Stochastic Hybrid System Actuator Fault Diagnosis by Adaptive Estimation

Qinghua Zhang 1, 2, *
* Auteur correspondant
2 I4S - Statistical Inference for Structural Health Monitoring
IFSTTAR/COSYS - Département Composants et Systèmes, Inria Rennes – Bretagne Atlantique
Abstract : Based on the interacting multiple model (IMM) estimator for hybrid system state estimation and on the adaptive Kalman filter for time varying system joint state-parameter estimation, a new algorithm, the adaptive IMM estimator, is proposed in this paper for actuator fault diagnosis in stochastic hybrid systems. The working modes of the considered hybrid systems are described by stochastic state-space models, and the mode transitions are characterized by a Markov model. Actuator faults are modeled as parameter changes, and the related fault diagnosis problem is solved by the proposed adaptive IMM estimator through joint state-parameter estimation. Numerical examples are presented to illustrate the performance of the proposed method.
Type de document :
Communication dans un congrès
9th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes (SAFEPROCESS), Sep 2015, Paris, France
Liste complète des métadonnées

Littérature citée [27 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01232155
Contributeur : Qinghua Zhang <>
Soumis le : lundi 23 novembre 2015 - 10:18:43
Dernière modification le : mercredi 11 avril 2018 - 02:01:27
Document(s) archivé(s) le : vendredi 28 avril 2017 - 15:05:21

Fichier

Safeprocess2015hybrid.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01232155, version 1

Collections

Citation

Qinghua Zhang. Stochastic Hybrid System Actuator Fault Diagnosis by Adaptive Estimation. 9th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes (SAFEPROCESS), Sep 2015, Paris, France. 〈hal-01232155〉

Partager

Métriques

Consultations de la notice

210

Téléchargements de fichiers

96