S. Altschul, W. Gish, W. Miller, E. Myers, and D. Lipman, Basic local alignment search tool, Journal of Molecular Biology, vol.215, issue.3, pp.403-410, 1990.
DOI : 10.1016/S0022-2836(05)80360-2

P. Arensburger, R. Hice, J. Wright, N. Craig, and P. Atkinson, The mosquito Aedes aegypti has a large genome size and high transposable element load but contains a low proportion of transposon-specific piRNAs, BMC Genomics, vol.14, issue.6, p.606, 2011.
DOI : 10.1101/gr.849004

C. Beck, J. Garcia-perez, R. Badge, and J. Moran, LINE-1 Elements in Structural Variation and Disease, Annual Review of Genomics and Human Genetics, vol.12, issue.1, pp.187-215, 2011.
DOI : 10.1146/annurev-genom-082509-141802

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4124830

R. Bellini, Dispersal and Survival of Aedes albopictus (Diptera: Culicidae) Males in Italian Urban Areas and Significance for Sterile Insect Technique Application, Journal of Medical Entomology, vol.47, issue.6, pp.1082-1091, 2010.
DOI : 10.1603/ME09154

J. Biedler and Z. Tu, Non-LTR Retrotransposons in the African Malaria Mosquito, Anopheles gambiae: Unprecedented Diversity and Evidence of Recent Activity, Molecular Biology and Evolution, vol.20, issue.11, pp.1811-1825, 2003.
DOI : 10.1093/molbev/msg189

C. Bié-mont and C. Vieira, L?influence des ?l?ments transposables sur la taille des g?nomes, Journal de la Soci?t? de Biologie, vol.198, issue.4, pp.413-417, 2004.
DOI : 10.1051/jbio/2004198040413

W. Black, J. Ferrari, and D. Sprengert, Breeding structure of a colonising species: Aedes albopictus (Skuse) in the United States, Heredity, vol.60, issue.2, pp.173-181, 1988.
DOI : 10.1038/hdy.1988.29

W. Black and K. Rai, Genome evolution in mosquitoes: intraspecific and interspecific variation in repetitive DNA amounts and organization, Genetical Research, vol.12, issue.03, pp.185-196, 1988.
DOI : 10.1093/aesa/79.5.784

M. Bonizzoni, G. Gasperi, X. Chen, and A. James, The invasive mosquito species Aedes albopictus: current knowledge and future perspectives, Trends in Parasitology, vol.29, issue.9, pp.460-468, 2013.
DOI : 10.1016/j.pt.2013.07.003

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3777778

M. Boulesteix and C. Bié-mont, Transposable elements in mosquitoes, Cytogenetic and Genome Research, vol.110, issue.1-4, pp.500-509, 2005.
DOI : 10.1159/000084983

J. Brown, , THE DENGUE AND YELLOW FEVER MOSQUITO, Evolution, vol.164, issue.2, pp.514-525, 2014.
DOI : 10.1086/423825

E. Casacuberta, G. , and J. , The impact of transposable elements in environmental adaptation, Molecular Ecology, vol.100, issue.38, pp.1503-1517, 2013.
DOI : 10.1073/pnas.1036705100

B. Ché-nais, A. Caruso, S. Hiard, and N. Casse, The impact of transposable elements on eukaryotic genomes: From genome size increase to genetic adaptation to stressful environments, Gene, vol.509, issue.1, pp.7-15, 2012.
DOI : 10.1016/j.gene.2012.07.042

P. Cock, C. Fields, N. Goto, M. Heuer, and P. Rice, The Sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants, Nucleic Acids Research, vol.38, issue.6, pp.1767-1771, 2010.
DOI : 10.1093/nar/gkp1137

J. Goodier and H. Kazazian, Retrotransposons Revisited: The Restraint and Rehabilitation of Parasites, Cell, vol.135, issue.1, pp.23-35, 2008.
DOI : 10.1016/j.cell.2008.09.022

