
HAL Id: hal-01231816
https://hal.inria.fr/hal-01231816

Submitted on 3 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Open licence - etalab|

On Sharing, Memoization, and Polynomial Time
Martin Avanzini, Ugo Dal Lago

To cite this version:
Martin Avanzini, Ugo Dal Lago. On Sharing, Memoization, and Polynomial Time. Proceedings of
STACS 2015, 2015, Munich, Germany. �10.4230/LIPIcs.STACS.2015.62�. �hal-01231816�

https://hal.inria.fr/hal-01231816
http://www.etalab.gouv.fr/pages/licence-ouverte-open-licence-5899923.html
http://www.etalab.gouv.fr/pages/licence-ouverte-open-licence-5899923.html
https://hal.archives-ouvertes.fr


On Sharing, Memoization, and Polynomial Time∗

Martin Avanzini and Ugo Dal Lago

Università di Bologna & INRIA, Sophia Antipolis
martin.avanzini@uibk.ac.at and dallago@cs.unibo.it

Abstract
We study how the adoption of an evaluation mechanism with sharing and memoization impacts
the class of functions which can be computed in polynomial time. We first show how a natural
cost model in which lookup for an already computed result has no cost is indeed invariant.
As a corollary, we then prove that the most general notion of ramified recurrence is sound for
polynomial time, this way settling an open problem in implicit computational complexity.

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes, F.3.2 Semantics
of Programming Languages, F.4.1 Mathematical Logic, F.4.2 Grammars and Other Rewriting
Systems

Keywords and phrases implicit computational complexity, data-tiering, polynomial time

Digital Object Identifier 10.4230/LIPIcs.STACS.2015.62

1 Introduction

Traditionally, complexity classes are defined by giving bounds on the amount of resources
algorithms are allowed to use while solving problems. This, in principle, leaves open the
task of understanding the structure of complexity classes. As an example, a given class of
functions is not necessarily closed under composition or, more interestingly, under various
forms of recursion. When the class under consideration is not too large, say close enough to
the class of polytime computable functions, closure under recursion does not hold: iterating
over an efficiently computable function is not necessarily efficiently computable, e.g. when
the iterated function grows more than linearly. In other words, characterizing complexity
classes by purely recursion-theoretical means is non-trivial.

In the past twenty years, this challenge has been successfully tackled, by giving restricted
forms of recursion for which not only certain complexity classes are closed, but which precisely
generate the class. This has been proved for classes like PTime, PSpace, the polynomial
hierarchy PH, or even smaller ones like NC. A particularly fruitful direction has been the
one initiated by Bellantoni and Cook, and independently by Leivant, which consists in
restricting the primitive recursive scheme by making it predicative, thus forbidding those
nested recursive definitions which lead outside the classes cited above. Once this is settled,
one can tune the obtained scheme by either adding features (e.g. parameter substitutions) or
further restricting the scheme (e.g. by way of linearization).

Something a bit disappointing in this field is that the expressive power of the simplest
(and most general) form of predicative recurrence, namely simultaneous recurrence on generic
algebras is unknown. If algebras are restricted to be string algebras, or if recursion is not
simultaneous, soundness for polynomial time computation is known to hold [21, 16]. The two
soundness results are obtained by quite different means, however: in presence of trees, one is

∗ This work was partially supported by FWF project number J 3563 and by French ANR project Elica
ANR-14-CE25-0005.

© Martin Avanzini and Ugo Dal Lago;
licensed under Creative Commons License CC-BY

32nd Symposium on Theoretical Aspects of Computer Science (STACS 2015).
Editors: Ernst W. Mayr and Nicolas Ollinger; pp. 62–75

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2015.62
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


M. Avanzini and U. Dal Lago 63

forced to handle sharing [16] of common sub-expressions, while simultaneous definitions by
recursion requires a form of memoization [21].

In this paper, we show that sharing and memoization can indeed be reconciled, and we
exploit both to give a new invariant time cost model for the evaluation of rewrite systems.
This paves the way towards polytime soundness for simultaneous predicative recursion on
generic algebras, thus solving the open problem we were mentioning. More precisely, with
the present paper we make the following contributions:

1. We define a simple functional programming language. The domain of the defined functions
is a free algebra formed from constructors. Hence we can deal with functions over strings,
lists, but also trees (see Section 3). We then extend the underlying rewriting based
semantics with memoization, i.e. intermediate results are automatically tabulated to
avoid expensive re-computation (Section 4). As standard for functional programming
languages such as Haskell or OCaml, data is stored in a heap, facilitating sharing of
common sub-expression. To measure the runtime of such programs, we employ a novel
cost model, called memoized runtime complexity, where each function application counts
one time unit, but lookups of tabulated calls do not have to be accounted.

2. Our invariance theorem (see Theorem 17) relates, within a polynomial overhead, the
memoized runtime complexity of programs to the cost of implementing the defined
functions on a classical model of computation, e.g. Turing or random access machines.
The invariance theorem thus confirms that our cost model truthfully represents the
computational complexity of the defined function.

3. We extend upon Leivant’s notion of ramified recursive functions [20] by allowing definitions
by generalised ramified simultaneous recurrence (GRSR for short). We show that the
resulting class of functions, defined over arbitrary free algebras have, when implemented as
programs, polynomial memoized runtime complexity (see Theorem 21). By our invariance
theorem, the function algebra is sound for polynomial time, and consequently GRSR
characterizes the class of polytime computable functions.

An extended version of this paper with more details, including all proofs, is also available [4].

