R. Akbani, P. K. Ng, H. M. Werner, M. Shahmoradgoli, F. Zhang et al., A pan-cancer proteomic perspective on The Cancer Genome Atlas, Nature Communications, vol.13, 2014.
DOI : 10.1038/ncomms4887

G. I. Allen and Z. Liu, A Local Poisson Graphical Model for Inferring Networks From Sequencing Data, IEEE Transactions on NanoBioscience, vol.12, issue.3, pp.189-198, 2013.
DOI : 10.1109/TNB.2013.2263838

C. Ambroise, J. Chiquet, M. , and C. , Inferring sparse Gaussian graphical models with latent structure, Electronic Journal of Statistics, vol.3, issue.0, pp.205-238, 2009.
DOI : 10.1214/08-EJS314

URL : https://hal.archives-ouvertes.fr/hal-00592201

S. Arlot and P. Massart, Data-driven calibration of penalties for least-squares regression, Journal of Machine Learning Research, vol.10, pp.245-279, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00243116

O. Banerjee, L. Ghaoui, and A. Aspremont, Model selection through sparse maximum likelihood estimation for multivariate gaussian or binary data, Journal of Machine Learning Research, vol.9, pp.485-516, 2008.

Y. Baraud, C. Giraud, and S. Huet, Gaussian model selection with an unknown variance. The Annals of Statistics, pp.630-672, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00756074

J. Baudry, C. Maugis, M. , and B. , Slope heuristics: overview and implementation, Statistics and Computing, vol.6, issue.2, pp.455-470, 2012.
DOI : 10.1007/s11222-011-9236-1

URL : https://hal.archives-ouvertes.fr/hal-00461639

D. Berend and T. Tassa, Improved bounds on bell numbers and on moments of sums of random variables, Probability and Mathematical Statistics, vol.30, issue.2, pp.185-205, 2010.

P. Bickel and E. Levina, Regularized estimation of large covariance matrices. The Annals of Statistics, pp.199-227, 2008.

L. Birgé, A new lower bound for multiple hypothesis testing. Information Theory, IEEE Transactions, vol.51, issue.4, pp.1611-1615, 2005.

L. Birgé and P. Massart, Minimal penalties for Gaussian model selection. Probability Theory & Related Fields, 2007.

C. Bouveyron, E. Côme, J. , and J. , The discriminative functional mixture model for a comparative analysis of bike sharing systems, The Annals of Applied Statistics, vol.9, issue.4, 2015.
DOI : 10.1214/15-AOAS861

URL : https://hal.archives-ouvertes.fr/hal-01024186

T. Cai, C. Zhang, and H. Zhou, Optimal rates of convergence for covariance matrix estimation, The Annals of Statistics, vol.38, issue.4, pp.2118-2144, 2010.
DOI : 10.1214/09-AOS752

P. Danaher, P. Wang, and D. Witten, The joint graphical lasso for inverse covariance estimation across multiple classes, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.94, issue.2, pp.76373-397, 2014.
DOI : 10.1111/rssb.12033

A. C. Frazee, B. Langmead, and J. T. Leek, ReCount: A multi-experiment resource of analysis-ready RNA-seq gene count datasets, BMC Bioinformatics, vol.12, issue.1, p.12, 2011.
DOI : 10.1038/ng1955

J. Friedman, T. Hastie, and R. Tibshirani, Sparse inverse covariance estimation with the graphical lasso, Biostatistics, vol.9, issue.3, pp.432-441, 2008.
DOI : 10.1093/biostatistics/kxm045

C. Genovese and L. Wasserman, Rates of convergence for the Gaussian mixture sieve. The Annals of Statistics, pp.1105-1127, 2000.

C. Giraud, Estimation of Gaussian graphs by model selection, Electronic Journal of Statistics, vol.2, issue.0, pp.542-563, 2008.
DOI : 10.1214/08-EJS228

URL : https://hal.archives-ouvertes.fr/hal-00180837

C. Giraud, S. Huet, and N. Verzelen, Graph Selection with GGMselect, Statistical Applications in Genetics and Molecular Biology, vol.11, issue.3, 2012.
DOI : 10.1515/1544-6115.1625

URL : https://hal.archives-ouvertes.fr/hal-00401550

J. Guo, E. Levina, G. Michailidis, and J. Zhu, Joint estimation of multiple graphical models, Biometrika, vol.98, issue.1, pp.1-15, 2011.
DOI : 10.1093/biomet/asq060

