Generation modulo the action of a permutation group

Abstract : Originally motivated by algebraic invariant theory, we present an algorithm to enumerate integer vectors modulo the action of a permutation group. This problem generalizes the generation of unlabeled graph up to an isomorphism. In this paper, we present the full development of a generation engine by describing the related theory, establishing a mathematical and practical complexity, and exposing some benchmarks. We next show two applications to effective invariant theory and effective Galois theory.
Type de document :
Communication dans un congrès
Alain Goupil and Gilles Schaeffer. 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013), 2013, Paris, France. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013), pp.767-778, 2013, DMTCS Proceedings
Liste complète des métadonnées

Littérature citée [8 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01229658
Contributeur : Alain Monteil <>
Soumis le : mardi 17 novembre 2015 - 10:19:26
Dernière modification le : mercredi 11 avril 2018 - 12:12:03
Document(s) archivé(s) le : jeudi 18 février 2016 - 11:31:48

Fichier

dmAS0165.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-01229658, version 1

Citation

Nicolas Borie. Generation modulo the action of a permutation group. Alain Goupil and Gilles Schaeffer. 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013), 2013, Paris, France. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013), pp.767-778, 2013, DMTCS Proceedings. 〈hal-01229658〉

Partager

Métriques

Consultations de la notice

82

Téléchargements de fichiers

106