1.1 Related Work
That predicative recursion on strings is sound for polynomial time, even in presence of simul-
taneous recursive definitions, is known for a long time [9]. Variations of predicative recursion
have been later considered and proved to characterize classes like PH [10], PSpace [23],
ExpTime [3] or NC [12]. Predicative recursion on trees has been claimed to be sound
for polynomial time in the original paper by Leivant [20], the long version of which only
deals with strings [21]. After fifteen years, the non-simultaneous case has been settled by
the second author with Martini and Zorzi [16]; their proof, however, relies on an ad-hoc,
infinitary, notion of graph rewriting. Recently, ramification has been studied in the context
of a simply-typed λ-calculus in an unpublished manuscript [17]; the authors claim that a
form of ramified recurrence on trees captures polynomial time; this, again, does not take
simultaneous recursion into account.

The formalism presented here is partly inspired by the work of Hoffmann [19], where
sharing and memoization are shown to work well together in the realm of term graph rewriting.
The proposed machinery, although powerful, is unnecessarily complicated for our purposes.
Speaking in Hoffmann’s terms, our results require a form of full memoization, which is
definable in Hoffmann’s system. However, most crucially for our concerns, it is unclear how
the overall system incorporating full memoization can be implemented efficiently, if at all.

STACS 2015



64 On Sharing, Memoization and Polynomial Time

B

B

B

B

L L

B

L L

B

B

L L

B

L L

B

B

B

L L

B

L L

B

B

L L

B

L L
(a) Explicit tree representation.

B

B

B

B

L
(b) Compact DAG.

Figure 1 Complete Binary Tree of Height Four, as Computed by tree(S4(0)).

2 The Need for Sharing and Memoisation

This Section is an informal, example-driven, introduction to ramified recursive definitions and
their complexity. Our objective is to convince the reader that those definitions do not give
rise to polynomial time computations if naively evaluated, and that sharing and memoization
are both necessary to avoid exponential blowups.

In Leivant’s system [21], functions and variables are equipped with a tier. Composition
must preserve tiers and, crucially, in a function defined by primitive recursion the tier of
the recurrence parameter must be higher than the tier of the recursive call. This form of
ramification of functions effectively tames primitive recursion, resulting in a characterisation
of the class of polytime computable functions.

Of course, ramification also controls the growth rate of functions. However, as soon as we
switch from strings to a domain where tree structures are definable, this control is apparently
lost. For illustration, consider the following definition:

tree(0) = L tree(S(n)) = br(tree(n)) br(t) = B(t, t) .

The function tree is defined by primitive recursion, essentially from basic functions. As a
consequence, it is easily seen to be ramified in the sense of Leivant. Even though the number
of recursive steps is linear in the input, the result of tree(Sn(0)) is the complete binary
tree of height n. As thus the length of the output is exponential in the one of its input,
there is, at least apparently, little hope to prove tree a polytime function. The way out is
sharing: the complete binary tree of height n can be compactly represented as a directed
acyclic graph (DAG for short) of linear size (see Figure 1). Indeed, using the compact DAG
representation it is easy to see that the function tree is computable in polynomial time.
This is the starting point of [16], in which general ramified recurrence is proved sound for
polynomial time. A crucial observation here is that not only the output’s size, but also
the total amount of work can be kept under control, thanks to the fact that evaluating a
primitive recursive definition on a compactly represented input can be done by constructing
an isomorphic DAG of recursive calls.

This does not scale up to simultaneous ramified recurrence. The following example com-
putes the genealogical tree associated with Fibonacci’s rabbit problem for n ∈ N generations.
Rabbits come in pairs. After one generation, each baby rabbit pair (N) matures. In each



M. Avanzini and U. Dal Lago 65

N

M

M

M

M

ML NL

N

ML

N

M

ML NL

N

M

M

ML NL

N

ML

(a) Explicit tree representation.

N

M

M

M

M

ML NL

N

N

N

(b) Compact DAG.

Figure 2 Genealogical Rabbit Tree up to the Sixth Generation, as Computed by rabbits(S6(0)).

generation, an adult rabbit pair (M) bears one pair of babies.

rabbits(0) = NL a(0) = ML b(0) = NL

rabbits(S(n)) = b(n) a(S(n)) = M(a(n), b(n)) b(S(n)) = N(a(n)) .

The function rabbits is obtained by case analysis from the functions a and b, which are
defined by simultaneous primitive recursion: the former recursively calls itself and the latter,
while the latter makes a recursive call to the former. The output of rabbits(Sn(0)) is tightly
related to the sequence of Fibonacci numbers: the number of nodes at depth i is given by
the ith Fibonacci number. Hence the output tree has exponential size in n but, again, can
be represented compactly (see Figure 2). This does not suffice for our purposes, however. In
presence of simultaneous definitions, indeed, avoiding re-computation of previously computed
values becomes more difficult, the trick described above does not work, and the key idea
towards that is the use of memoization.

What we prove in this paper is precisely that sharing and memoization can indeed be
made to work together, and that they together allow to prove polytime soundness for all
ramified recursive functions, also in presence of tree algebras and simultaneous definitions.

3 Preliminaries

General Ramified Simultaneous Recurrence

Let A denote a (finite and untyped) signatures of constructors c1, . . . , ck, each equipped with
an arity ar(ci). In the following, the set of terms T (A) over the signature A, defined as usual,
is also denoted by A if this does not create ambiguities. We are interested in total functions
from An = A× . . .× A︸ ︷︷ ︸

n times
to A.

I Definition 1. The following are so-called basic functions:
For each constructor c, the constructor function fc : Aar(c) → A for c, defined as follows:
fc(x1, . . . , xar(c)) = c(x1, . . . , xar(c))
For each 1 ≤ n ≤ m, the (m,n)-projection function Πm

n : Am → A defined as follows:
Πm

n (x1 . . . , xm) = xn.