M. Grabherr, Full-length transcriptome assembly from RNA-Seq data without a reference genome, Nature Biotechnology, vol.30, issue.7, pp.644-652, 2011.
DOI : 10.1101/GR.229202. ARTICLE PUBLISHED ONLINE BEFORE MARCH 2002

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3571712

W. Hawley, The biology of Aedes albopictus, J Am Mosq Control Assoc, vol.1, pp.1-39, 1988.

R. Holt, The Genome Sequence of the Malaria Mosquito Anopheles gambiae, Science, vol.298, issue.5591, pp.129-149, 2002.
DOI : 10.1126/science.1076181

X. Huang, CAP3: A DNA Sequence Assembly Program, Genome Research, vol.9, issue.9, pp.868-877, 1999.
DOI : 10.1101/gr.9.9.868

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC310812/pdf

J. Jurka, W. Bao, and K. Kojima, Families of transposable elements, population structure and the origin of species, Biology Direct, vol.6, issue.1, p.44, 2011.
DOI : 10.1186/1745-6150-5-2

J. Jurka, Repbase Update, a database of eukaryotic repetitive elements, Cytogenetic and Genome Research, vol.110, issue.1-4, pp.462-467, 2005.
DOI : 10.1159/000084979

V. Kapitonov and J. Jurka, Molecular paleontology of transposable elements in the Drosophila melanogaster genome, Proceedings of the National Academy of Sciences, vol.11, issue.9, pp.6569-6574, 2003.
DOI : 10.1101/gr.164201

P. Koch, M. Platzer, and B. Downie, RepARK--de novo creation of repeat libraries from whole-genome NGS reads, Nucleic Acids Research, vol.42, issue.9, p.80, 2014.
DOI : 10.1093/nar/gku210

A. Kumar and K. Rai, Intraspecific variation in nuclear DNA content among world populations of a mosquito, 1990.

B. Langmead and S. Salzberg, Fast gapped-read alignment with Bowtie 2, Nature Methods, vol.9, issue.4, pp.357-359, 2012.
DOI : 10.1093/bioinformatics/btp352

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3322381

E. Lerat, N. Burlet, C. Bié-mont, and C. Vieira, Comparative analysis of transposable elements in the melanogaster subgroup sequenced genomes, Gene, vol.473, issue.2, pp.100-109, 2011.
DOI : 10.1016/j.gene.2010.11.009

URL : https://hal.archives-ouvertes.fr/hal-00850380

W. Li and A. Godzik, Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences, Bioinformatics, vol.22, issue.13, pp.1658-1659, 2006.
DOI : 10.1093/bioinformatics/btl158

S. Linquist, Distinguishing ecological from evolutionary approaches to transposable elements, Biological Reviews, vol.453, issue.3, pp.573-584, 2013.
DOI : 10.1038/nature06936

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.669.4621

O. Marinotti, The Genome of Anopheles darlingi , the main neotropical malaria vector, Nucleic Acids Research, vol.41, issue.15, pp.7387-7400, 2013.
DOI : 10.1093/nar/gkt484

D. Mclain, K. Rai, and M. Fraser, Intraspecific and interspecific variation in the sequence and abundance of highly repeated DNA among mosquitoes of the Aedes albopictus subgroup, Heredity, vol.58, issue.3, pp.373-381, 1987.
DOI : 10.1038/hdy.1987.65

K. Medley, D. Jenkins, and E. Hoffman, Human-aided and natural dispersal drive gene flow across the range of an invasive mosquito, Molecular Ecology, vol.18, issue.2, pp.284-295, 2015.
DOI : 10.1111/j.1365-294X.2009.04131.x

L. Modolo and E. Lerat, Identification and analysis of transposable elements in genomic sequences Genome analysis: current procedures and application, pp.165-181, 2014.

