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Abstract: Gaussian graphical models are widely utilized to infer and visualize networks of dependen-
cies between continuous variables. However, inferring the graph is difficult when the sample size is small
compared to the number of variables. To reduce the number of parameters to estimate in the model, we
propose a non-asymptotic model selection procedure supported by strong theoretical guarantees based on
an oracle inequality and a minimax lower bound. The covariance matrix of the model is approximated by a
block-diagonal matrix. The structure of this matrix is detected by thresholding the sample covariance ma-
trix, where the threshold is selected using the slope heuristic. Based on the block-diagonal structure of the
covariance matrix, the estimation problem is divided into several independent problems: subsequently, the
network of dependencies between variables is inferred using the graphical lasso algorithm in each block.
The performance of the procedure is illustrated on simulated data. An application to a real gene expres-
sion dataset with a limited sample size is also presented: the dimension reduction allows attention to be
objectively focused on interactions among smaller subsets of genes, leading to a more parsimonious and
interpretable modular network.
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Block-diagonal covariance selection for high-dimensional Gaussian
graphical models

Résumé :
Les modèles graphiques gaussiens permettent dâinférer et de visualiser les dépendances entre des

variables. Ces modèles étant difficiles à estimer en très grande dimension, nous proposons une procédure
non-asymptotique pour réduire la dimension du problème d’inférence. Cette procédure est justifiée par
des résultats théoriques comportant une inégalité oracle et une borne minimax. Dans un premier temps,
nous approchons la matrice de covariance par une matrice diagonale par blocs. Pour détecter la struc-
ture de cette matrice, nous seuillons la matrice de covariance empirique, le seuil étant choisi à lâaide
de lâheuristique de pente. Le problème dâestimation est ainsi décomposé en plusieurs sous-problèmes
indépendants : par la suite, nous estimons les dépendances entre les variables d’un même bloc à lâaide de
l’algorithme du graphical lasso. Nous illustrons cette méthode sur des données simulées. Une application
à un jeu de données réelles ayant un faible nombre d’échantillons est également présentée: la réduction
de dimension permet de focaliser l’attention sur un nombre plus réduit de gènes et conduit à un réseau
modulaire plus parcimonieux et interprétable.

Mots-clés : Inférence de réseaux, graphical lasso, sélection de variables, sélection de modèle non-
asymptotic, heuristique de pente.
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1 Introduction

Graphical models (Whittaker, 1990) have become a popular tool for representing conditional dependen-
cies among variables using a graph. For Gaussian graphical models (GGMs), the edges of the corre-
sponding graph are the non-zero coefficients of the inverse covariance matrix. Popular methods to esti-
mate this matrix have been proposed in high-dimensional contexts (Meinshausen and Bühlmann, 2006,
Banerjee et al., 2008). The graphical lasso introduced by Friedman et al. (2008) performs the estimation
of the inverse covariance matrix based on an `1 penalized log-likelihood. GGMs have many potential
applications for the reconstruction of networks of dependencies between variables from real omics data
(Krumsiek et al., 2011, Akbani et al., 2014). Implementing and improving network reconstruction using
graphical models is an area of active methodological developments (Ambroise et al., 2009, Guo et al.,
2011, Allen and Liu, 2013, Tan et al., 2015).

However, these network reconstruction methods often perform poorly in so-called ultra high-dimensional
contexts (Giraud, 2008, Verzelen, 2012), when the number of observations is much smaller than the num-
ber of variables. A small sample size is a common situation in various applications, such as in systems
biology where the cost of the sequencing technologies may limit the number of available observations
(Frazee et al., 2011). In practice, the network reconstruction problem is facilitated by restricting the anal-
ysis to a subset of variables, based on external knowledge and prior studies of the data (Ambroise et al.,
2009, Yin and Li, 2011). When no external knowledge is available, only the most variable features are
typically kept in the analysis (Guo et al., 2011, Allen and Liu, 2013). Choosing the appropriate subset
of variables to focus on is a key step in reducing the model dimension and the number of parameters to
estimate, but no procedure is clearly established to perform this selection in high-dimensional settings.

In the context of graphical lasso estimation, Mazumder and Hastie (2012) and Witten et al. (2011)
have noticed that the block-diagonal structure of the graphical lasso solution is totally determined by the
block-diagonal structure of the thresholded empirical covariance matrix. The graphical lasso estimation
for a given level of regularization λ can be decomposed into two steps: first, the absolute value of the
sample covariance matrix is thresholded at λ to detect subsets of connected variables; then the graphical
lasso problem is divided into subproblems and solved in each subset independently using the same reg-
ularization parameter λ . This decomposition is of great interest to reduce the number of parameters to
estimate for a fixed level of regularization. It has been exploited for large-scale problems (Zhao et al.,
2012) and for joint graphical lasso estimations (Danaher et al., 2014). Tan et al. (2015) provided an adap-
tation of this two-step decomposition: the block-diagonal structure of the covariance matrix is detected
using a hierarchical clustering of variables based on the sample covariance matrix. A leave-one-out al-
gorithm recasts the unsupervised clustering into a supervised one and selects the partition of variables
giving the smallest mean square error. Tan et al. (2015) also comment on the asymptotic properties of
this algorithm. However, for high-dimensional problems, methods are needed to detect the best block
structure of the covariance matrix (i.e. the value of the thresholding parameter λ ) to divide the GGM
estimation into several subproblems.

