M. Albert, Permlab: Software for permutation patterns, p.2012

M. H. Albert, M. D. Atkinson, M. Bouvel, A. Claesson, and M. Dukes, On the inverse image of pattern classes under bubble sort, Journal of Combinatorics, vol.2, issue.2, pp.231-243, 2011.
DOI : 10.4310/JOC.2011.v2.n2.a3

URL : https://hal.archives-ouvertes.fr/hal-00525425

M. Bousquet-mélou, Sorted and/or sortable permutations, Discrete Mathematics, vol.225, issue.1-3, pp.25-50, 2000.
DOI : 10.1016/S0012-365X(00)00146-1

M. Bouvel and O. Guibert, Enumeration of permutations sorted with two passes through a stack and D 8 symmetries, DMTCS Proceedings, issue.01, pp.0-2012
URL : https://hal.archives-ouvertes.fr/hal-01283130

A. Claesson and S. Kitaev, Classification of bijections between 321-and 132-avoiding permutations, Sém. Lothar. Combin, vol.60, pp.30-39, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01185127

L. S. Ferrari, Commutation properties among bubblesort, stacksort and their duals, Proceedings of GAS- Com'12
DOI : 10.1016/j.dam.2014.01.014

D. E. Knuth, The art of computer programming, Series in Computer Science and Information Processing, 1975.

V. R. Pratt, Computing permutations with double-ended queues, parallel stacks and parallel queues, Proceedings of the fifth annual ACM symposium on Theory of computing , STOC '73, pp.268-277, 1973.
DOI : 10.1145/800125.804058

R. Tarjan, Sorting Using Networks of Queues and Stacks, Journal of the ACM, vol.19, issue.2, pp.341-346, 1972.
DOI : 10.1145/321694.321704

J. West, Sorting twice through a stack, Theoretical Computer Science, vol.117, issue.1-2, pp.303-313, 1993.
DOI : 10.1016/0304-3975(93)90321-J

. Wikipedia, Enumerations of specific permutation classes, 2013.

D. Zeilberger, A proof of Julian West's conjecture that the number of two-stacksortable permutations of length n is 2(3n)!/((n + 1)!(2n + 1)!), Discrete Mathematics, vol.102, issue.1, pp.85-93, 1992.
DOI : 10.1016/0012-365X(92)90351-F