STACS 2015



66 On Sharing, Memoization and Polynomial Time

fc . Aar(c)
n → An Πn

m . Ap1 × . . .× Apm → Apn

fi . Aar(ci)
p ×A→ Am

case({fi}1≤i≤k) . Ap ×A→ Am

f . Ap1 × . . .× Apn
→ Am gi .A→ Api

f ◦ (g1, . . . , gn) .A→ Am

fj
i . A

ar(ci)
p × An·ar(ci)

m ×A→ Am p > m

simrec({fj
i}1≤i≤k,1≤j≤n) . Ap ×A→ Am

Figure 3 Tiering as a Formal System.

I Definition 2.
Given a function f : An → A and n functions g1, . . . , gn, all of them from Am to A,
the composition h = f ◦ (g1, . . . , gn) is a function from Am to A defined as follows:
h(~x) = f(g1(~x), . . . , gn(~x)).
Suppose given the functions fi where 1 ≤ i ≤ k such that for somem, fi : Aar(ci)×An → A.
Then the function g = case({fi}1≤i≤k) defined by case distinction from {fi}1≤i≤k is a
function from A× An to A defined as follows: g(ci(~x), ~y) = fi(~x, ~y).
Suppose given the functions fj

i , where 1 ≤ i ≤ k and 1 ≤ j ≤ n, such that for some m,
fj

i : Aar(ci) × An·ar(ci) × Am → A. The functions {gj}1≤j≤n = simrec({fj
i}1≤i≤k,1≤j≤n)

defined by simultaneous primitive recursion from {fj
i}1≤i≤k,1≤j≤n are all functions from

A× Am to A such that for ~x = x1, . . . , xar(ci),

gj(ci(~x), ~y) = fj
i (~x, g1(x1, ~y), . . . , g1(xar(ci), ~y), . . . , gn(x1, ~y), . . . , gn(xar(ci), ~y), ~y) .

We denote by SimRec(A) the class of simultaneous recursive functions over A, defined as
the smallest class containing the basic functions of Definition 1 and that is closed under the
schemes of Definition 2.

Tiering, the central notion underlying Leivant’s definition of ramified recurrence, consists
in attributing tiers to inputs and outputs of some functions among the ones constructed as
above, with the goal of isolating the polytime computable ones. Roughly speaking, the role
of tiers is to single out “a copy” of the signature by a level: this level permits to control the
recursion nesting. Tiering can be given as a formal system, in which judgments have the
form f . Ap1 × . . .× Apar(f) → Am for p1, . . . , par(f),m natural numbers and f ∈ SimRec(A).
The system is defined in Figure 3, where A denotes the expression Aq1 × . . .× Aqk

for some
q1, . . . , qk ∈ N. Notice that composition preserves tiers. Moreover, recursion is allowed only
on inputs of tier higher than the tier of the function (in the case f = simrec({fj

i}1≤i≤k,1≤j≤n),
we require p > m).

I Definition 3. We call a function f ∈ SimRec(A) definable by general ramified simultaneous
recurrence (GRSR for short) if f . Ap1 × . . .× Apar(f) → Am holds.

I Remark. Consider the word algebra W = {ε,a,b} consisting of a constant ε and two unary
constructors a and b, which is in bijective correspondence to the set of binary words. Then
the functions definable by ramified simultaneous recurrence over W includes the ramified
recursive functions from Leivant [21], and consequently all polytime computable functions.

I Example 4.

1. Consider N := {0,S} with ar(0) = 0 and ar(S) = 1, which is in bijective correspondence
to the set of natural numbers. We can define addition add : Ni × Nj → Nj for i > j, by

add(0, y) = Π1
1(y) = y add(S(x), y) = (fS ◦Π3

2)(x, add(x, y), y) = S(add(x, y)) ,

using general simultaneous ramified recursion, i.e. {add} = simrec({{Π1
1, fS ◦Π3

2}}).



M. Avanzini and U. Dal Lago 67

f ∈ F ti ↓ vi f(v1, . . . , vk) ↓ v
f(t1, . . . , tk) ↓ v

c ∈ C ti ↓ vi

c(t1, . . . , tk) ↓ c(v1, . . . , vk)

f(p1, . . . , pk)→ r ∈ R ∀i. piσ = vi rσ ↓ v
f(v1, . . . , vk) ↓ v

Figure 4 Operational Semantics for Program (F , C, R).

2. Let T := {NL,ML,N,M}, where ar(NL) = ar(ML) = 0, ar(N) = 1 and ar(M) = 2. Then
we can define the functions rabbits : Ni → Tj for i > j from Section 2 by composition
from the following two functions, defined by simultaneous ramified recurrence.

a(0) = ML a(S(n)) = (fM ◦ (Π3
2,Π3

3)) (n, a(n), b(n)) = M(a(n), b(n))
b(0) = NL b(S(n)) = (fN ◦Π3

3) (n, a(n), b(n)) = N(a(n)) .

3. We can define a function #leafs : T → N by simultaneous primitive recursion which
counts the number of leafs in T-trees as follows.

#leafs(NL) = S(0) #leafs(ML) = S(0)
#leafs(N(t)) = #leafs(t) #leafs(M(l, r)) = add(#leafs(l),#leafs(r)) .

However, this function cannot be ramified, since add in the last equation requires different
tiers. Indeed, having a ramified recursive function #leafs : Ti → N1 (for some i > 1)
defined as above would allow us to ramify fib = #leafs ◦ rabbits which on input n
computes the nth Fibonacci number, and is thus an exponential function.

