B. Assarf, M. Joswig, and A. Paffenholz, Smooth Fano polytopes with many vertices. preprint, arxiv:1209, p.3186, 2012.
DOI : 10.1007/s00454-014-9607-4

URL : http://arxiv.org/abs/1209.3186

V. Victor and . Batyrev, On the classification of smooth projective toric varieties, Tohoku Math. J, vol.43, issue.24, pp.569-585, 1991.

V. Victor and . Batyrev, On the classification of toric Fano 4-folds, J. Math. Sci, vol.94, issue.1, pp.1021-1050, 1999.

V. Victor, L. A. Batyrev, and . Borisov, Mirror duality and string?theoretic Hodge numbers, Inventiones Math, vol.126, pp.183-203, 1996.

G. Brown and A. Kasprzyk, Graded ring data base, 2009.

C. Casagrande, Le nombre de sommets d???un polytope de Fano, Annales de l???institut Fourier, vol.56, issue.1, pp.121-130, 2006.
DOI : 10.5802/aif.2175

D. A. Cox, J. B. Little, and H. K. Schenck, Toric varieties, Graduate Studies in Mathematics, vol.124, 2011.
DOI : 10.1090/gsm/124

G. Ewald, On the classification of toric fano varieties, Discrete & Computational Geometry, vol.1, issue.1, pp.49-54, 1988.
DOI : 10.1007/BF02187895

G. Ewald, Combinatorial convexity and algebraic geometry, Graduate Texts in Mathematics, vol.168, 1996.
DOI : 10.1007/978-1-4612-4044-0

E. Gawrilow and M. Joswig, polymake: a Framework for Analyzing Convex Polytopes, Polytopes?combinatorics and computation (Oberwolfach, pp.43-73, 1997.
DOI : 10.1007/978-3-0348-8438-9_2

M. Kreuzer and B. Nill, Classification of toric Fano 5-folds, Advances in Geometry, vol.9, issue.1, pp.85-97, 2009.
DOI : 10.1515/ADVGEOM.2009.005

M. Kreuzer and H. Skarke, On the Classification of Reflexive Polyhedra, Communications in Mathematical Physics, vol.185, issue.2, pp.495-508, 1997.
DOI : 10.1007/s002200050100

M. Kreuzer and H. Skarke, On the classification of reflexive polyhedra in four dimensions Advances Theor, Math. Phys, vol.4, pp.1209-1230, 2002.

B. Lorenz and A. Paffenholz, Smooth reflexive polytopes up to dimension 9, 2008.

B. Nill, Gorenstein toric Fano varieties, manuscripta mathematica, vol.5, issue.2, pp.183-210, 2005.
DOI : 10.1007/s00229-004-0532-3

URL : http://arxiv.org/abs/math/0405448

B. Nill, Classification of pseudo-symmetric simplicial reflexive polytopes, Contemp. Math, vol.423, pp.269-282, 2006.
DOI : 10.1090/conm/423/08082

B. Nill and M. Øbro, $\boldsymbol{Q}$-factorial Gorenstein toric Fano varieties with large Picard number, Tohoku Mathematical Journal, vol.62, issue.1, pp.1-15, 2010.
DOI : 10.2748/tmj/1270041023

M. Øbro, Classification of smooth Fano polytopes, 2007.

M. Øbro, Classification of terminal simplicial reflexive d-polytopes with 3d ??? 1 vertices, manuscripta mathematica, vol.5, issue.2???3, pp.69-79, 2008.
DOI : 10.1007/s00229-007-0133-z

E. Valentin, A. A. Voskresenski?-i, and . Klyachko, Toric Fano varieties and systems of roots, Izv. Akad. Nauk SSSR Ser. Mat, vol.48, issue.2, pp.237-263, 1070.