L. Mousson, Phylogeography of Aedes ( Stegomyia ) aegypti (L.) and Aedes ( Stegomyia ) albopictus (Skuse) (Diptera: Culicidae) based on mitochondrial DNA variations, Phylogeography of Aedes (Stegomyia) aegypti (L.) and Aedes (Stegomyia) albopictus (Skuse), pp.1-11, 2005.
DOI : 10.1017/S0016672305007627

V. Nene, Genome Sequence of Aedes aegypti, a Major Arbovirus Vector, Science, vol.17, issue.7, pp.1718-1723, 2007.
DOI : 10.1016/S0168-9525(01)02310-1

URL : https://hal.archives-ouvertes.fr/hal-00156214

P. Nová-k, P. Neumann, and J. Macas, Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data, BMC Bioinformatics, vol.11, issue.1, p.378, 2010.
DOI : 10.1186/1471-2105-11-378

D. Pashley and K. Rai, Comparison of Allozyme and Morphological Relationships in Some Aedes (Stegomyia) Mosquitoes (Diptera: Culicidae), Annals of the Entomological Society of America, vol.76, issue.3, pp.388-394, 1983.
DOI : 10.1093/aesa/76.3.388

P. Rao and K. Rai, Inter and intraspecific variation in nuclear DNA content in Aedes mosquitoes, Heredity, vol.59, issue.2, pp.253-258, 1987.
DOI : 10.1038/hdy.1987.120

R. Rebollo, B. Horard, B. Hubert, and C. Vieira, Jumping genes and epigenetics: Towards new species, Gene, vol.454, issue.1-2, pp.1-7, 2010.
DOI : 10.1016/j.gene.2010.01.003

URL : https://hal.archives-ouvertes.fr/hal-00850384

P. Reiter, [Oviposition and dispersion of Aedes aegypti in an urban environment], Bull Soc Pathol Exot, vol.89, pp.120-122, 1996.

S. Staton, L.) genome reflects a recent history of biased accumulation of transposable elements, The Plant Journal, vol.31, issue.1, pp.142-153, 2012.
DOI : 10.1002/bies.200900026

O. Tange, GNU parallel: the command-line power tool. ;login USENIX Mag, pp.42-47, 2011.

Z. Tu, J. Isoe, and J. Guzova, Structural, genomic, and phylogenetic analysis of Lian, a novel family of non-LTR retrotransposons in the yellow fever mosquito, Aedes aegypti, Molecular Biology and Evolution, vol.15, issue.7, pp.837-853, 1998.
DOI : 10.1093/oxfordjournals.molbev.a025989

D. Vela, A. Fontdevila, C. Vieira, G. Guerreiro, and M. , A Genome-Wide Survey of Genetic Instability by Transposition in Drosophila Hybrids, PLoS ONE, vol.91, issue.2, p.88992, 2014.
DOI : 10.1371/journal.pone.0088992.s005

URL : https://hal.archives-ouvertes.fr/hal-01526703

S. Venner, C. Feschotte, and C. Bié-mont, Dynamics of transposable elements: towards a community ecology of the genome, Trends in Genetics, vol.25, issue.7, pp.317-323, 2009.
DOI : 10.1016/j.tig.2009.05.003

URL : https://hal.archives-ouvertes.fr/hal-00428403

T. Wicker, A unified classification system for eukaryotic transposable elements, Nature Reviews Genetics, vol.8, issue.12, pp.973-982, 2007.
DOI : 10.1101/SQB.1984.049.01.039

URL : https://hal.archives-ouvertes.fr/hal-00169819

D. Zerbino and E. Birney, Velvet: Algorithms for de novo short read assembly using de Bruijn graphs, Genome Research, vol.18, issue.5, pp.821-829, 2008.
DOI : 10.1101/gr.074492.107

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2336801

D. Zhou, Genome sequence of Anopheles sinensis provides insight into genetics basis of mosquito competence for malaria parasites, BMC Genomics, vol.15, issue.1, p.42, 2014.
DOI : 10.1006/jmbi.2000.4042

M. Zytnicki, E. Akhunov, and H. Quesneville, Tedna: a transposable element de novo assembler, Bioinformatics, vol.30, issue.18, pp.2656-2658, 2014.
DOI : 10.1093/bioinformatics/btu365