The Robinson―Schensted Correspondence and $A_2$-webs

Abstract : The $A_2$-spider category encodes the representation theory of the $sl_3$ quantum group. Kuperberg (1996) introduced a combinatorial version of this category, wherein morphisms are represented by planar graphs called $\textit{webs}$ and the subset of $\textit{reduced webs}$ forms bases for morphism spaces. A great deal of recent interest has focused on the combinatorics of invariant webs for tensors powers of $V^+$, the standard representation of the quantum group. In particular, the invariant webs for the 3$n$th tensor power of $V^+$ correspond bijectively to $[n,n,n]$ standard Young tableaux. Kuperberg originally defined this map in terms of a graphical algorithm, and subsequent papers of Khovanov–Kuperberg (1999) and Tymoczko (2012) introduce algorithms for computing the inverse. The main result of this paper is a redefinition of Kuperberg's map through the representation theory of the symmetric group. In the classical limit, the space of invariant webs carries a symmetric group action. We use this structure in conjunction with Vogan's generalized tau-invariant and Kazhdan–Lusztig theory to show that Kuperberg's map is a direct analogue of the Robinson–Schensted correspondence.
Type de document :
Communication dans un congrès
Alain Goupil and Gilles Schaeffer. 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013), 2013, Paris, France. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013), pp.861-872, 2013, DMTCS Proceedings
Liste complète des métadonnées

Littérature citée [10 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01229662
Contributeur : Alain Monteil <>
Soumis le : mardi 17 novembre 2015 - 10:19:30
Dernière modification le : dimanche 17 décembre 2017 - 07:04:03
Document(s) archivé(s) le : jeudi 18 février 2016 - 11:32:47

Fichier

dmAS0173.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-01229662, version 1

Collections

Citation

Matthew Housley, Heather M. Russell, Julianna Tymoczko. The Robinson―Schensted Correspondence and $A_2$-webs. Alain Goupil and Gilles Schaeffer. 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013), 2013, Paris, France. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013), pp.861-872, 2013, DMTCS Proceedings. 〈hal-01229662〉

Partager

Métriques

Consultations de la notice

27

Téléchargements de fichiers

299