D. A. Beard, E. Babson, E. Curtis, and H. Qian, Thermodynamic constraints for biochemical networks, Journal of Theoretical Biology, vol.228, issue.3, pp.327-333, 2004.
DOI : 10.1016/j.jtbi.2004.01.008

A. P. Burgard, S. Vaidyaraman, and C. D. Maranas, Minimal Reaction Sets for Escherichia coli Metabolism under Different Growth Requirements and Uptake Environments, Biotechnology Progress, vol.17, issue.5, pp.791-797, 2001.
DOI : 10.1021/bp0100880

W. H. Cunningham, A combinatorial decomposition theory, Journal canadien de math??matiques, vol.32, issue.3, 1973.
DOI : 10.4153/CJM-1980-057-7

A. M. Feist and B. O. Palsson, The biomass objective function, Current Opinion in Microbiology, vol.13, issue.3, pp.344-349, 2010.
DOI : 10.1016/j.mib.2010.03.003

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2912156

E. R. Gansner, E. Koutsofios, S. C. North, and K. Vo, A technique for drawing directed graphs, IEEE Transactions on Software Engineering, vol.19, issue.3, pp.214-230, 1993.
DOI : 10.1109/32.221135

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

E. R. Gansner and S. C. North, An open graph visualization system and its applications to software engineering. Software -Practice and Experience 30, pp.1203-1233, 2000.
DOI : 10.1002/1097-024x(200009)30:11<1203::aid-spe338>3.0.co;2-n

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

S. M. Kelk, B. G. Olivier, L. Stougie, and F. J. Bruggeman, Optimal flux spaces of genome-scale stoichiometric models are determined by a few subnetworks, Scientific Reports, vol.224, issue.2, p.580, 2012.
DOI : 10.1038/srep00580

URL : https://hal.archives-ouvertes.fr/hal-00763439

C. Khannapho, H. Zhao, B. L. Bonde, A. M. Kierzek, C. A. Avignone-rossa et al., Selection of objective function in genome scale flux balance analysis for process feed development in antibiotic production, Metabolic Engineering, vol.10, issue.5, pp.227-233, 2008.
DOI : 10.1016/j.ymben.2008.06.003

S. Krogdahl, The dependence graph for bases in matroids, Discrete Mathematics, vol.19, issue.1, pp.47-59, 1977.
DOI : 10.1016/0012-365X(77)90118-2

R. Mahadevan and C. Schilling, The effects of alternate optimal solutions in constraint-based genome-scale metabolic models, Metabolic Engineering, vol.5, issue.4, pp.264-276, 2003.
DOI : 10.1016/j.ymben.2003.09.002

A. C. Müller and A. Bockmayr, Fast thermodynamically constrained flux variability analysis, Bioinformatics, vol.29, issue.7, pp.903-909, 2013.
DOI : 10.1093/bioinformatics/btt059

A. C. Müller and A. Bockmayr, Flux modules in metabolic networks, Journal of Mathematical Biology, vol.22, issue.15, pp.296-12084, 2013.
DOI : 10.1007/s00285-013-0731-1

J. S. Oliveira, C. G. Bailey, J. B. Jones-oliveira, and D. A. Dixon, An Algebraic-combinatorial Model for the Identification and Mapping of Biochemical Pathways, Bulletin of Mathematical Biology, vol.63, issue.6, pp.1163-1196, 2001.
DOI : 10.1006/bulm.2001.0263

J. D. Orth, I. Thiele, and B. O. Palsson, What is flux balance analysis?, Nature Biotechnology, vol.19, issue.3, p.245248, 2010.
DOI : 10.1038/nbt.1614

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3108565

J. Oxley, Matroid Theory. Oxford Graduate Texts in Mathematics, 2011.

A. J. Papin, J. Stelling, N. D. Price, S. Klamt, S. Schuster et al., Comparison of network-based pathway analysis methods, Trends in Biotechnology, vol.22, issue.8, pp.400-405, 2004.
DOI : 10.1016/j.tibtech.2004.06.010

N. D. Price, J. L. Reed, and B. Ø. Palsson, Genome-scale models of microbial cells: evaluating the consequences of constraints, Nature Reviews Microbiology, vol.83, issue.11, pp.886-897, 2004.
DOI : 10.1074/jbc.M403782200

F. Santos, J. Boele, and B. Teusink, A Practical Guide to Genome-Scale Metabolic Models and Their Analysis, Methods in enzymology 500, 2011.
DOI : 10.1016/B978-0-12-385118-5.00024-4

S. Schuster and C. Hilgetag, ON ELEMENTARY FLUX MODES IN BIOCHEMICAL REACTION SYSTEMS AT STEADY STATE, Journal of Biological Systems, vol.02, issue.02, pp.165-182, 1994.
DOI : 10.1142/S0218339094000131

S. Schuster and R. Schuster, Detecting strictly detailed balanced subnetworks in open chemical reaction networks, Journal of Mathematical Chemistry, vol.334, issue.1, pp.17-40, 1991.
DOI : 10.1007/BF01192571

K. Truemper, Partial Matroid Representations, European Journal of Combinatorics, vol.5, issue.4, pp.377-394, 1984.
DOI : 10.1016/S0195-6698(84)80041-4

URL : http://doi.org/10.1016/s0195-6698(84)80041-4

A. Varma and B. O. Palsson, Metabolic Flux Balancing: Basic Concepts, Scientific and Practical Use, Bio/Technology, vol.43, issue.10, pp.994-998, 1994.
DOI : 10.1006/jtbi.1993.1203