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Abstract: Finite impulse response (FIR) Wiener systems driven by Gaussian inputs can be
efficiently identified by a well-known correlation-based method, except those involving even
static nonlinearities. To overcome this deficiency, another method based on weighted principal
component analysis (wPCA) has been recently proposed. Like the correlation-based method,
the wPCA is designed to estimate the linear dynamic subsystem of a Wiener system without
assuming any parametric form of the nonlinearity. To enlarge the applicability of this method,
it is shown in this paper that high order FIR approximation of IIR Wiener systems can be
efficiently estimated by controlling the variance of parameter estimates with regularization
techniques. The case of non-Gaussian inputs is also studied by means of importance sampling.

Keywords: Wiener system identification, block-oriented nonlinear system, principal component
analysis.

1. INTRODUCTION

For Wiener systems with fully parametrized linear and
nonlinear sub-models, their identification can generally
be formulated as a non convex optimization problem.
Alternatively, some Wiener system identification methods
are based on some assumed particularity of the system,
notably the monotonicity of the static nonlinearity. By
appropriately parametrizing the inverse function of the
monotonic nonlinearity, the entire Wiener system can be
formulated in the form of a linearly parametrized model
(Zhu, 1999; Ni et al., 2012). A different approach has been
proposed in (Zhang et al., 2006) with the particularity of
focusing on linear subsystem identification without assum-
ing any explicit parametrization of the monotonic nonlin-
earity. Some similar methods assuming other particular
properties of the static nonlinearity, more or less related
to the monotonicity, have also been developed in (Bai
and Reyland Jr, 2008). If the monotonicity of the static
nonlinearity is not assumed, a possible solution is to rely
on non parametric identification methods (Greblicki, 1992;
Hu and Chen, 2005; Pawlak et al., 2007).

When the input signal is randomly generated following a
Gaussian distribution, it is well known that the identi-
fication of the linear subsystem can be easily separated
from the unknown nonlinearity (Billings and Fakhouri,
1982; Greblicki, 1992). This approach is of particular in-
terest when little prior knowledge about the nonlinearity
is available. In this case, the cross-correlation between the

input and the output of the Wiener system provides a
consistent estimation of the finite impulse response (FIR)
coefficients, up to a common unknown scalar factor. The
related Wiener system identification method will be re-
ferred to as the correlation-based method in this paper.
Under the particularly assumption of Gaussian input, this
method is equivalent to the best linear approximation
(BLA) in the sense of least squares (see the Appendix at
the end of this paper), which is usually applied within a
much larger framework (Wong et al., 2012; Enqvist and
Ljung, 2005).

Another method based on Gaussian-distributed inputs has
been proposed in (Zhang and Laurain, 2014), namely the
weighted principle component analysis (wPCA) method,
mainly aiming at addressing a deficiency of the correlation-
based method, when the static nonlinearity in a Wiener
system is an even function. As explained in the Appendix
at the end of this paper, the correlation-based method
is consistent for the estimation of the FIR of the linear
subsystem, except in the case of Wiener systems involving
even nonlinearities. To avoid this singular case, a simple
modification of the correlation-based method is also men-
tioned in the appendix, under some assumptions about
experimental conditions.

The present paper enhances the results of (Zhang and
Laurain, 2014) in two directions. In order to estimate
high order FIR models, typically approximating stable
infinite impulse responses (IIR), regularization techniques
are incorporated into the wPCA method in this paper.



By reducing the variance of parameter estimates, the
regularized wPCA method is more suitable for high order
model estimations. The other enhancement presented in
this paper is for the purpose of relaxing the assumption
of Gaussian input distribution, based on techniques of
importance sampling.