In this paper, we propose a non-asymptotic procedure to detect the block-diagonal structure of the
covariance matrix. Pavlenko et al. (2012) provided a method to detect this structure for high-dimensional
supervised classification that is supported by asymptotic guarantees. Hyodo et al. (2015) proposed tests
to perform this detection and derived consistency for their method when the number of variables and the
sample size tend to infinity. In our procedure, we recast the detection problem into a model selection
problem and choose the best model among a collection of multivariate distributions with block-diagonal
covariance matrices. This method is based on the slope heuristic developed by Birgé and Massart (2007),
and is easy to implement in practice (Baudry et al., 2012). Unlike other methods to detect the appropri-
ate block-diagonal covariance matrix (Pavlenko et al., 2012, Tan et al., 2015, Hyodo et al., 2015), our
procedure is non-asymptotic and offers strong theoretical guarantees when the number of observations is
limited, which is of great interest for many real applications. We prove that our estimator is approximately
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4 Devijver & Gallopin

minimax.
The paper is organized as follows. In Section 2, after providing basic notations and definitions,

the non-asymptotic method to detect the block-diagonal structure of the GGM is presented. Section 3
details theoretical results supporting our model selection criterion. In particular, an oracle inequality
upper bounds the risk between the true model and the model selected among the model collection, and a
minimax lower bound guarantees that the non-asymptotic procedure has an optimal rate of convergence.
Section 4 investigates the numerical performance of our method in a simulation study. Section 5 illustrates
our procedure on a real gene expression RNA-seq dataset with a limited sample size. After a short
discussion, all proofs are provided in Section 7.

2 A method to detect block-diagonal covariance structure
Let y= (y1, . . . ,yn) be a sample in Rp from a multivariate normal distribution with density φp(0,Σ) where
Σ j, j = 1 for all j ∈ {1, . . . , p}. Let S be the empirical covariance matrix associated with this sample. Our
goal is to detect the optimal block-diagonal structure of the covariance matrix Σ, i.e. the optimal partition
of variables into blocks. Let B = (B1, . . . ,BK) be the partition of variables into K blocks where K is the
number of blocks, Bk the subset of variables in block k, and pk the number of variables in block k. We
denote by ΣB the corresponding block-diagonal covariance matrix where each block on the diagonal is
denoted Σ

k for k ∈ {1, . . . ,K}. We denote by fB = φp(0,ΣB) the density of the multivariate distribution.
The set of densities with block-diagonal covariance matrix with structure B is:

FB = { fB with ΣB ∈ SB} (1)

SB =

ΣB ∈ S++
p (R)

∣∣∣∣∣∣∣ΣB = Pσ

Σ
1 0 0

0
. . . 0

0 0 Σ
K

P−1
σ ,Pσ a permutation matrix,

Σ
k ∈ S++

pk
(R) for k ∈ {1, . . . ,K}

 . (2)

The dimension of the model FB is DB = ∑
K
k=1 pk(pk−1)/2. We denote by f̂B the maximum likelihood

estimator of the model FB where parameters in each block k are estimated using the sample covariance
matrix of the dataset restricted to variables in block k: Σ̂

k
= S|k.

We consider B the set of all possible partitions of variables. In theory, we would like to consider the
following model collection F = (FB)B∈B . However, the set B is large: there are ∑

p
k=1 Stir(p,k) possible

partitions where Stir(p,k) denotes the Stirling number of the second kind. An exhaustive exploration
of the set B is not possible even for a moderate number of variables p. We restrict our attention to the
sub-collection:

BΛ = (Bλ )λ∈Λ (3)

of B where Bλ is the partition of variables corresponding to the block-diagonal structure of the ma-
trix Eλ = (1{|S j, j′ |>λ}) j j′ , the thresholded absolute value of the sample covariance matrix. Recall that
Mazumder and Hastie (2012) have proved that this method is equivalent to the graphical Lasso for de-
tecting the block structure. Note that the data is scaled so that the set of thresholds Λ ⊂ [0,1] covers all
possible partitions derived from Eλ .

Once we have constructed the model collection FΛ = (FB)B∈BΛ , we select the optimal model among
this collection, i.e. the optimal partition of variables into blocks. In our context, the number of obser-

Inria



Block-diagonal covariance selection for high-dimensional Gaussian graphical models 5

vations n is limited. For this reason, we consider a non-asymptotic model selection based on the slope
heuristic, developed by Birgé and Massart (2007). This heuristic leads to the following criterion:

B̂ = argmin
B∈BΛ

{
−1

n

n

∑
i=1

log( f̂B(yi))+pen(B)

}
, (4)

pen(B) = κDB,

where f̂B is the maximum likelihood estimator of the model FB, DB the dimension of FB and κ a coefficient
to calibrate.

Baudry et al. (2012) have provided practical tools to implement the slope heuristic developed by Birgé
and Massart (2007). One calibration method is the Slope Heuristic Dimension Jump (SHDJ): the optimal
coefficient κopt is approximated by twice the minimal coefficient κmin, where κmin corresponds to the
largest dimension jump on the graph representing the model dimension as a function of the coefficient κ .
Another method is the Slope Heuristic Robust Regression (SHRR): the coefficient κopt is approximated
by twice κmin, where κmin corresponds to the slope of a robust regression performed between the log-
likehood and the model dimension for complex models. The two methods are derived from the same
heuristic and they offer two different visual checks of the adequacy of the model selection procedure to
the data. They should select the same model. Note that the detection of the optimal B is easy to implement
in practice and does not rely on heavy computation such as cross-validation techniques.

Once we have detected the optimal block-diagonal structure of the GGM, network inference is per-
formed independently in each block using the graphical lasso introduced by Friedman et al. (2008). Our
procedure has been implemented in a R package shock available on github (https://github.com/
Gallopin/shock).

3 Theoretical results for non-asymptotic model selection

Model selection based on the slope heuristic with calibration of the κ coefficients by dimension jump
(SHDJ) or robust regression (SHRR) have been proven to be effective in a variety of practical situations.
For example, Rau et al. (2015) select the number of components in Poisson mixture models on RNA-seq
gene expression data using the slope heuristic. Bouveyron et al. (2015) select the number of components
in discriminative functional mixture models on data describing bike sharing systems using the slope
heuristic. However, they did not provide any theoretical justification for their procedures.