Computational Model, Syntax and Semantics

We introduce a simple, rewriting based, notion of program for computing functions over term
algebras. Let V denote a set of variables. Terms over a signature F that include variables
from V are denoted by T (F ,V). A term t ∈ T (F ,V) is called linear if each variable occurs at
most once in t. The set of subterms STs(t) of a term t is defined by STs(t) := {t} if t ∈ V and
STs(t) :=

⋃
1≤i≤ar(f) STs(ti) ∪ {t} if t = f(t1, . . . , tar(f)). A substitution, is a finite mapping

σ from variables to terms. By tσ we denote the term obtained by replacing in t all variables
x ∈ dom(σ) by σ(x).

I Definition 5. A program P is given as a triple (F , C,R) consisting of two disjoint signatures
F and C of operation symbols f1, . . . , fm and constructors c1, . . . , cn respectively, and a finite
set R of rules l → r over terms l, r ∈ T (F ∪ C,V). For each rule, the left-hand side l is
of the form fi(p1, . . . , pk) for some i, where the patterns pj consist only of variables and
constructors, and all variables occurring in the right-hand side r also occur in the left-hand
side l.

We keep the program P = (F , C,R) fixed throughout the following. Moreover, we require
that P is orthogonal, that is, the following two requirements are met:
1. left-linearity: the left-hand sides l of each rule l→ r ∈ R is linear ; and
2. non-ambiguity: there are no two rules with overlapping left-hand sides in R.
Orthogonal programs define a class of deterministic first-order functional programs, see e.g.
[6]. The domain of the defined functions is the constructor algebra T (C). Correspondingly,
elements of T (C) are called values, which we denote by v, u, . . . .

STACS 2015



68 On Sharing, Memoization and Polynomial Time

In Figure 4 we present the operational semantics, realizing standard call-by-value eval-
uation order. The statement t ↓ v means that the term t reduces to the value v. We say
that P computes the function f : T (C)k → T (C) if there exists an operation f ∈ F such that
f(v1, . . . , vk) = v if and only if f(v1, . . . , vk) ↓ v holds for all inputs vi ∈ T (C).

I Example 6 (Continued from Example 4). The definition of rabbits from Section 2 can
be turned into a program PR over constructors of N and T, by orienting the underlying
equations from left to right and replacing applications of functions f ∈ {rabbits, a, b} with
corresponding operation symbols f ∈ {rabbits, a, b}. For instance, concerning the function
a, the defining equations are turned into a(0)→ML and a(S(n))→M(a(n), b(n)).

The example hints at a systematic construction of programs Pf computing functions f ∈
SimRec(A), which can be made precise [4].

Term Graphs

We borrow key concepts from term graph rewriting (see e.g. the survey of Plump [25] for
an overview) and follow the presentation of Barendregt et al. [8]. A term graph T over a
signature F is a directed acyclic graph whose nodes are labeled by symbols in F ∪ V, and
where outgoing edges are ordered. Formally, T is a triple (N, suc, lab) consisting of nodes N, a
successors function suc : N → N∗ and a labeling function lab : N → F ∪ V . We require that
term graphs are compatible with F , in the sense that for each node o ∈ N, if labT (o) = f ∈ F
then sucT (o) = [o1, . . . , oar(f)] and otherwise, if labT (o) = x ∈ V, sucT (o) = [ ]. In the former
case, we also write T (o) = f(o1, . . . , oar(f)), the latter case is denoted by T (o) = x. We define
the successor relation ⇀T on nodes in T such that o ⇀T p holds iff p occurs in suc(o), if
p occurs at the ith position we also write o i−⇀T p. Throughout the following, we consider
only acyclic term graphs, that is, when ⇀T is acyclic. Hence the unfolding [o]T of T at
node o, defined by [o]T := x if T (o) = x ∈ V , and otherwise [o]T := f([o1]T , . . . , [ok]T ) where
T (o) = f(o1, . . . , ok), results in a finite term. We called the term graph T rooted if there
exists a unique node o, the root of T , with o ⇀∗T p for every p ∈ N. We denote by T �o the
sub-graph of T rooted at o. Consider a symbol f ∈ F and nodes {o1, . . . , oar(f)} ⊆ N of T .
The extension S of T by a fresh node of 6∈ N with S(of ) = f(o1, . . . , oar(f)) is denoted by
T ] {of 7→ f(o1, . . . , oar(f))}. We write f(T �o1, . . . , T �oar(f)) for the term graph S�of .

For two rooted term graphs T = (NT , sucT , labT ) and S = (NS , sucS , labS), a mapping
m : NT → NS is called morphic in o ∈ NT if (i) labT (o) = labS(m(o)) and (ii) o i−⇀T p

implies m(o) i−⇀S m(p) for all appropriate i. A homomorphism from T to S is a mapping
m : NT → NS that (i) maps the root of T to the root of S and that (ii) is morphic in all
nodes o ∈ NT not labeled by a variable. We write T ·>m S to indicate that m is, possibly an
extension of, a homomorphism from T to S.

Every term t is trivially representable as a canonical tree 4(t) unfolding to t, using a
fresh node for each occurrence of a subterm in t. For t a linear term, to each variable x in t
we can associate a unique node in 4(t) labeled by x, which we denote by ox. The following
proposition relates matching on terms and homomorphisms on trees. It essentially relies on
the imposed linearity condition.

I Proposition 7 (Matching on Graphs). Let t be a linear term, T be a term graph and let o
be a node of T .
1. If 4(t) ·>m T �o then there exists a substitution σ such that tσ = [o]T .
2. Vice versa, if tσ = [o]T holds for some substitution σ then there exists a homomorphism
4(t) ·>m T �o.