2. PROBLEM DESCRIPTION

The single-input single-output (SISO) Wiener system con-
sidered in this paper is in the form of

z(t) =

n−1∑
s=0

h(s)u(t− s) (1a)

y(t) = f(z(t)) + e(t) (1b)

where t = 1, 2, 3, . . . represents the discrete time instants,
the input u(t) ∈ R is independently and identically dis-
tributed (i.i.d.) with a symmetric probability density func-
tion around u = 0, y(t) ∈ R is the output, z(t) ∈ R an
internal variable, e(t) ∈ R a stationary noise independent
of the input, h(s) ∈ R denotes the finite impulse response
(FIR) coefficients, and f(·) is an unknown nonlinear func-
tion. Note that no whiteness nor any particular distribu-
tion of the noise e(t) is necessary. The purpose of system
identification in this framework is to estimate the FIR
sequence h(0), h(1), . . . , h(n − 1) from the input-output
sequences u(t), y(t) for t = 1, 2, 3, . . . , without assuming
any parametric form of the nonlinear function f(·).
Define

ϕ(t) ,


u(t)

u(t− 1)
...

u(t− n+ 1)

 , θ ,


h(0)
h(1)

...
h(n− 1)

 , (2)

then the covariance matrix

cov[ϕ(t)] = σ2
uIn (3)

where σ2
u is the variance of u(t) and In the n× n identity

matrix. The Wiener system model (1) is then rewritten as

y(t) = f(ϕT (t)θ)) + e(t). (4)

To avoid the scale indetermination between θ and f(·), it
is assumed that θ has a normalized Euclidean norm, i.e.,
‖θ‖ = 1. The sign of θ remains undetermined.

The considered Wiener system identification problem as
formulated above amounts to estimating the vector θ from
ϕ(t) and y(t).

In this considered framework, the linear subsystem is mod-
eled by a FIR sequence. As the proposed identification
method is numerically efficient for long FIR sequence esti-
mation, most sufficiently stable infinite impulse responses
(IIR) can be well approximated by the proposed method.

When the input u(t) is Gaussian distributed, the well
known correlation-based method, is based on the estima-
tion of E[ϕ(t)y(t)]. As explained in the Appendix at the
end of this paper, this method is consistent, except in
the case of even nonlinearity. The wPCA-based method
studied in this paper remains consistent in this case.

The ability of separately estimating the linear subsystem
is particularly important when the static nonlinearity is
discontinuous, since joint estimation of both parts may
suffer from the discontinuities. Discontinuous nonlinear-

ities with known parametrizations have been studied in
(Voros, 2001).

3. GRAPHICAL ILLUSTRATION OF THE WPCA
METHOD

Before formally presenting the wPCA method for Wiener
system identification, let us first illustrate the main
idea with a simple noise-free 2D example, i.e., ϕ(t) =
[u(t), u(t − 1)]T ∈ R2 (the 2D restriction is only for the
purpose of graphical illustration). For this purpose, define

g(ϕ) , f(ϕT θ) (5)

as a function of ϕ. An example of g(ϕ), corresponding to a
the square function f , is illustrated (in the 2D case) by the
surface in Figure 1-(a) over the bottom ϕ1—ϕ2 plane, on
which are superposed the level lines (also known as isolines
or contour lines) of g(ϕ) and the blue dots representing
the vectors ϕ(t) formed from an i.i.d. input sequence u(t).
The level lines and the blue dots are also illustrated in
Figure 1-(b) for a better visibility.

In this example, f(·) is a (quadratic) convex function,
hence the tighter are the level lines, the higher are the
local values of g(ϕ(t)).

In the ϕ1—ϕ2 plane, the direction of the vector θ char-
acterizing the Wiener system is perpendicular to the level
lines. This fact can be checked by noticing that all points
falling on a straight line perpendicular to θ has the same
orthogonal projection on the line along θ, hence these
points all have the same value of ϕT (t)θ, belonging to the
same level line of g(ϕ).

The covariance matrix cov[ϕ(t)] as expressed in (3) has
equal eigenvalues, hence the data points of ϕ(t) shown in
Figure 1-(b) have no principal component direction, in the
sense of the principal component analysis (PCA).

The main idea of the wPCA method is to modify ϕ(t)
by some weighting factor depending on y(t), so that the
principal component of the modified ϕ(t) will appear along
the direction of θ. Let w(y(t)) be some non-negative valued
weighting function and define the weighted vector

ϕw(t) , w(y(t))ϕ(t). (6)

The weighting function w(·) should be appropriately cho-
sen, so that the principal component of the modified
vectors ϕw(t) will coincide with the direction of θ. The
conditions that should be satisfied by w(·) will be specified
later (see Proposition 1).

