miles, Cross-disciplinary perspectives on meta-learning for algorithm selection, ACM Computing Surveys, vol.41, issue.1, 2008.
DOI : 10.1145/1456650.1456656

K. A. Smith-miles, Towards insightful algorithm selection for optimisation using meta-learning concepts, 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), pp.4118-4124, 2008.
DOI : 10.1109/IJCNN.2008.4634391

K. Stergiou, Heuristics for dynamically adapting propagation in constraint satisfaction problems, AI Commun, vol.22, issue.3, pp.125-141, 2009.

K. Tierney and Y. Malitsky, An Algorithm Selection Benchmark of the Container Pre-marshalling Problem, LION 9, pp.17-22, 2015.
DOI : 10.1007/978-3-319-19084-6_2

L. Xu, H. Hoos, and K. Leyton-brown, Hydra, Proceedings of the 2005 ACM workshop on Storage security and survivability , StorageSS '05, 2010.
DOI : 10.1145/1103780.1103797