M. Avanzini and U. Dal Lago 69

f ∈ F (Ci−1, ti) ⇓ni
(Ci, vi) (Ck, f(v1, . . . , vk)) ⇓n (Ck+1, v) m = n+

∑k
i=1 ni

(C0, f(t1, . . . , tk)) ⇓m (Ck+1, v)
(Split)

c ∈ C (Ci−1, ti) ⇓ni
(Ci, vi) m =

∑k
i=1 ni

(C0, c(t1, . . . , tk)) ⇓m (Ck, c(v1, . . . , vk))
(Con)

(f(v1, . . . , vk), v) ∈ C
(C, f(v1, . . . , vk)) ⇓0 (C, v)

(Read)

(f(v1, . . . , vk), v) 6∈ C f(p1, . . . , pk)→ r ∈ R ∀i. piσ = vi (C, rσ) ⇓m (D, v)
(C, f(v1, . . . , vk)) ⇓m+1 (D ∪ {(f(v1, . . . , vk), v)}, v)

(Update)

Figure 5 Cost Annotated Operational Semantics with Memoization for Program (F , C, R).

Here, the substitution σ and homomorphism m satisfy σ(x) = [m(ox)]T for all variables x
in t.

4 Memoization and Sharing, Formally

To implement memoization, we make use of a cache C which stores results of intermediate
functions calls. A cache C is modeled as a set of tuples (f(v1, . . . , var(f)), v), where f ∈ F
and v1, . . . , var(f) as well as v are values.

Figure 5 collects the memoizing operational semantics with respect to the program
P = (F , C,R). Here, a statement (C, t) ⇓m (D, v) means that starting with a cache C, the
term t reduces to the value v with updated cache D. The natural number m indicates the
cost of this reduction. The definition is along the lines of the standard semantics (Figure 4),
carrying the cache throughout the reduction of the given term. The last rule of Figure 4
is split into two rules (Read) and (Update). The former performs a read from the cache,
the latter the reduction in case the corresponding function call is not tabulated, updating
the cache with the computed result. Notice that in the semantics, a read is attributed
zero cost, whereas an update is accounted with a cost of one. Consequently the cost m in
(C, t) ⇓m (D, v) refers to the number of non-tabulated function applications.

I Lemma 8. We have (∅, t) ⇓m (C, v) for some m ∈ N and cache C if and only if t ↓ v.

The lemma confirms that the call-by-value semantics of Section 3 is correctly implemented
by the memoizing semantics. To tame the growth rate of values, we define small-step semantics
corresponding to the memoizing semantics, facilitating sharing of common sub-expressions.

Small-Step Semantics with Memoization and Sharing

To incorporate sharing, we extend the pairs (C, t) by a heap, and allow references to the
heap both in terms and in caches. Let Loc denote a countably infinite set of locations. We
overload the notion of value, and define expressions e and (evaluation) contexts E according
to the following grammar:

v := ` | c(v1, . . . , vk);
e := ` | 〈f(`1, . . . , `k), e〉 | f(e1, . . . , ek) | c(e1, . . . , ek);
E := � | 〈f(`1, . . . , `k), E〉 | f(`1, . . . , `i−1, E, ei+1, . . . , ek) |c(`1, . . . , `i−1, E, ei+1, . . . , ek).

Here, `1, . . . , `k, ` ∈ Loc, f ∈ F and c ∈ C are k-ary symbols. An expression is a term
including references to values that will be stored on the heap. The additional construct
〈f(`1, . . . , `k), e〉 indicates that the partially evaluated expression e descends from a call

STACS 2015



70 On Sharing, Memoization and Polynomial Time

(f(`1, . . . , `k), `) 6∈ D f(p1, . . . , pk)→ r ∈ R T := 4(f(p1, . . . , pk))
T ·>m f(H�`1, . . . ,H�`k) σm := {x 7→ m(`x) | `x ∈ Loc, T (`x) = x ∈ V}

(D,H,E[f(`1, . . . , `k)]) −→R (D,H,E[〈f(`1, . . . , `k), rσm〉])
(apply)

(f(`1, . . . , `k), `) ∈ D
(D,H,E[f(`1, . . . , `k)]) −→r (D,H,E[`])

(read)

(D,H,E[〈f(`1, . . . , `k), `〉]) −→s (D ∪ {(f(`1, . . . , `k), `)}, H,E[`])
(store)

(H ′, `) = merge(H, c(`1, . . . , `k))
(D,H,E[c(`1, . . . , `k)]) −→m (D,H ′, E[`])

(merge)

Figure 6 Small Step Semantics with Memoization and Sharing for Program (F , C, R).

f(v1, . . . , vk), with arguments vi stored at location `i on the heap. A context E is an
expression with a unique hole, denoted as �, where all sub-expression to the left of the
hole are references pointing to values. This syntactic restriction is used to implement a
left-to-right, call-by-value evaluation order. We denote by E[e] the expression obtained by
replacing the hole in E by e.

A configuration is a triple (D,H, e) consisting of a cache D, heap H and expression e.
Unlike before, the cache D consists of pairs of the form (f(`1, . . . , `k), `) where instead of
values, we store references `1, . . . , `k, ` pointing to the heap. The heap H is represented
as a (multi-rooted) term graph H with nodes in Loc and constructors C as labels. If
` is a node of H, then we say that H stores at location ` the value [`]H obtained by
unfolding H starting from location `. We keep the heap in a maximally shared form, that is,
H(`a) = c(`1, . . . , `k) = H(`b) implies `a = `b for two locations `a, `b of H. Thus crucially,
values are stored once only, by the following lemma.

I Lemma 9. Let H be a maximally shared heap with locations `1, `2. If [`1]H = [`2]H then
`1 = `2.