For the 2D example where f(·) is a convex even function,
let us choose a weighting function corresponding to an
increasing function of |y(t)|, say

w(y(t)) = α−e−β|y(t)| (7)

where α ≥ 1 and β > 0 are two chosen constants. In
this considered noise-free example, y(t) = g(ϕ(t)), hence
ϕw(t) is weighted by a monotonically increasing function
of |y(t)| = |g(ϕ(t))|. Hence, in Figure 1-(b), virtually all
the points falling on the same level line would be modified
by the same weight (the points in the available data
set may all fall on different lines). In this example, the
tighter are the level lines, the higher are the local values
of g(ϕ(t)), hence the higher are the values of the weights.
Consequently, the modification from ϕ(t) to ϕw(t) lead
to displacements of the blue dots with a general trend



(a) (b) (c) (d) (e)
The direction of the vector θ is perpendicular to the level lines.

Fig. 1. 2D illustration with ϕ(t) = [u(t), u(t − 1)]T . (a): The function g(ϕ(t)) = f(ϕT (t)θ) represented by a surface
over the bottom ϕ1—ϕ2 plane with level lines of g(ϕ(t)) and blue dots representing random data points (vectors
ϕ(t)). (b): A better view of the bottom ϕ1—ϕ2 plane. (c): Weighted vectors ϕw(t) represented by blue dots and
their principal component direction represented by the black arrow. (d): To better illustrate the effect of weighting,
the blue circles represent regularly placed data points and the green arrows indicate their displacements. (e): The
regularly placed data points after weighting and their principal component direction represented by the black arrow.

perpendicular to the level lines, from the center to the
outsides. After weighting, the positions of the weighted
vectors ϕw(t) represented by the blue dots are illustrated
in Figure 1-(c).

At this step, an estimation of the vector θ is made by the
principal component direction of the ϕw(t) vectors, which
can be found by computing the eigenvector corresponding
to the largest eigenvalue of the following empirical covari-
ance matrix

Σw =
1

N

N∑
t=1

ϕw(t)ϕTw(t), (8)

as represented by the black arrow in Figure 1-(c).

To better illustrate the displacements of the data points
caused by weighting, in Figure 1-(d) the blue circles
represent regularly placed data points instead of random
data points, and their displacements caused by weighting
are indicated by the green arrows. The positions of the
data points after weighting are shown in Figure 1-(e),
with their principal component direction represented by
the black arrow.

Due to its similarity to the standard PCA, this Wiener
system identification method is called weighted PCA, or
wPCA for short.

4. CONSISTENCY OF THE WPCA IN THE CASE OF
GAUSSIAN INPUT

In this section the consistency of the wPCA method under
the assumption of Gaussian input is shortly recalled.

Proposition 1. Assume that the input u(t) is an i.i.d.
sequence following the Gaussian distribution N (0, σ2

u). If
the weighting function w(·) satisfies

cov[(θTϕ(t))2, w2(y(t))] 6= 0 (9)

then the n×n covariance matrix of the weighted vector
ϕw(t) as defined in (6), namely E[ϕw(t)ϕTw(t)], has a
single eigenvalue λn with associated eigenvector ±θ. The
remaining n−1 eigenvalues are all equal to each other and
different from λn, i.e., λ1 = λ2 = · · · = λn−1 6= λn. 2

This result proved in (Zhang and Laurain, 2014) ensures
the consistency of the identification method based on
the eigenvalue decomposition of the empirical covariance

matrix Σw as in (8), when the data sample size N tends
to infinity. Unlike the noise-free illustrative example of the
previous section, this result has been established by taking
into account the noise term e(t) in (4). A typical example
of the weighting function is as given in (7). See (Zhang
and Laurain, 2014) for discussions about the choice of
weighting functions.

5. REGULARIZATION FOR VARIANCE
REDUCTION

Most dynamic systems encountered in practice have, in
principle, an infinite impulse response (IIR). If an IIR
system is stable, in the sense that its impulse response
decays sufficiently rapidly, (high order) finite impulse re-
sponse (FIR) models can be used as approximations. In
this case, the identification method designed with a FIR
model must be efficient enough for the estimation of high
order FIR models. The wPCA method is numerically ef-
ficient for the estimation of FIR models with hundreds
of FIR coefficients. However, the use of high order FIR
models, with many FIR coefficients to be estimated, tends
to increase the variance of the estimated coefficients. In
principle, the variance of parameter estimates can be re-
duced by increasing data sample size, but in practice the
available data may be limited. Alternatively, regulariza-
tion techniques can help to reduce parameter estimation
variances. A regularized wPCA method will be proposed
in this section.