In contrast, we do provide theoretical justification for our criterion based on an oracle inequality.
Lebarbier (2005) have provided theoretical justification based on an oracle inequality for model selection
in multiple change point detection, and Maugis and Michel (2011) for variable selection in mixture mod-
els. However, few papers provide a minimax lower bound, which we do have. Remark that the theoretical
justification of the slope heuristic has encountered several technical difficulties. The existence of minimal
penalties is proved in heteroscedastic regression with fixed design (Birgé and Massart (2007) and Baraud
et al. (2009)), and for homoscedastic regression with fixed design (Arlot and Massart (2009)).

For our block-diagonal structure detection procedure, we prove an oracle inequality for a penalty
proportional to the dimension (up to a logarithm term) and a lower bound of the risk between the true
model and the model selected among the model collection. This ensures that the selected model is close
to the oracle, the best one in estimation among our collection. Both inequalities guarantee that our model
selection procedure has an optimal rate of convergence, which is a strong theoretical result. Note that
these results are non-asymptotical, which means that they hold for a fixed sample size n.

To state the theorem, we recall the definition of the Hellinger distance between two densities f and g
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6 Devijver & Gallopin

defined on Rp,

d2
H( f ,g) =

1
2

∫
Rp
(
√

f (x)−
√

g(x))2dx = 1−
∫
Rp

√
f (x)g(x)dx,

and the Kullback-Leibler divergence between two densities f and g defined on Rp,

KL( f ,g) =
∫
Rp

log
(

f (x)
g(x)

)
f (x)dx.

In order to properly define the penalty term used in equation (4) to select the best partition of variables
B, we work with the following model collection:

F bound = (Fbound
B )B∈B (5)

Fbound
B =

{
φ(0,ΣB) ∈ FB,ΣB ∈ Sbound

B
}

(6)

Sbound
B = {ΣB ∈ SB|em ≤min(ΣB)≤max(ΣB)≤ eM,

λm ≤ Λmin(ΣB)≤ Λmax(ΣB)≤ λM} ,

where Λmin(A) and Λmax(A) are the smallest and the largest eigenvalues of the matrix A.
The model collection (5) is defined such that covariance matrices have bounded coefficients, which is

useful for constructing a discretization of this space. If the matrix has bounded coefficients, we can prove
that it has bounded eigenvalues. Nevertheless, to simplify the reading, we denote by λm and λM bounds
on eigenvalues. In the following, we denote by Ad j(Σ) the adjacency matrix associated to the covariance
matrix Σ.

Theorem 3.1 Let y = (y1, . . . ,yn) be the observations, arising from a density f ∗. Consider the model
collection F bound defined in (5). Suppose that there exists an absolute constant κ ′ > 0 such that for every
partition B in the set of all possible partitions of variables B,

pen(B)≥ κ
′DB

n

[
2c2 +ρ log

(
1

DB(
DB
n c2∧1)

)
+(1∨ τ)

p
DB

log
(

0.792p
log(p+1)

)]
,

where c is an absolute constant, depending only on the model collection. Let f̂B be the maximum likeli-
hood estimator, BΛ ⊂B as defined in (3), and B̂ selected as follows:

B̂ = argmin
B∈BΛ

{
−1

n

n

∑
i=1

log( f̂B(yi))+pen(B)

}
.

Then, f̂B̂ satisfies:

E(d2
H( f ∗, f̂B̂))≤CE

(
inf

B∈BΛ

(
inf

t∈Fbound
B

KL( f ∗, t)+pen(B)

)
+(1∨ τ)

1
n

)
(7)

for some absolute constant C.

This non-asymptotic result is consistent with the point of view adopted in this work where the number
of observations n is limited. The proof is presented in Appendix 7.2. This theorem is deduced from
an adaptation for a random sub-collection of the whole model collection of a general model selection
theorem for maximum likelihood estimator developed by Massart (2007). This adaptation is proved in
Appendix 7.2.1. To apply our theorem, the main assumptions to satisfy are the control of the bracketing
entropy of each model in the whole model collection and the construction of weights for each model to

Inria



Block-diagonal covariance selection for high-dimensional Gaussian graphical models 7

control the model collection complexity. Remark that the control of the bracketing entropy is a classical
tool to bound the Hellinger risk of the maximum likelihood estimator, and has already been done for
Gaussian densities in Maugis and Michel (2011) and Genovese and Wasserman (2000).

Theorem 3.1 provides a lower bound for the penalty, which ensures a good model selection by penal-
ized criterion: the model selected is as good as possible among the model collection. The only assumption
made to state Theorem 3.1 is a classical one: we work with bounded parameters for each model as detailed
in (5). Every constant involved in (7) depends on those bounds. Even if the bounds are not tractable in
practice, this assumption is plausible. To guarantee a good model selection procedure, we need to assume
that the true density of the data is not too far from the constructed model collection. Since a covari-
ance matrix can always be considered to be a block-diagonal matrix, with possibly a single block, the
block-diagonal covariance matrix assumption is not a strong one.

To complete this analysis, we provide a minimax lower bound for the risk between the true model
and the model selected among the model collection. For the lower bound of the risk, some results have
been previously obtained by Bickel and Levina (2008) and Cai et al. (2010). To obtain our lower bound,
we use the lemma developed in Birgé (2005) in conjunction with a discretization of the model collection
space, already constructed for the oracle inequality.

Theorem 3.2 Let y = (y1, . . . ,yn) be the observations, coming from a density f ∗. Consider the model
collection F bound defined in (5), and DB the dimension of the model Fbound

B for each B ∈B. Let f̂B being
the maximum likelihood estimator for the model indexed by B. Then, for all B ∈B, there exists absolute
constants C1 > 0 and C2 > 0 such that:

inf
f̂B

sup
f∈Fbound

B

E(d2
H( f̂B, f ))≥C1

DB

n
(1+ log

(
C2

D2
B

)
). (8)

This theorem is proved in Appendix 7.3. Again, this result does not rely on strong assumptions, and
the constants involved are explicit. It is also a non-asymptotic result.