The operation merge(H, c(`1, . . . , `k)), defined as follows, is used to extend the heap H with
a constructor c whose arguments point to `1, . . . , `k, retaining maximal sharing. Let `f be
the first location not occurring in the nodes N of H (with respect to an arbitrary, but fixed
enumeration on Loc). For `1, . . . , `k ∈ N we define

merge(H, c(`1, . . . , `k)) :=
{

(H, `) if H(`) = c(`1, . . . , `k),
(H ∪ {`f 7→ c(`1, . . . , `k)}, `f ) otherwise.

Observe that the first clause is unambiguous on maximally shared heaps.
Figure 6 collects the small step semantics with respect to a program P = (F , C,R). We

use −→rsm to abbreviate the relation −→r ∪−→s ∪−→m and likewise we abbreviate −→R ∪−→rsm by
−→Rrsm. Furthermore, we define −→R/rsm := −→∗rsm · −→R · −→∗rsm. Hence the m-fold composition
−→m

R/rsm corresponds to a −→Rrsm-reduction with precisely m applications of −→R.
It is now time to show that the model of computation we have just introduced fits our

needs, namely that it faithfully simulates big-step semantics as in Figure 5 (itself a correct
implementation of call-by-value evaluation from Section 3). This is proved by first showing
how big-step semantics can be simulated by small-step semantics, later proving that the
latter is in fact deterministic.

In the following, we denote by [e]H the term obtained from e by following pointers to the



M. Avanzini and U. Dal Lago 71

heap, ignoring the annotations 〈f(`1, . . . , `k), ·〉. Formally, we define

[e]H :=
{
f([e1]H , . . . , [ek]H) if e = f(e1, . . . , ek),
[e′]H if e = 〈f(`1, . . . , `k), e′〉.

Observe that this definition is well-defined as long as H contains all locations occurring in e
(a property that is preserved by −→Rrsm-reductions). An initial configuration is a configuration
of the form (∅, H, e) with H a maximally shared heap and e = f(v1, . . . , vk) an expression
unfolding to a function call. Notice that the arguments v1, . . . , vk are allowed to contain
references to the heap H.

I Lemma 10 (Simulation). Let (∅, H, e) be an initial configuration. If (∅, [e]H) ⇓m (C, v)
holds for m ≥ 1 then (∅, H, e) −→m

R/rsm (D,G, `) for a location ` in G with [`]G = v.

The next lemma shows that the established simulation is unique, that is, there is exactly
one derivation (∅, H, e) −→m

R/rsm (D,G, `). Here, a relation −→ is called deterministic on a set
A if b1 ←− a −→ b2 implies b1 = b2 for all a ∈ A.

I Lemma 11 (Determinism). The relation −→Rrsm is deterministic on all configurations
reachable from initial configurations.

I Theorem 12. Suppose (∅, f(v1, . . . , vk)) ⇓m (C, v) holds for a reducible term f(v1, . . . , vk).
Then for each initial configuration (∅, H, e) with [e]H = f(v1, . . . , vk), there exists a unique
sequence (∅, H, e) −→m

R/rsm (D,G, `) for a location ` in G with [`]G = v.

Proof. As f(v1, . . . , vk) is reducible, it follows that m ≥ 1. Hence the theorem follows from
Lemma 10 and Lemma 11. J

Invariance

Theorem 12 tells us that a term-based semantics (in which sharing is not exploited) can be
simulated step-by-step by another, more sophisticated, graph-based semantics. The latter’s
advantage is that each computation step does not require copying, and thus does not increase
the size of the underlying configuration too much. This is the key observation towards
invariance: the number of reduction step is a sensible cost model from a complexity-theoretic
perspective. Precisely this will be proved in the remaining of the section.

Define the size |e| of an expression recursively by |`| := 1, |f(e1, . . . , ek)| := 1 +
∑k

i=1|ei|
and |〈f(`1, . . . , `k), e〉| := 1 + |e|. In correspondence we define the weight wt(e) by ignoring
locations, i.e. wt(`) := 0. Recall that a reduction (D1, H1, e1) −→m

R/rsm (D2, H2, e2) consists of
m applications of −→R, all possibly interleaved by −→rsm-reductions. As a first step, we thus
estimate the overall length of the reduction (D1, H1, e1) −→m

R/rsm (D2, H2, e2) in m and the
size of e1. Set ∆ := max{|r| | l→ r ∈ R}. The following serves as an intermediate lemma.

I Lemma 13. The following properties hold:
1. If (D1, H1, e1) −→rsm (D2, H2, e2) then wt(e2) < wt(e1).
2. If (D1, H1, e1) −→R (D2, H2, e2) then wt(e2) ≤ wt(e1) + ∆.

Then essentially an application of the weight gap principle [18], a form of amortized cost
analysis, binds the overall length of an −→m

R/rsm-reduction suitably.

I Lemma 14. If (D1, H1, e1) −→m
R/rsm (D2, H2, e2) then (D1, H1, e1) −→n

Rrsm (D2, H2, e2) for
n ≤ (1 + ∆) ·m+ wt(e) and ∆ ∈ N a constant depending only on P.

STACS 2015



72 On Sharing, Memoization and Polynomial Time

Define the size of a configuration |(D,H, e)| as the sum of the sizes of its components.
Here, the size |D| of a cache D is defined as its cardinality, similar, the size |H| of a heap is
defined as the cardinality of its set of nodes. Notice that a configuration (D,H, e) can be
straightforwardly encoded within logarithmic space-overhead as a string d(D,H, e)e, i.e. the
length of the string d(D,H, e)e is bounded by a function in O(log(n) · n) in |(D,H, e)|, using
constants to encode symbols and an encoding of locations logarithmic in |H|. Crucially, a
step in the small-step semantics increases the size of a configuration only by a constant.

I Lemma 15. If (D1, H1, e1) −→Rrsm (D2, H2, e2) then |(D2, H2, e2)| ≤ |(D1, H1, e1)| + ∆.