The eigenvalue problem as stated in Proposition 1 is
asymptotically, when N →∞, equivalent to the optimiza-
tion problem

min
θ
θTΣwθ or max

θ
θTΣwθ (10)

depending on the sign of the correlation expressed in (9),
under the constraint θT θ = 1. In what follows, only the
case of minimization (negative correlation in (9)) will be
considered, since the case of maximization can be studied
similarly.

Regularization techniques are typically applied to system
identification either for improving model smoothness or for
obtaining sparse models (Chiuso, 2014). Here the purpose
is to reduce parameter estimate variance, corresponding to
the case of model smoothing. The concept of regularization



and the various techniques have been studied in many
publications, for example in (Doan et al., 1984; Kitagawa
and Gersh, 1984; Pillonetto and De Nicolao, 2010; Chen
et al., 2012). For the particular problem considered in this
paper, quadratic penalty will be added to the optimization
criterion (10). The regularized optimization problem is
then formulated as

min
θ
θTΣwθ + θTDθ subject to θT θ = 1 (11)

where D is a positive diagonal matrix containing the
penalty coefficients. In practice, the solution of this con-
strained optimization problem is solved by computing the
eigenvector of the matrix Σw+D associated to its smallest
eigenvalue.

Assume that the FIR coefficients contained in the vector
θ as defined in (2) is an approximation of the IIR of a
stable system, whose impulse response h(t) decreases to
zero when t→ +∞. Accordingly, the diagonal entries of D,
written as a vector d = [γ(0), γ(1), . . . , γ(n− 1)]T , should
have increasing components, so that smaller coefficients
h(t) (represented by the corresponding components of θ in
(11)) are more penalized. For example, a possible choice is

γ(t) = α(eβt − 1) (12)

with some chosen values α > 0 and β > 0. See (Pillonetto
and De Nicolao, 2010; Chen et al., 2012) for discussions
about the tuning of penalty coefficients.

To illustrate the ability of regularization for variance
reduction, let us consider an example of IIR system, with
its linear subsystem represented by the rational transfer
function

G(q) =
0.5q−1

1− 1.69q−1 + q−2 − 0.096q−3
(13)

It has reasonably stable poles equal to 0.786± 0.444i and
0.118. The static nonlinearity following this IIR linear
subsystem is the square function. Driven by a Gaussian
input, a data sample of length N = 1000 is simulated,
with the true IIR transfer function (13), followed by the
square nonlinearity. The simulated output is corrupted by
an additive Gaussian output noise of 20dB signal-to-noise-
ratio (SNR). An FIR Wiener model of order n = 100
is then estimated by the regularized wPCA, with the
weighing function

w(y) = 1− e0.3|y|

and the penalty coefficients

γ(t) = 0.25(e0.05t − 1).

For the purpose of comparison, another FIR Wiener
model of the same order is also estimated with the non-
regularized wPCA method, without the penalty term. The
results based on a simulated data sample are shown in
Figure 2. The smoothness of the estimated (truncated)
impulse response is clearly improved by the regularized
method at the tail of the estimated part of the impulse
response.

In practice, the improvement by regularization is signifi-
cant only when the data sample is not sufficiently large
compared to the number of parameters to be estimated.
The results depend, of course, also on the SNR.
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Fig. 2. Comparison between estimations by regularized
wPCA (blue line) and wPCA without regularization
(red line) of a truncated IIR Wiener model. The
first 100 values of the true IIR impulse response are
represented by dots. The data sample length N =
1000.

6. NON GAUSSIAN INPUTS

The Gaussian distribution condition was required for the
consistency result of Proposition 1.

To deal with non Gaussian inputs, the method pre-
sented below is based on importance sampling (Robert
and Casella, 2004, chapter 3). The main idea is to modify
the computation of the empirical covariance matrix Σw,
which was defined in (8), so that it converges to the covari-
ance matrix defined under the Gaussian input distribution
assumption, despite the fact that the modified empirical
covariance matrix is based on a data set generated with
a different input distribution. Importance sampling has
already been applied to system identification in some
cases, notably to the correlation-based method for Wiener
system identification (Enqvist, 2007). See also (Wills et al.,
2013).