This minimax lower bound obviously shows that since the estimator satisfies to (7) it is simultaneously
approximately minimax on each set Fbound

B for every B∈B. Theorem 3.2 and Theorem 3.1 lead to the use
of the slope heuristic with a penalty proportional to the dimension to select a model among the collection.

Nevertheless, as typically the case, constants are higher in theory than needed (and not always
tractable), and we prefer to compute constants from the dataset in practice using the capushe package
developed in Baudry et al. (2012).

4 Simulation study
We simulate n observations from a p−multivariate normal distribution with a null mean and a block-
diagonal covariance matrix ΣB as defined in Section 2. We fix the number of variables p = 100 and the
sample size n = 70. For the partition on variable B?: we vary the number of blocks among K? ∈ {1,15}.
For each block indexed by k, we design the Σ

k matrix as done in Giraud et al. (2012): Σ
k = T T t +D

where T is a random lower triangular matrix with values drawn from a uniform distribution between -1
and 1, and D is a diagonal matrix designed to prevent Σ

k from having eigenvalues that are too small.

4.1 Block-diagonal covariance structure detection
First, we investigate the ability to recover the simulated partition of variables B? using the hierarchical
clustering from Tan et al. (2015), the non-asymptotic model selection based on the slope heuristic dimen-
sion jump (SHDJ) and the slope heuristic robust regression (SHRR). Selected partitions for each method
are compared with the simulated partition B? using the Adjusted Rand Index (Hubert and Arabie, 1985).

RR n° ??



8 Devijver & Gallopin

Block-diagonal covariance matrix Σ with K? = 15 blocks

We fix the design of the block-diagonal covariance matrix Σ with K? = 15 blocks of approximately equal
sizes. Illustrations of the calibration of the penalty coefficient κ are presented in Figure 1. Both calibration
methods yield the same results.

In addition, we compare the partition selection methods with an average linkage hierarchical clus-
tering with K = 15 as proposed in the cluster graphical lasso (Tan et al., 2015). Figure 2 displays the
ARI computed over 100 replicated datasets with p = 100 variables, n = 70 samples and K = 15 blocks.
Despite the fact that the partition with the hierarchical clustering takes as an input parameter the true
number of clusters (K = 15), the ARI for the hierarchical clustering is lower than the ARI for the two
slope heuristic based methods (SHRR and SHDJ) which do not need to specify the number of clusters K
in advance.

Full covariance matrix Σ with K? = 1 block

We simulate n = 70 observations from a multivariate normal distribution with a null mean and full covari-
ance matrix Σ. The corresponding network of conditional dependencies is almost a clique. As anticipated,
solving the graphical lasso problem in this context is too ambitious, as proved by Verzelen (2012): infer-
ring the true network requires the estimation of D = 4950 parameters, with only n× p = 700 data points.
Illustrations of the calibration of the κ coefficient are displayed in Figure 3. In contrast with Figure 1, the
biggest dimension jump in the graph representing the model dimension as a function of the coefficient κ

is not clear. Moreover, the partition selected by dimension jump and robust regression are not equivalent.
In this context, no relevant block-diagonal structure is detected.

4.2 Downstream network inference performance
To illustrate the potential advantages of prior block-diagonal covariance structure detection, we compare
several strategies for network inference on data simulated under a multivariate normal distribution with a
null mean and a block-diagonal covariance matrix Σ with K? = 15 blocks of approximate equal sizes.

To perform network inference, we use the graphical lasso algorithm proposed in Friedman et al.
(2008) and implemented in the R package glasso, version 1.7. We compare the following strategies:

1. Glasso: We perform network inference using the graphical lasso on all variables, with regularization
parameter ρ chosen using the following BICnet criterion:

BICnet(ρ) =
n
2

(
logdet Θ̂

(ρ)− trace
(

SΘ̂
(ρ)
))
− log(n)

2
dfΘ̂(ρ); (9)

where Θ̂(ρ) the solution of the graphical lasso with regularization parameter ρ , S is the sample
covariance matrix, and df the degrees of freedom.

2. CGL: We perform network inference using the cluster graphical lasso proposed in Tan et al. (2015).
First, the partition of variables is detected using an average linkage hierarchical clustering with
K = 15 clusters. Note that we set the number of clusters to the true number K?. Subsequently, the
regularization parameters in each graphical lasso problem ρ1, . . . ,ρK? are chosen from Corollary 3
of Tan et al. (2015): the inferred network in each block must be as sparse as possible while still
remaining a single connected component.

3. Inference on partitions based on model selection: First, we detect the partition using the two vari-
ants of our non asymptotic model selection (SHRR ou SHDJ).

(a) SHRR: The partition B̂SHRR is selected using the Slope Heuristic Robust Regression.

Inria
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Figure 1: Calibration of the κ coefficient on a dataset simulated under a multivariate normal distribution
with a block-diagonal covariance matrix ΣB with K? = 15 blocks, p = 100, n = 70. Calibration by
dimension jump (left): the dimension of the model is represented as a function of the κ coefficient. Based
on the slope heuristic, the largest jump (dotted line) corresponds to the minimal coefficient κmin. The
optimal penalty (cross) is twice the minimal penalty. Calibration by robust regression (right): the log-
likehood of the model is represented as a function of the model dimension. Based on the slope heuristic,
the slope of the regression (line) between the log-likehood and the model dimension for complex models
corresponds to the minimal coefficient κmin. The optimal penalty is twice the minimal penalty.
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Figure 2: ARI between the simulated partition and the partitions selected by slope heuristic dimension
jump (SHDJ), slope heuristic robust regression (SHRR) and by average hierarchical clustering with K =
15 clusters. The ARI are computed over 100 replicated datasets simulated under a multivariate normal
distribution with block-diagonal covariance matrix with K = 15 blocks, p = 100 variables and n = 70
observations.
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Values of the penalty constant κ
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Figure 3: Calibration of the κ coefficient on a dataset simulated under a multivariate normal distribution
with a full covariance matrix with one K? = 1 and p = 100, n = 70. Calibration by robust regression
(left) and by dimension jump (right): in this extreme setting, no clear linear tendency (line) between the
log-likelihood and the model complexity for complex models is observed and the largest jump (dotted
line) is unclear.
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(b) SHDJ: The partition B̂SHDJ is detected using the Slope Heuristic Dimension Jump.

