Cycles and sorting index for matchings and restricted permutations

Abstract : We prove that the Mahonian-Stirling pairs of permutation statistics $(sor, cyc)$ and $(∈v , \mathrm{rlmin})$ are equidistributed on the set of permutations that correspond to arrangements of $n$ non-atacking rooks on a fixed Ferrers board with $n$ rows and $n$ columns. The proofs are combinatorial and use bijections between matchings and Dyck paths and a new statistic, sorting index for matchings, that we define. We also prove a refinement of this equidistribution result which describes the minimal elements in the permutation cycles and the right-to-left minimum letters.
Type de document :
Communication dans un congrès
Alain Goupil and Gilles Schaeffer. 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013), 2013, Paris, France. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013), pp.731-742, 2013, DMTCS Proceedings
Liste complète des métadonnées

Littérature citée [9 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01229666
Contributeur : Alain Monteil <>
Soumis le : mardi 17 novembre 2015 - 10:19:35
Dernière modification le : mercredi 8 novembre 2017 - 09:13:20
Document(s) archivé(s) le : jeudi 18 février 2016 - 11:33:42

Fichier

dmAS0162.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-01229666, version 1

Collections

Citation

Svetlana Poznanović. Cycles and sorting index for matchings and restricted permutations. Alain Goupil and Gilles Schaeffer. 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013), 2013, Paris, France. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AS, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013), pp.731-742, 2013, DMTCS Proceedings. 〈hal-01229666〉

Partager

Métriques

Consultations de la notice

23

Téléchargements de fichiers

278