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Abstract: For the identification of a linear parameter varying (LPV) system steered by
a scheduling variable evolving within a finite set, the local approach consists in separately
estimating local linear time invariant (LTI) models corresponding to fixed values of the
scheduling variable. It is shown in this paper that, without any global structural assumption
of the considered LPV system, the local state-space LTI models do not contain the necessary
information about the similarity transformations making them coherent. Nevertheless, it is
possible to estimate these similarity transformations from input-output data under appropriate
input excitation conditions. These estimations result in a common state basis of the transformed
local LTI models, so that they form a coherent global LPV model, suitable for numerical
simulations in the case of fast scheduling variable evolutions.
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1. INTRODUCTION

Linear parameter varying (LPV) models provide an ef-
fective approach to handling nonlinear control systems
(Toth, 2010; Mohammadpour and Scherer, 2012; Lopes dos
Santos et al., 2012; Sename et al., 2013). Some successful
methods for LPV system identification have been reported
recently (Van Wingerden and Verhaegen, 2009; Mercere
et al., 2011; Lopes dos Santos et al., 2011; Toth et al.,
2012; Zhao et al., 2012; Piga et al., 2015), with various
assumptions about LPV model structures. As a matter
of fact, many variant LPV model structures have been
proposed, and the methods developed for LPV system
identification strongly depend on the particular model
structures.

The present paper is focused on the identification of LPV
systems in the case where the scheduling variable p(t) takes
values from a finite set, say P = {p1, . . . , pm}. Typically
each pi ∈ P corresponds to a working point of the con-
sidered system. It is assumed that input-output data are
collected at different working points, and that the resulting
LPV model will be used at the same working points.
In other words, the problem of local model interpolation
between working points, as studied in (De Caigny et al.,
2011, 2014), is not considered in the present paper.

With the scheduling variable p(t) restricted to a finite set
P , the considered particular class of LPV systems will
be referred to as linear finite parameter varying (LFPV)
systems. When p(t) is fixed to a particular value, the
related LFPV system behaves like a linear time invariant
(LTI) system. An LFPV system is thus characterized by a
collection of local LTI models.
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Given an input-output data sample and the correspond-
ing scheduling variable sequence, in principle the LFPV
system identification problem can be solved by the pre-
diction error method (PEM) after having chosen some
parametrization of the local LTI models. However, such
a solution implies solving a large optimization problem,
in terms of the number of unknowns and the amount
of data to be processed as a whole. Moreover, it is not
easy to make a good initial guess of the model parameters
before applying the PEM. Methods following such a global
approach often assume some global parametric structure
of the LPV system (Toth, 2010).

Alternatively, it is possible to separately estimate each
local LTI model from the data collected at the related
working point corresponding to a particular scheduling
value pi ∈ P . Such a local approach is attractive in
practice, because the whole LFPV model can be built
and completed progressively, by limiting the requirement
on computing resources. Unless physical models are used,
each local state-space LTI model is estimated up to an
arbitrary similarity transformation. If each estimated local
model is only used at the related working point (in this
case the concept of LFPV model is of little interest), the
indetermination of the arbitrary similarity transformation
is not a problem at all. However, if the estimated collection
of local LTI models is used as a global LFPV model
spanning different working points, the estimated local
LTI models must be coherent, in the sense that they are
related to the true LFPV system by the same similarity
transformation.

Global structural assumptions about the LFPV system
can help to make the estimated local LTI models coherent
(see examples in Section 3.2). Such assumptions should be
based on physical insights about the considered system,
otherwise they may excessively restrict the flexibility of



the resulting model structure. In practice, local LTI models
are often reduced order approximation a complex system,
then such models have a strong black-box nature. In this
case it is difficult to make the estimated local LTI models
coherent.

The main purpose of this paper is to point out the fact
that, without global structural assumptions, the local LTI
models themselves do not contain the necessary informa-
tion about the similarity transformations making them
coherent. Nevertheless, it is possible to estimate these
similarity transformations from input-output data under
some excitation conditions, through the estimation of the
states around the scheduling variable jump instants, with a
method initially introduced in the framework of piecewise
linear hybrid systems (Verdult and Verhaegen, 2004).