Subsequently, the regularization parameters in each graphical lasso problem ρ1, . . . ,ρK̂ are chosen
using the BICnet criterion:

BICnet(ρk) =
n
2

(
logdet Θ̂

(ρk)− trace
(

S|kΘ̂
(ρk)
))
− log(n)

2
dfΘ̂(ρk), (10)

where Θ̂(ρk) is the solution of the graphical lasso problem restricted to the variables in block k,
S|k is the sample covariance matrix on variables belonging to the block k and df the corresponding
degrees of freedom.

4. Inference on the true partition of variables (truePart): First, we set the partition of variables to the
true partition B?. Then, the regularization parameters in each graphical lasso problem ρ1, . . . ,ρK?

are chosen using the BICnet criterion (10).

We compare the performance of the five methods using the sensitivity (SENS = TP/(TP+FN)), the
specificity (SPEC = TN/(TN+FP)) and the False Discovery Rate (FDR) (FDR= FP/(T P+FP)) where
T N,T P,FN,FP are respectively the number of true negative, true positive, false negative, false positive
dependencies detected. A network inference procedure is a compromise between sensitivity and speci-
ficity: we are looking for a high sensitivity, which measures the proportion of dependencies (presence
of edges) that are correctly identified, and a high specificity, which measures the proportion of indepen-
dencies (absence of edges) that are correctly identified. The False Discovery Rate is the proportion of
dependencies wrongly detected.

As expected, the true partition strategy (truePart) performs the best: based on the true partition of
variables, the network inference problem is easier because we solve problems of smaller dimension. The
proposed strategies, based on the SHRR and SHDJ partitions, improve network inference compared to
a simple graphical lasso on the set of all variables (glasso) or compared to the cluster graphical lasso
(CGL), as illustrated in Figure 4.
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Figure 4: Performance of network inference methods (glasso: graphical lasso on the set of all variables,
CGL: cluster graphical lasso, BIC: network inference based on the partition of variables B̂BIC, SSHR: net-
work inference based on the partition of variables B̂SHRR, SHDJ: network inference based on the partition
of variables B̂SHDJ and truePart: network inference based on the partition of variables B?) measured by
the sensitivity (SENS), the specificity (SPEC) and the False Discovery Rate (FDR) of the inferred graph
over 100 replicated datasets simulated under a p−multivariate normal distribution with a null mean 0
and a block-diagonal covariance matrix ΣB? with p = 100, K = 15, n = 70 and clusters of approximately
equal sizes.
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5 Real data analysis

Pickrell et al. analyzed transcriptome expression variation from 69 lymphoblastoid cell lines derived from
unrelated Nigerian individuals (Pickrell, 2010). The expression of 52580 genes across 69 observations
was measured using RNA-seq. The data is extracted from the Recount database (Frazee et al., 2011).
After filtering weakly expressed genes using the HTSFilter package (Rau et al., 2013), we identified the
200 most variable genes among the 9191 remaining genes, and restrict our attention to this set of genes
for the following network inference analysis.

First, we select the partition B̂ using model selection as described in equation (4). The log-likelihood
increases with the number of parameters to be estimated in the model as displayed in Figure 5. We notice
a linear tendency in the relationship between the log-likelihood and the model dimension for complex
models (points corresponding to a model dimension higher than 500). This suggests that the use of the
slope heuristic is appropriate for selecting a partition B̂. The model selected by SHDJ and by SHRR
described in Section 2 are the same. The number of blocks detected is K̂SH = 150 and the corresponding
model dimension is DB̂SH

= 283. The partition B̂SH yields 4 blocks of size 18,13,8 and 5, 4 blocks of
size 3, 2 blocks of size 2 and 140 blocks of size 1. The partition selected by the Slope Heuristic offers a
drastic reduction of the number of parameters to infer, as compared with the graphical lasso performed
on the full set of variables, which corresponds to a total of D = 19900 parameters to estimate.

The networks within each cluster of variables are inferred using the graphical lasso algorithm of
Friedman (Friedman et al., 2008) implemented in the glasso package, version 1.7. The regularization
parameter for the graphical lasso on the set of all variables is chosen using the BICnet criterion (9). The
model inferred based on partition B̂SH is more parsimonious and easier to interpret than the model inferred
on the full set of variables. An illustration of inferred networks in the four largest connected components
of the partition B̂SH are displayed on Figure 6. These four networks might be good candidates for further
study.

6 Discussion

In this paper, we have proposed a non-asymptotic procedure to detect a block diagonal structure for
covariance matrices in GGMs. It substantially reduces the number of parameters to estimate in the model.
Although GGMs are widely used in practice, limited sample sizes typically force the user to restrict the
number of variables to be included in the model. Usually, this restriction is performed manually, for
instance, based on prior knowledge on the role of variables. Here, we propose an automatic procedure to
select relevant subsets of variables based on the data. Therefore, our procedure is of great practical interest
to estimate parameters in GGMs when the sample size is much smaller than the number of parameters to
estimate.

The methodology we propose is easy to implement in practice and fast to compute. The calibration of
the κ coefficient by robust regression and dimension jump encounters no particular difficulty. Moreover,
graphical representation of the log-likelihood or the model dimension can indicate if the block diagonal
assumption is incorrect.

Our method uses a model selection criterion to detect a block diagonal structure. We propose a
non-asymptotic approach supported by strong theoretical results. Indeed, we obtain an oracle inequality,
which ensures that the model we select by a penalized criterion is close to the oracle, i.e. the best model
among our family. Moreover, we obtain a minimax lower bound of the risk between the true model and
the model selected among the model collection, which ensures that the estimator is not overly penalized.

