Balanced labellings of affine permutations

Abstract : We study the $\textit{diagrams}$ of affine permutations and their $\textit{balanced}$ labellings. As in the finite case, which was investigated by Fomin, Greene, Reiner, and Shimozono, the balanced labellings give a natural encoding of reduced decompositions of affine permutations. In fact, we show that the sum of weight monomials of the $\textit{column strict}$ balanced labellings is the affine Stanley symmetric function defined by Lam and we give a simple algorithm to recover reduced words from balanced labellings. Applying this theory, we give a necessary and sufficient condition for a diagram to be an affine permutation diagram. Finally, we conjecture that if two affine permutations are $\textit{diagram equivalent}$ then their affine Stanley symmetric functions coincide.
Type de document :
Communication dans un congrès
Alain Goupil and Gilles Schaeffer. 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013), 2013, Paris, France. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013), pp.779-790, 2013, DMTCS Proceedings
Liste complète des métadonnées

Littérature citée [12 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01229656
Contributeur : Alain Monteil <>
Soumis le : mardi 17 novembre 2015 - 10:19:23
Dernière modification le : mardi 7 mars 2017 - 15:22:42
Document(s) archivé(s) le : jeudi 18 février 2016 - 11:31:20

Fichier

dmAS0166.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-01229656, version 1

Collections

Citation

Hwanchul Yoo, Taedong Yun. Balanced labellings of affine permutations. Alain Goupil and Gilles Schaeffer. 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013), 2013, Paris, France. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013), pp.779-790, 2013, DMTCS Proceedings. 〈hal-01229656〉

Partager

Métriques

Consultations de la notice

47

Téléchargements de fichiers

189