I Theorem 16. There exists a polynomial p : N × N → N such that for every initial
configuration (∅, H1, e1), a configuration (D2, H2, e2) with (∅, H1, e1) −→m

R/rsm (D2, H2, e2) is
computable from (∅, H1, e1) in time p(|H1| + |e1|,m).

Proof. It is tedious, but not difficult to show that the function which implements a step
c −→Rrsm d, i.e. which maps dce to dde, is computable in polynomial time in dce, and thus in the
size |c| of the configuration c. Iterating this function at most n := (1 + ∆) ·m+ |(∅, H1, e1)|
times on input d(∅, H1, e1)e, yields the desired result d(D2, H2, e2)e by Lemma 14. Since
each iteration increases the size of a configuration by at most the constant ∆ (Lemma 15),
in particular the size of each intermediate configuration is bounded by a linear function in
|(∅, H1, e1)| = |H1| + |e1| and n, the theorem follows. J

Combining Theorem 12 and Theorem 16 we thus obtain the following.

I Theorem 17. There exists a polynomial p : N×N→ N such that for (∅, f(v1, . . . , vk)) ⇓m

(C, v), the value v represented as DAG is computable from v1, . . . , vk in time p(
∑k

i=1|vi|,m).

Theorem 17 thus confirms that the cost m of a reduction (∅, f(v1, . . . , vk)) ⇓m (C, v) is
a suitable cost measure. In other words, the memoized runtime complexity of a function f,
relating input size n ∈ N to the maximal cost m of evaluating f on arguments v1, . . . , vk of
size up to n, i.e. (∅, f(v1, . . . , vk)) ⇓m (C, v) with

∑k
i=1|vi| ≤ n, is an invariant cost model.

I Example 18 (Continued from Example 6). Reconsider the program PR and the evaluation
of a call rabbits(Sn(0)) which results in the genealogical tree vn of height n ∈ N associated
with Fibonacci’s rabbit problem. Then one can show that rabbits(Sn(0)) ⇓m vn with
m ≤ 2 ·n+ 1. Crucially here, the two intermediate functions a and b defined by simultaneous
recursion are called only on proper subterms of the input Sn(0), hence in particular the
rules defining a and b respectively, are unfolded at most n times. As a consequence of the
bound on m and Theorem 17 we obtain that the function rabbits from the introduction is
polytime computable.

I Remark. Strictly speaking, our DAG representation of a value v, viz the part of the
final heap reachable from a corresponding location `, is not an encoding in the classical,
complexity theoretic setting. Different computations resulting in the same value v can
produce different DAG representations of v, however, these representations differ only in the
naming of locations. Even though our encoding can be exponentially compact in comparison
to a linear representation without sharing, it is not exponentially more succinct than a
reasonable encoding for graphs (e.g. representations as circuits, see Papadimitriou [24]). In
such succinct encodings not even equality can be decided in polynomial time. Our form of
representation does clearly not fall into this category. In particular, in our setting it can be
easily checked in polynomial time that two DAGs represent the same value.



M. Avanzini and U. Dal Lago 73

5 GRSR is Sound for Polynomial Time

Sometimes (e.g., in [11]), the first step towards a proof of soundness for ramified recursive
systems consists in giving a proper bound precisely relating the size of the result and the
size of the inputs. More specifically, if the result has tier n, then the size of it depends
polynomially on the size of the inputs of tier higher than n, but only linearly, and in very
restricted way, on the size of inputs of tier n. Here, a similar result holds, but size is replaced
by minimal shared size.

The minimal shared size ‖v1, . . . , vk‖ for a sequence of elements v1, . . . , vk ∈ A is defined
as the number of subterms in v1, . . . , vk, i.e. the cardinality of the set

⋃
1≤i≤k STs(vi). Then

‖v1, . . . , vk‖ corresponds to the number of locations necessary to store the values v1, . . . , vk

on a heap (compare Lemma 9). If A is the expression An1× . . .×Anm
, n is a natural number,

and ~t is a sequence of m terms, then ‖~t‖>n
A is defined to be ‖ti1 , . . . , tik

‖ where i1, . . . , ik are
precisely those indices such that ni1 , . . . , nik

> n. Similarly for ‖~t‖=n
A .

I Proposition 19 (Max-Poly). If f .A→ An, then there is a polynomial pf : N→ N such
that ‖f(~v)‖ ≤ ‖~v‖=n

A + pf(‖~v‖>n
A ).

Once we know that ramified recursive definitions are not too fast-growing for the minimal
shared size, we know that all terms around do not have a too-big minimal shared size. As a
consequence:

I Proposition 20. If f .A→ An, then there is a polynomial pf : N→ N such that for every
v, (∅, f(~v)) ⇓m (C, v), with m ≤ pf(‖~v‖).

The following, then, is just a corollary of Proposition 20 and Invariance (Theorem 17).

I Theorem 21. Let f : Ap1 × . . . × Apk
→ Am be a function defined by general ramified

simultaneous recursion. There exists then a polynomial pf : Nk → N such that for all inputs
v1, . . . , vk, a DAG representation of f(v1, . . . , vk) is computable in time pf(|v1|, . . . , |vn|).

I Example 22 (Continued from Example 18). In Example 4 we indicated that the function
rabbits : N→ T from Section 2 is definable by GRSR. As a consequence of Theorem 21,
it is computable in polynomial time, e.g. on a Turing machine. Similar, we can prove the
function tree from Section 2 polytime computable.