Finally, results on real data attest that the slope heuristic adapts the model selection to the bias induced
by the model collection, and selects a sparse and interpretable model.
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Figure 5: Calibration of the κ coefficient on the 200 most variable genes extracted from the Pickrell
(2010) dataset. Calibration by robust regression (left): the log-likehood of the model is represented as a
function of the model dimension. Based on the slope heuristic, the slope of the regression (line) between
the log-likehood and the model dimension for complex models corresponds to the minimal coefficient
κmin. The optimal penalty is twice the minimal penalty. Calibration by dimension jump (right): the
dimension of the model is represented as a function of the κ coefficient. Based on the slope heuristic, the
largest jump corresponds to the minimal coefficient κmin. In both cases, the optimal penalty is twice the
minimal penalty.
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Figure 6: Networks inferred on the four largest components detected by slope heuristic. Regularization
parameters in each set of variables are chosen using the BICnet criterion (10). Numbers indicate gene
labels.
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7 Appendix
In this Appendix, we detail the proof of Theorems 3.1 and 3.2. First, we describe a discretization of
the model collection used, which is useful in the two proofs. Then, in Section 7.2, we prove Theorem
3.1. We first generalize a model selection theorem for MLE, introduced by Massart, to random model
selection. Subsequently, we prove that our model collection satisfies all the assumptions of this Theorem,
and deduce the oracle inequality. In Section 7.3, we prove Theorem 3.2 using Birgé’s Lemma with the
discretization of the model collection obtained in Section 7.1.

7.1 Model collection and discretization
7.1.1 Discretization for the adjacency matrices

Let B = (B1, . . . ,BK) ∈B. For a given matrix ΣB ∈ Sbound
B , we may identify a corresponding adjacency

matrix AB. This matrix of size p2 could be summarized by the vector of concatenated upper triangular
vectors. Then, we may construct a discrete space for {0,1}p(p−1)/2 which is in bijection with

A bound
B =

{
AB ∈ Sp({0,1})|∃ΣB ∈ Sbound

B s.t. Ad j(ΣB) = AB
}
.

Let focus first on {0,1}p(p−1)/2.

Lemma 7.1 Let {0,1}p(p−1)/2 be equipped with Hamming distance δ . Let {0,1}p(p−1)/2
B be the subset

of {0,1}p(p−1)/2 of vectors for which the corresponding graph has structure B.
For every α ∈ (0,1), let β ∈ (0,1) such that DB ≤ αβ p(p−1)/2. There exists some subset R(α) of

{0,1}p(p−1)/2
B with the following properties

δ (r,r
′
)> 2(1−α)DB for every (r,r

′
) ∈R(α)2 with r 6= r

′
(11)

log |R(α)| ≥ ρDB log
p(p−1)

2DB
+κK(1− log(K)) (12)

where ρ =−α(− log(β )+β −1)/ log(αβ ) and DB = ∑1≤k≤K pk(pk−1)/2.

Proof. Let R be a maximal subset of {0,1}p(p−1)/2
B satisfying property (11). Then the closed balls with

radius ε whose belong to R cover {0,1}p(p−1)/2
B . We remark that x 7→ Pσ xP−1

σ is a group action, isometric
and transitive on {0,1}p(p−1)/2

B .
Hence,

|{0,1}p(p−1)/2
B | ≤ ∑

x∈R
|B
{0,1}p(p−1)/2

B
(x,ε)|= |R||B

{0,1}p(p−1)/2
B

(x0,ε)|

for every x0 ∈R, where BA(x,r) = {y ∈ A|δ (x,y)≤ r}.
Our proof is similar to the proof of Lemma 4.10 in Massart (2007). Consider:

[{0,1}p(p−1)/2]D =
{

x ∈ {0,1}p(p−1)/2|δ (0,x) = D
}
.

Let α ∈ (0,1),β ∈ (0,1) such that D≤ αβ p(p−1)/2. According to Massart (2007), we know that

|B[{0,1}p(p−1)/2]D
(x0,2(1−α)D)| ≤ exp(−ρD log(p(p−1)/2D))(

p(p−1)/2
D

)
with ρ =−α(− log(β )+β −1)/ log(αβ ).
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Nevertheless, as {0,1}p(p−1)/2
B ⊂ [{0,1}p(p−1)/2]DB , for DB = ∑

K
k=1 pk(pk−1)/2,

|{0,1}p(p−1)/2
B | ≤ |R|exp(−ρDB log(p(p−1)/2DB))(

p(p−1)/2
DB

)
As {0,1}p(p−1)/2

B corresponds to the stabilizer of x0,

|{0,1}p(p−1)/2
B | ≥ p!

p1! . . . pK!K!
.

Note that we divide by K! because there are at worst K clusters with the same size.
As

p!
p1! . . . pK!

≥ 1 and
(

p(p−1)/2
DB

)
≥ 1,

|R| ≥ 1
K!

exp(ρDB log(p(p−1)/2DB)) .

Using Stirling’s approximation, we obtain

log(|R|)≥ κK(1− log(K))+ρDB log
(

p(p−1)
2DB

)
.

7.1.2 Discretization for the set of covariance matrices

Corollary 1 Let α ∈ (0,1) and β ∈ (0,1) such that DB ≤ αβ p(p− 1)/2. Let R(α) as constructed in
Lemma 7.1, and its equivalent A disc

B (α) for adjacency matrices. Let ε > 0. Let

Sdisc
B (ε,α) =

{
Σ ∈ S++

p (R)|Adj(Σ) ∈A disc
B (α),Σi, j = σi, jε,σi, j ∈

[em

ε
,

eM

ε

]
∩Z
}
.

Then,

||Σ−Σ
′||22 ≥ 2(1−α)DB∧ ε for every (Σ,Σ′) ∈ (Sdisc

B (ε,α))2 with Σ 6= Σ
′

log |Sdisc
B (ε,α)| ≥ ρDB log

(⌊
eM− em

ε

⌋
p(p−1)

2DB

)
+κK(1− log(K)).