Let f(ϕ) be the probability density function (PDF) of the
vector of random variables ϕ ∈ Rn, and

Ef [ω(ϕ)] ,
∫
Rn

ω(ϕ)f(ϕ)dϕ (14)

be the mathematical expectation of ω(ϕ) where ω : Rn →
R is a function such that the integral in (14) is well defined.
Accordingly define

Eg[ω(ϕ)] ,
∫
Rn

ω(ϕ)g(ϕ)dϕ (15)

where g(ϕ) is the Gaussian PDF.

Notice that

Eg[ω(ϕ)] =

∫
Rn

ω(ϕ)g(ϕ)
f(ϕ)

f(ϕ)
dϕ (16)

=

∫
Rn

ω(ϕ)
g(ϕ)

f(ϕ)
f(ϕ)dϕ (17)

= Ef

[
ω(ϕ)

g(ϕ)

f(ϕ)

]
. (18)



This result means that, according to the law of large
numbers, given a sample sequence

ω(ϕ(1)), ω(ϕ(2)), . . . , ω(ϕ(N))

independently drawn following a given PDF f(ϕ), the
normalized sum

1

N

N∑
t=1

ω(ϕ(t))
g(ϕ(t))

f(ϕ(t))
(19)

is an empirical estimator of

Ef

[
ω(ϕ)

g(ϕ)

f(ϕ)

]
,

which turns out to be equal to Eg[ω(ϕ)], according to (18).

Proposition 2. Let u(t) be i.i.d. and denote with f(ϕ) the
corresponding PDF of ϕ(t). Define

ΣIS
w (N) ,

1

N

N∑
t=1

g(ϕ(t))

f(ϕ(t))
ϕw(t)ϕTw(t) (20)

=
1

N

N∑
t=1

g(ϕ(t))

f(ϕ(t))
w2(y(t))ϕ(t)ϕT (t). (21)

If the weighting function w(·) satisfies

covg[(θ
Tϕ(t))2, w2(y(t))] 6= 0 (22)

then, whenN →∞, ΣIS
w (N) tends to an n×nmatrix, which

has n−1 equal eigenvalues, say λ1 = λ2 = · · · = λn−1, and
a different one λn 6= λ1 with the associated eigenvector
equal to ±θ. 2

Proof of Proposition 2.

If ϕ(t) was an i.i.d. vector sequence, then Proposition 2
would be a direct consequence of the above discussions,
by treating each entry of the matrix ϕw(t)ϕTw(t) as ω(ϕ).
However, though the input sequence u(t) is i.i.d., the
vector sequence composed of delayed u(t) as defined in
(2) is not an independent vector sequence. This detail is
addressed below.

The basic law of large numbers assumes that the data sam-
ple is i.i.d.. To avoid the dependence between neighboring
items of the sequence ϕ(t), consider a sub-sum ΣIS

w (N, i)
involving one out every n consecutive items of the sum
ΣIS
w (N), namely

ΣIS
w (N, i) , (23)

1

m

m−1∑
k=0

g(ϕ(kn+ i))

f(ϕ(kn+ i))
ϕw(kn+ i)ϕTw(kn+ i) (24)

where

m ,

[
N

n

]
(25)

is the integer part of N
n and

i ∈ {0, 1, 2, . . . , n− 1}.
According to the definition of ϕ(t) in (2), the sequence
ϕT (kn+i) for k = 1, 2, 3, . . . is independent, and also i.i.d.
Therefore, for each i ∈ {0, 1, 2, . . . , n− 1}, the partial sum
ΣIS
w (N, i) converges to Eg[ϕw(t)ϕTw(t)], as explained before

the statement of Proposition 2. When N →∞, in ΣIS
w (N)

the last terms after t = nm can be neglected, hence

ΣIS
w (N) ≈ m

N
ΣIS
w (N, 0) + · · ·+ m

N
ΣIS
w (N,n− 1)
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Fig. 3. Histograms of ∠(θ, θ̂) (in radian) for the ba-
sic wPCA (top) and the wPCA with importance
sampling (bottom) based on 1000 simulations. The

smaller ∠(θ, θ̂) is, the more accurate is the estimated
model.