6 Conclusion

In this work we have shown that simultaneous ramified recurrence on generic algebras is
sound for polynomial time, resolving a long-lasting open problem in implicit computational
complexity theory. We believe that with this work we have reached the end of a quest. Slight
extensions, e.g. the inclusion of parameter substitution, lead outside polynomial time as soon
as simultaneous recursion over trees is permissible.

Towards our main result, we introduced the notion of memoized runtime complexity, and
we have shown that this cost model is invariant under polynomial time. Crucially, we use
a compact DAG representation of values to control duplication, and tabulation to avoid
expensive re-computations. To the authors best knowledge, our work is the first where
sharing and memoization are reconciled, in the context of implicit computational complexity
theory. Both techniques have been extensively employed, however separately. Essentially
relying on sharing, the invariance of the unitary cost model in various rewriting based models
of computation, e.g. the λ-calculus [1, 15, 2] and term rewrite systems [14, 5] could be proved.

STACS 2015



74 On Sharing, Memoization and Polynomial Time

Several works (e.g. [22, 13, 7]) rely on memoization, employing a measure close to our notion
of memoized runtime complexity. None of these works integrate sharing, instead, inputs are
either restricted to strings or dedicated bounds on the size of intermediate values have to
be imposed. We are confident that our second result is readily applicable to resolve such
restrictions.

References
1 B. Accattoli and U. Dal Lago. On the Invariance of the Unitary Cost Model for Head

Reduction. In Proc. of 23rd RTA, volume 15 of LIPIcs, pages 22–37. Dagstuhl, 2012.
2 B. Accattoli and U. Dal Lago. Beta Reduction is Invariant, Indeed. In Joint Proc. of 23rd

CSL and 29th LICS, page 8. ACM, 2014.
3 T. Arai and N. Eguchi. A New Function Algebra of EXPTIME Functions by Safe Nested

Recursion. TOCL, 10(4), 2009.
4 M. Avanzini and U. Dal Lago. On Sharing, Memoization, and Polynomial Time. Technical

report, University of Bologna, 2014. Available at http://arxiv.org/abs/1501.00894.
5 M. Avanzini and G. Moser. Closing the Gap Between Runtime Complexity and Polytime

Computability. In Proc. of 21st RTA, volume 6 of LIPIcs, pages 33–48. Dagstuhl, 2010.
6 F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press,

1998.
7 P. Baillot, U. Dal Lago, and J.-Y. Moyen. On Quasi-interpretations, Blind Abstractions

and Implicit Complexity. MSCS, 22(4):549–580, 2012.
8 H. P. Barendregt, M. v. Eekelen, J. R. W. Glauert, J. R. Kennaway, M. J. Plasmeijer, and

M. R. Sleep. Term Graph Rewriting. In PARLE (2), volume 259 of LNCS, pages 141–158.
Springer, 1987.

9 S. Bellantoni. Predicative Recursion and Computational Complexity. PhD thesis, University
of Toronto, 1992.

10 S. Bellantoni. Predicative Recursion and the Polytime Hierarchy. In Feasible Mathematics
II. Birkhäuser Boston, 1994.

11 S. Bellantoni and S. Cook. A new Recursion-Theoretic Characterization of the Polytime
Functions. CC, 2(2):97–110, 1992.

12 G. Bonfante, R. Kahle, J.-Y. Marion, and I. Oitavem. Recursion Schemata for NCk. In
Proc. of 22nd CSL, volume 5213 of LNCS, pages 49–63. Springer, 2008.

13 G. Bonfante, J.-Y. Marion, and J.-Y. Moyen. Quasi-interpretations: A Way to Control
Resources. Theoretical Computer Science, 412(25):2776–2796, 2011.

14 U. Dal Lago and S. Martini. Derivational Complexity is an Invariant Cost Model. In
Revised Selected Papers of 1st FOPARA, volume 6324 of LNCS, pages 100–113. Springer,
2009.

15 U. Dal Lago and S. Martini. On Constructor Rewrite Systems and the Lambda Calculus.
LMCS, 8(3):1–27, 2012.

16 U. Dal Lago, S. Martini, and M. Zorzi. General Ramified Recurrence is Sound for Polyno-
mial Time. In Proc. of 1st DICE, volume 23 of EPTCS, pages 47–62, 2010.

17 N. Danner and J. S. Royer. Ramified Structural Recursion and Corecursion. CoRR,
abs/1201.4567, 2012.

18 N. Hirokawa and G. Moser. Automated Complexity Analysis Based on the Dependency
Pair Method. In Proc. of 4th IJCAR, volume 5195 of LNAI, pages 364–380. Springer, 2008.

19 B. Hoffmann. Term Rewriting with Sharing and Memoization. In Proc. of 3rd ALP, volume
632 of LNCS, pages 128–142. Springer, 1992.

20 D. Leivant. Stratified Functional Programs and Computational Complexity. In Proc. of
20th POPL, pages 325–333. ACM, 1993.

http://arxiv.org/abs/1501.00894


M. Avanzini and U. Dal Lago 75

21 D. Leivant. Ramified Recurrence and Computational Complexity I: Word Recurrence and
Poly-time. In Feasible Mathematics II, volume 13, pages 320–343. Birkhäuser Boston, 1995.

22 J.-Y. Marion. Analysing the Implicit Complexity of Programs. IC, 183:2–18, 2003.
23 I. Oitavem. Implicit Characterizations of Pspace. In PTCS, pages 170–190, 2001.
24 C. H. Papadimitriou. Computational Complexity. AddisonWesley Longman, second edition,

1995.
25 D. Plump. Essentials of Term Graph Rewriting. ENTCS, 51:277–289, 2001.

STACS 2015


	Introduction
	Related Work

	The Need for Sharing and Memoisation
	Preliminaries
	Memoization and Sharing, Formally
	GRSR is Sound for Polynomial Time
	Conclusion