L. Hubert and P. Arabie, Comparing partitions, Journal of Classification, vol.78, issue.1, pp.193-218, 1985.
DOI : 10.1007/BF01908075

M. Hyodo, N. Shutoh, T. Nishiyama, and T. Pavlenko, Testing block-diagonal covariance structure for high-dimensional data, Statistica Neerlandica, vol.112, issue.4, pp.460-482, 2015.
DOI : 10.1111/stan.12068

J. Krumsiek, K. Suhre, T. Illig, J. Adamski, and F. J. Theis, Gaussian graphical modeling reconstructs pathway reactions from high-throughput metabolomics data, BMC Systems Biology, vol.5, issue.1, p.21, 2011.
DOI : 10.1186/1752-0509-5-21

E. Lebarbier, Detecting multiple change-points in the mean of Gaussian process by model selection, Signal Processing, vol.85, issue.4, pp.717-736, 2005.
DOI : 10.1016/j.sigpro.2004.11.012

URL : https://hal.archives-ouvertes.fr/inria-00071847

P. Massart, Concentration inequalities and model selection, Lecture Notes in Mathematics, vol.33, 2003.

C. Maugis and B. Michel, A non asymptotic penalized criterion for Gaussian mixture model selection, ESAIM: Probability and Statistics, vol.15, pp.41-68, 2011.
DOI : 10.1051/ps/2009004

URL : https://hal.archives-ouvertes.fr/inria-00284613

R. Mazumder and T. Hastie, Exact covariance thresholding into connected components for largescale Graphical Lasso, Journal of Machine Learning Research, vol.13, pp.781-794, 2012.

N. Meinshausen and P. Bühlmann, High-dimensional graphs and variable selection with the lasso. The Annals of Statistics, pp.1436-1462, 2006.

T. Pavlenko, A. Björkström, and A. Tillander, Covariance structure approximation via gLasso in high-dimensional supervised classification, Journal of Applied Statistics, vol.11, issue.8, pp.391643-1666, 2012.
DOI : 10.1214/09-EJS534

J. Pickrell, Understanding mechanisms underlying human gene expression variation with RNA sequencing, Nature, vol.25, issue.7289, pp.768-772, 2010.
DOI : 10.1038/nature08872

A. Rau, M. Gallopin, G. Celeux, and F. Jaffrézic, Data-based filtering for replicated highthroughput transcriptome sequencing experiments, Bioinformatics, issue.17, pp.292146-2152, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00927025

A. Rau, C. Maugis-rabusseau, M. Martin-magniette, C. , and G. , Co-expression analysis of high-throughput transcriptome sequencing data with Poisson mixture models, Bioinformatics, vol.31, issue.9, pp.311420-1427, 2015.
DOI : 10.1093/bioinformatics/btu845

URL : https://hal.archives-ouvertes.fr/hal-01108821

K. Tan, D. Witten, and A. Shojaie, The cluster graphical lasso for improved estimation of Gaussian graphical models, Computational Statistics & Data Analysis, vol.85, pp.23-36, 2015.
DOI : 10.1016/j.csda.2014.11.015

N. Verzelen, Minimax risks for sparse regressions: Ultra-high dimensional phenomenons, Electronic Journal of Statistics, vol.6, issue.0, pp.38-90, 2012.
DOI : 10.1214/12-EJS666SUPP

URL : https://hal.archives-ouvertes.fr/hal-00508339

J. Whittaker, Graphical Models in Applied Multivariate Statistics, 1990.

D. M. Witten, J. H. Friedman, and N. Simon, New Insights and Faster Computations for the Graphical Lasso, Journal of Computational and Graphical Statistics, vol.20, issue.4, pp.892-900, 2011.
DOI : 10.1198/jcgs.2011.11051a

J. Yin and H. Li, A sparse conditional Gaussian graphical model for analysis of genetical genomics data, The Annals of Applied Statistics, vol.5, issue.4, pp.2630-2650, 2011.
DOI : 10.1214/11-AOAS494SUPP

T. Zhao, H. Liu, K. Roeder, J. Lafferty, and L. Wasserman, The huge package for high-dimensional undirected graph estimation in R, The Journal of Machine Learning Research, vol.13, issue.1, pp.1059-1062, 2012.