Proof. Let (Σ,Σ′) ∈ (Sdisc
B (ε,α))2 with Σ 6= Σ

′. If Σ and Σ
′ are close, either they have the same adjacency

matrix and they differ only on a coefficient or they differ in their adjacency matrices. In the first case,
||Σ−Σ

′||22 ≥ ε . In the second case, ||Σ−Σ
′||22 ≥ 2(1−α)DB. Then,

||Σ−Σ
′||22 ≥ 2(1−α)DB∧ ε,

this minimum depending on α and ε .

7.2 Oracle inequality: proof of Theorem 3.1
First, we state the general theorem we use to get the oracle inequality, and its proof. Then, we deduce the
oracle inequality by proving that our model collection satisfies all the assumptions.
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7.2.1 Model selection theorem for MLE among a random subcollection

We denote by H[.](ε,S,dH) the bracketing entropy of the set S with ε-brackets according to the Hellinger
distance dH .

Theorem 7.2 Let f ∗ be an unknown density to be estimated from a sample of size n (y1, . . . ,yn). Consider
{Fm}m∈M some at most countable deterministic model collection. Let {wm}m∈M be some family of
nonnegative numbers such that

∑
m∈M

exp(−wm)≤Ω < ∞. (13)

We assume that for every m ∈M ,
√

H[.](ε,Fm,dH) is integrable in 0.
Moreover, for all m ∈M , we assume that there exists ψm on R+ such that ψm is nondecreasing,

ξ 7→ ψm(ξ )/ξ is nonincreasing on (0,+∞), and for all ξ ∈ R+, for all u ∈ Fm, denoting by Fm(u,ξ ) =
{t ∈ Fm,dH(t,u)≤ ξ}, ∫

ξ

0

√
H[.](ε,Fm(u,ξ ),dH)dε ≤ ψm(ξ ). (14)

Let ξm such that ψm(ξm) =
√

nξ 2
m.

Introduce {Fm}m∈M̃ some random subcollection of {Fm}m∈M . Let τ > 0, and for all m ∈M , let
fm ∈ Fm such that

KL( f ∗, fm)≤ 2 inf
t∈Fm

KL( f ∗, t);

fm ≥ exp(−τ) f ∗. (15)

Let η ≥ 0 and consider the collection of η-maximum likelihood estimators { f̂m}m∈M̃ . Let pen : M →
R+. Suppose that there exists an absolute constant κ > 0 such that for all m ∈M ,

pen(m)≥ κ
(
ξ

2
m +(1∨ τ)wm/n

)
.

Let η
′ ≥ 0. Then, f̂m̂, with m̂ ∈ M̃ such that

−1
n

n

∑
i=1

log( f̂m̂(yi))+pen(m̂)≤ inf
m∈M̃

{
−1

n

n

∑
i=1

log( f̂m(yi))+pen(m)

}
+η

′

satisfies

E(d2
H( f , f̂m̂))≤C

(
inf

m∈M̃
inf

t∈Fm
KL( f , t)+pen(m)

)
+(1∨ τ)

Ω2

n
+η +η

′

for some absolute positive constant C.

This theorem is a generalization of Theorem 7.11 in Massart (2007) to a random model subcollection
of the whole collection. As the proof is adapted from the proof of this theorem, we detail here only
differences and we refer the interested reader to Massart (2007).

We denote by γn the empirical process and by γ̄n the centered empirical process. Following the proof
of the Massart’s theorem, easy computations lead to

2KL
(

f ,
f + f̂m′

2

)
≤ KL( f , fm)+pen(m)−pen(m′)+2(γ̄n(gm)− γ̄n(ŝm′))
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where

gm =−1
2

log
(

fm

f

)
and ŝm =− log

(
f + f̂m

2 f

)
for m ∈ M̃ and m′ ∈ M̃ (m) =

{
m′ ∈ M̃ ,γn( f̂m′)+pen(m′)≤ γn( f̂m)+pen(m)

}
.

To bound γ̄n(ŝm′), we use Massart’s arguments. The main difference stands in the control of γ̄n(gm).
As M̃ ⊂M is random, E(γ̄n(gm)) 6= 0. Nevertheless, thanks to the Bernstein inequality, which we may
use thanks to the inequality in (15), we obtain, for all u > 0, with probability smaller than exp(−u),

νn(gm)≤
√

1
n

ατ(1∨ τ)KL( f , fm)u+
τ

2n
u,

where ατ is a constant depending on τ . Then, choosing u = wm for all m ∈M , where wm is defined
in (13), some fastidious but straightforward computations similar to those of Massart’s lead to Theorem
7.2.

We remark that this is a theoretically easy extension, but quite useful in practice, e.g. for controlling
large model collections.

7.2.2 Bracketing entropy

Let B ∈B. Let f ∈ Fbound
B : f = Φ(0,ΣB). Let ε > 0 and α > 0. According to Corollary 1, there exists

S ∈ Sdisc
B (ε,α) such that:

||ΣB−S||22 ≤ 2(1−α)DB∧ ε.

