On the interaction problem between a compressible fluid and a Saint-Venant Kirchhoff elastic structure

Muriel Boulakia 1, 2 Sergio Guerrero 2
1 REO - Numerical simulation of biological flows
LJLL - Laboratoire Jacques-Louis Lions, Inria Paris-Rocquencourt, UPMC - Université Pierre et Marie Curie - Paris 6
Abstract : In this paper, we consider an elastic structure immersed in a compressible viscous fluid. The motion of the fluid is described by the compressible Navier-Stokes equations whereas the motion of the structure is given by the nonlinear Saint-Venant Kirchhoff model. For this model, we prove the existence and uniqueness of regular solutions defined locally in time. To do so, we first rewrite the nonlinearity in the elasticity equation in an adequate way. Then, we introduce a linearized problem and prove that this problem admits a unique regular solution. To obtain time regularity on the solution, we use energy estimates on the unknowns and their successive derivatives in time and to obtain spatial regularity, we use elliptic estimates. At last, to come back to the nonlinear problem, we use a fixed point theorem.
Type de document :
Article dans une revue
Advances in Differential Equations, Khayyam Publishing, 2017, 22 (1-2)
Liste complète des métadonnées

Littérature citée [32 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01229577
Contributeur : Muriel Boulakia <>
Soumis le : vendredi 20 novembre 2015 - 21:04:20
Dernière modification le : vendredi 7 décembre 2018 - 01:26:43
Document(s) archivé(s) le : vendredi 28 avril 2017 - 18:47:55

Fichier

Boulakia_Guerrero2.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01229577, version 1

Citation

Muriel Boulakia, Sergio Guerrero. On the interaction problem between a compressible fluid and a Saint-Venant Kirchhoff elastic structure. Advances in Differential Equations, Khayyam Publishing, 2017, 22 (1-2). 〈hal-01229577〉

Partager

Métriques

Consultations de la notice

287

Téléchargements de fichiers

130