2. PROBLEM STATEMENT

Let u(t) ∈ Rnu and y(t) ∈ Rny be respectively the input
and the output of a dynamic system at discrete time
instants t ∈ N∗ = {0, 1, 2, . . . }. Assume that there exists a
scheduling variable p(t) defined by p : N∗ → P , where P
is a finite set

P = {p1, p2, . . . , pm}, (1)

such that the considered dynamic system is described by
the finite dimensional state-space model

x(t + 1) = A(p(t))x(t) + B(p(t))u(t) + w(t) (2a)

y(t) = C(p(t))x(t) + D(p(t))u(t) + v(t) (2b)

where x(t) ∈ Rnx is the state vector, A(p(t)), B(p(t)),
C(p(t)), D(p(t)) are matrices of appropriate sizes depend-
ing on p(t) ∈ P , and w(t) ∈ Rnx , v(t) ∈ Rny are white
Gaussian noises with covariance matrices Q(p(t)), R(p(t)).
Given a scheduling sequence p(t), an input sequence u(t),
a realization of the random noises w(t), v(t), and an initial
state x(0) = x0 ∈ Rnx , the state x(t) and output y(t) of
the system are then fully determined.

Consider a set of consecutive time instants

Tk
l = {l, l + 1, l + 2, . . . , k} (3)

within which the value of p(t) is fixed, say p(t) = pi
for all t ∈ Tk

l . Within these time instants, the system
formulated by (2) is characterized by constant matrices
A(p(t)), B(p(t)), C(p(t)), D(p(t)), Q(p(t)), R(p(t)), say

Ai = A(pi), Bi = B(pi), Ci = C(pi), etc., (4)

corresponding to a linear time invariant (LTI) system

x(t + 1) = Aix(t) + Biu(t) + w(t) (5a)

y(t) = Cix(t) + Diu(t) + v(t) (5b)

for t ∈ Tk
l . Such a model will be referred to as a local LTI

model, as it is valid only at the working point specified by
p(t) = pi. The notation

LTIi , (Ai, Bi, Ci, Di, Qi, Ri) (6)

will be used to denote the local LTI system model indexed
by i.

In addition to the local LTI behavior of the system when
the value of p(t) remains constant, the model formulated
in (2) specifies also the transition at every jump of p(t).
Assume that p(k) = pi 6= p(k + 1) = pj . During this
transition the system is no longer LTI, because of the

changes of the matrices A(p(t)), B(p(t)) etc.. Nevertheless,
according to (2), the value of x(k + 1) is determined by

x(k + 1) = Aix(k) + Biu(k) + w(k). (7)

The whole trajectory of x(t) is thus well defined for all
t ∈ N∗.

As the scheduling variable p(t) evolves within the finite
set P , the matrix function A(p) takes also values within
a finite set of matrices, say {A1, . . . , Am}, and so do
similarly the other system matrices. The characteristics
of a system as formulated in (2) are thus fully specified
by the finite sets of matrices {A1, . . . , Am}, {B1, . . . , Bm},
etc., without requiring any structural assumption about
the matrix functions A(p), B(p), etc..

Based on the above comments, the global system described
by (2) with p(t) ∈ P will be referred to as a linear
finite parameter varying (LFPV) system (the word “finite”
refers to the fact that P is a finite set).

The LFPV system identification problem considered in this
paper is to estimate the finite sets of matrices {A1, . . . , Am},
{B1, . . . , Bm}, etc., solely from the scheduling sequence
p(t), the input-output data u(t), y(t) for t = 0, 1, . . . , N ,
and the known model order nx.

When the local models LTIi are separately estimated
without using any global structural information about the
LFPV system, each local model LTIi can only be estimated
up to a similarity transformation. However, to ensure con-
sistent global simulation with an estimated LFPV model,
the estimated local LTI models must be related to the true
LFPV system by the same similarity transformation. This
fact motivates the following definition.

Definition 1. The set of local LTI models

{(Ãi, B̃i, C̃i, D̃i, Q̃i, R̃i) : i = 1, 2, . . . ,m} (8)

constitutes a coherent representation of the LFPV sys-
tem (2) composed of a set of local LTI systems as formu-
lated in (5) and characterized by (Ai, Bi, Ci, Di, Qi, Ri),
if there exits an invertible transformation matrix T ∈
Rnx×nx such that, for all i = 1, . . . ,m,

Ãi = TAiT
−1, B̃i = TBi, (9a)

C̃i = CiT
−1, D̃i = Di, (9b)

Q̃i = TQiT
T , R̃i = Ri. (9c)

2

In practice, when a set of local LTI models are estimated
from a finite data sample subject to random uncertainties,
the definition of coherent local models should be under-
stood in an approximative sense.