If we take α = 1− ε/2DB, we obtain ||ΣB−S||22 ≤ ε .
Then we consider:

u(x) = (1+2δ )γ
φ(x|0,(1+δ )S)

l(x) = (1+2δ )−γ
φ(x|0,(1+δ )−1S)

According to the Proposition 4 in Maugis and Michel (2011), if δ = β/
√

3γ and if ε = λmβ/(3
√

3p2),
the set {l,u} is a β -bracket set over Fbound

B .
If we denote by N[.](β ,Fbound

B ,dH) the minimal number of brackets [l,u] such that dh(l,u)≤ ε which
are necessary to recover Fbound

B and H[.](β ,Fbound
B ,dH) the logarithm of this number, which corresponds

to the brackting entropy, we obtain from Corollary 1 that

N[.](β ,F
bound
B ,dH)≤ κ

(
3
√

3p2(eM− em)p(p−1)
λm2DBβ

)ρDB

K(1− log(K))

H[.](β ,F
bound
B ,dH)≤ DB

(
logC+ρ log

(
1

DBε

))
.

with C = κK(1− log(K)) 3
√

3p2(eM−em)p(p−1)
2λm

.
We then construct ψB satisfying Equation (14).
For all ξ > 0,

∫
ξ

0

√
H[.](β ,Fbound

B ,dH)dβ ≤ ξ
√

DB logC+
√

DBρ

∫
ξ

0

√
log
(

1
DBβ

)
dβ .
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According to Maugis and Michel (2011),

∫
ξ

0

√
log
(

1
β

)
dβ ≤

∫
ξ∧1

0

√
log
(

1
β

)
dβ ≤ (ξ ∧1)

(
√

π +

√
log
(

1
ξ ∧1

))
.

Then, denoting by c =
√

logC+
√

π , we can define ψB by

ψB(ξ ) =
√

DBξ

(
c+

√
ρ log

1
DB

+

√
ρ log

1
ξ ∧1

)
.

As we want ξB such that ψB(ξB) =
√

nξ 2
B , we could take:

ξ
2
B ≤

DB

n

[
2c2 +ρ log

(
1

DB(
DB
n c2∧1)

)]
.

7.2.3 Construction of the weights

We need to control the Bell number, which is the cardinal of B. For this, we use a result of Berend and
Tassa (2010), which guarantees that

|B| ≤
(

0.792p
log(p+1)

)p

for p ∈ N.

Lemma 7.3 Let wB = p log
(

0.792p
log(p+1)

)
. Then, ∑B∈B exp(−wB)≤ 1.

7.3 Lower bound for the minimax risk: Proof of Theorem 3.2
Fix B ∈B.

First case: p(p−1)/2≥ 4DB
Let α = 3/4, β = 1/3, and ε =DB/2. Let Sdisc

B (DB/2,3/4) the discrete space constructed in Corollary
1, and

FB(r) =
{

rS,S ∈ Sdisc
B

(
DB

2
,

3
4

)}
for r > 0.

Let f ∗= φ(0,Σ∗) be the true density. Let f̂ be the considered estimator. We define f̃ = argmin
f∈FB(r)

{
dH( f̂ , f )

}
.

First, we have:

dH( f , f̃ )≤ dH( f , f̂ )+dH( f̂ , f̃ )≤ 2dH( f̂ , f ). (16)

Secondly, we have:

dH( f̃ , f )2 ≥ 1 f 6= f̃ min
f ′ 6= f

dH( f , f
′
)2

E(dH( f̃ , f )2)≥ P( f 6= f̃ )min
f ′ 6= f

dH( f , f
′
)2. (17)
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Then, by combining (16) and (17) we obtain:

max
f∈FB(r)

E(d2
H( f̂ , f ))≥ 1

4
max

f∈FB(r)

[
Pf ( f 6= f̃ )min

f ′ 6= f
d2

H( f , f
′
)

]
. (18)

We need to design a lower bound for

max
f∈FB(r)

Pf ( f 6= f̃ ).

For this purpose, we use the Birgé lemma.

Lemma 7.4 Let (Pf ) f∈F a probability family, and (A f ) f∈F some event pairwise disjoints. Let a0 =
P0(A0) and a = min f∈F Pf (A f ). Then,

min
f∈F

Pf (A f )≤
2e

2e+1
∨

max f∈F KL(Pf ,P0)

log(1+ card(F ))
.

Then, if use Birgé’s Lemma to control max f∈FB(r) Pf ( f 6= f̃ ) in (18), we obtain

max
f∈FB(r)

E(d2
H( f̂ , f ))≥ 1

4(2e+1)
1

4+ p log(eM/em)

1
2

λm p3

e2
m

DBr2 (19)

if the following inequality is satisfied

max
f1, f2∈FB(r)

(nKL( f1, f2))≤
2e

2e+1
log(1+ cardFB(r)). (20)

The inequality (20) is satisfied if the inequality (21) is fulfilled, with

n
2

p3 λm

e2
m

DBr2 ≤ 2e
2e+1

(
ρDB log

(
p(p−1)(eM− em)

D2
B

)
+κK(1− log(K))

)
(21)

Then, we can replace this condition in (19) and we obtain

max
f∈FB(r)

E(d2
H( f̂B, f ))≥C

DB

n

(
1+ log

C2

D2
B

)
with

C =
2e

4(2e+1)2
1

4+ p log(eM/em)
ρ

and with 0.233≤ ρ ≤ 0.234, and C2 = p(p−1)(eM− em).
Second case: p(p−1)/2≤ 4DB
We can use the Varshamov-Gilbert lemma (see for example Massart (2007), Lemma 4.7) to discretize

the covariance space, and construct F̃B(r) as previously. Then, Birgé’s Lemma involves

sup
f∈F̃B(r)

E(d2
H( f̂ , f )≥ 1

4(2e+1)
1

4+ p log(eM/em)

1
2

λm p3

e2
m

DBr2
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if

n
2

p3 λm

e2
m

DBr2 ≤ 2e
2e+1

ρ
DB

2
.

Then, we obtain the following bound:

sup
f∈F̃B(r)

E(d2
H( f̂ , f )≥ 1

4(2e+1)
1

4+ p log(eM/em)
(DBr2∧ 2e

2e+1
ρ

DB

n
)

Conclusion
As FB(r)⊂ Fbound

B , and F̃B(r)⊂ Fbound
B , choosing r = (1+ log(C2/D2

B))
1/2, we get that

max
f∈Fbound

B

E(d2
H( f̂B, f ))≥C

DB

n

(
1+ log

C2

D2
B

)
with

C =
2e

4(2e+1)2
1

4+ p log(eM/em)
ρ

and with 0.233≤ ρ ≤ 0.234, and C2 = p(p−1)(eM− em).
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