tends also to Eg[ϕw(t)ϕTw(t)]. The proof is then complete.
2

By means of importance sampling, the Gaussian input
assumption is then, in theory, relaxed. The current im-
plementation of the algorithm based on the importance
sampling is efficient for short FIR models only, since many
of the weights g(ϕ(t))/f(ϕ(t)) for importance sampling
become close to zero when n is large. Some further im-
provements are necessary for its application to systems
approximated with high order FIR models.

As a numerical example, let us consider a FIR Wiener
system with n = 5 and the square function static nonlin-
earity. A data sample of length N = 5000 is generated in
every simulation, driven by an i.i.d. input u(t) following
the triangular PDF:

f(u) =


u+ 1 if − 1 ≤ u < 0

1− u if 0 ≤ u < 1

0 otherwise.

(26)

The simulation is repeated 1000 times, with different
random realizations of the input, the output noise, and
also the impulse response h(t) with n = 5. The output
noise is Gaussian and has a SNR of 20 dB.

In each simulation, to assess how close is the estimate θ̂ to
the true vector θ, the angle between the two normalized
vectors

∠(θ, θ̂) , arccos(|θT θ̂|) (27)

measured in radian is used. Notice that ∠(θ, θ̂) ∈ [0, π/2],
and that the 0 value means perfect fit, whereas π/2 ≈ 1.57
corresponds to the worst fit.

The histograms of ∠(θ, θ̂) based on the 1000 simulations,
both for the basic wPCA and the wPCA with importance
sampling, are illustrated in Figure 3. The improvement by
importance sampling in this example is obvious.



7. CONCLUSION

The recently developed wPCA method for Wiener system
identification has been improved in this paper in two
aspects. The use of regularization techniques reduces ef-
fectively the error variance for the estimation of high order
FIR models. On the other hand, Gaussian input assump-
tion is relaxed by means of importance sampling. These
results have been confirmed by numerical simulations.

APPENDIX – Correlation-based method

Define

z(t) , θTϕ(t) (28)

ϕ̃(t) , (In − θθT )ϕ(t) (29)

then

ϕ(t) = θz(t) + ϕ̃(t) (30)

It is easy to check that E[z(t)ϕ̃T (t)] = 0 by noting (3) and
that ‖θ‖ = 1. Under the Gaussian distribution assumption,
this fact implies that that z(t) and ϕ̃(t) are independent.

The noise e is assumed independent of ϕ, then

E(ϕy) = E[ϕ(f(z) + e)] (31)

= E[ϕf(z)]. (32)

Now apply (30),

E(ϕy) = E[(θz + ϕ̃)f(z)] (33)

= E[θzf(z)] + E[ϕ̃f(z)] (34)

Because z and ϕ̃ are independent,

E[ϕ̃f(z)] = E(ϕ̃)E[f(z)] = 0, (35)

hence

E(ϕy) = E[θzf(z)] (36)

= E[zf(z)]θ (37)

where E[zf(z)] is an (unknown) scalar value. Therefore,
the vector θ is determined by E(ϕy), up to an unknown
constant factor E[zf(z)]. In practice the expectation E(ϕy)
is approximated by a finite sample average. This result is
known as the correlation-based method.

The BLA in the least squares sense amounts to approxi-

mating
(
E(ϕϕT )

)−1
E(ϕy) = σ−2u E(ϕy), which is equiva-

lent to the correlation-based method under the assumption
of white Gaussian input.

This method requires the condition that the unknown
constant E[zf(z)] 6= 0. If f(z) is an even function, then
zf(z) is an odd function of z, therefore E[zf(z)] = 0.
Numerical examples (Zhang and Laurain, 2014) show that,
when the nonlinearity is somehow close to an even func-
tion, the correlation-based method produces completely
wrong results, whereas the wPCA-based method remains
efficient.

The deficiency of the correlation-based method can also
be avoided by simply adding an offset to the input signal.
This solution assumes that the dissymmetrical input signal
does not breach practical constraints (notably it may drive
the system away from the desired working point).
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