If some global structural assumptions of the matrix func-
tions A(p), B(p), etc. were assumed, then it would be
relatively easy to make estimated local LTI models co-
herent, as given A(pi) = Ai, B(pi) = Bi, etc. for any i =
1, 2, . . . ,m, the other A(pj) = Aj , B(pj) = Bj , etc. would
be partly or fully determined. Unless based on particu-
lar physical insights, such global structural assumptions
may excessively restrict the flexibility of the LFPV model
structure. In this paper, the LFPV system identification
problem is considered with a fully flexible LFPV model
structure characterized by a set of independent local LTI
models, as defined below.



Definition 2. A set of local LTI models composing an
LFPV system, as formulated in (5), are independent
if their parametrizations are such that the matrices
Ai, Bi, Ci, Qi characterizing LTIi do not imply any infor-
mation about the matrices Aj , Bj , Cj , Qj characterizing
LTIj , for all i 6= j, both belonging to {1, 2, . . . ,m}. 2

Remark 1. In principle, it is possible to apply the pre-
diction error method (PEM) (Ljung, 1999) to simultane-
ously estimate all the finite sets of matrices {A1, . . . , Am},
{B1, . . . , Bm}, etc. by processing all the available data as a
whole, but such a global approach amounts to processing
a large set of data as a whole, and requires reasonably
coherent initial guesses of the local LTI models. Alterna-
tively, this paper follows a local approach, by processing
the available data in pieces segmented according to the
value of p(t), without requiring initial guesses of local LTI
models.

Remark 2. In this paper, the absence of any global struc-
tural assumption implies the LFPV model structure com-
posed of independent local LTI models in the sense of
Definition 2. This is a major difference from most LPV
system identification methods which are based on some
particular global structural assumptions, typically with a
affine structure and a reduced set of parameters (Toth,
2010; Lopes dos Santos et al., 2012).

3. ATTEMPTS TO MAKING LOCAL LTI
ESTIMATES COHERENT

Compared to the global approach, the advantages of the
local approach have been mentioned in Remark 1 of the
previous section. However, the local approach has also a
serious problem: as the local models estimated from input-
output data are expressed in arbitrary state bases, the
resulting local models LTIi are in general not coherent in
the sense of Definition 1. A set of incoherent local LTI
models cannot be used together as a whole LFPV model.

3.1 A general fact about independent local LTI models

Proposition 1. Assume that the local systems LTIi as
formulated in (5) composing a true LFPV system are
independent in the sense of Definition 2. Given a set of
LTI models (Âi, B̂i, etc.) such that

Âi = T̂iAiT̂
−1

i , B̂i = T̂iBi, etc. (10)

for i = 1, . . . ,m, where T̂i ∈ Rnx×nx are arbitrary unknown
invertible matrices, then it is impossible to determine
similarity transformation matrices T̃i ∈ Rnx×nx for i =
1, . . . ,m, solely based on the given LTI models (Âi, B̂i,
etc.) themselves, so that the transformed LTI models
characterized by

Ãi = T̃iÂiT̃
−1

i , B̃i = T̃iB̂i, etc., (11)

are coherent in the sense of Definition 1; or in other
words, the involved unknowns are underdetermined by the
available equations. 2

Proof. The proof consists in counting the unknowns and
the available equations.

All the relevant equations are, for i = 1, . . . ,m,

Ãi = T̃iÂiT̃
−1

i , B̃i = T̃iB̂i, C̃i = ĈiT̃
−1

i , Q̃i = T̃iQ̂iT̃
T
i

Ãi = TAiT
−1, B̃i = TBi, C̃i = CiT

−1, Q̃i = TQiT
T .

where Âi, B̂i, Ĉi, Q̂i are known, whereas all the other
involved quantities are unknowns.

To take into account the fact that there is no need to
uniquely determine the transformation matrix T common
to all i = 1, . . . ,m, eliminate Ãi, B̃i, C̃i, Q̃i from these

equations and replace the unknowns T̃i, T by ˜̃T i , T−1T̃i

for every i = 1, . . . ,m. Then the remaining equations are

Ai = ˜̃T iÂi
˜̃T
−1

i , Bi = ˜̃T iB̂i, Ci = Ĉi
˜̃T
−1

i , Qi = ˜̃T iQ̂i
˜̃T
T

i

with the unknowns Ai, Bi, Ci, Qi and ˜̃T i for i = 1, . . . ,m.

If ˜̃T i were known, then there would be exactly the same
number of equations as the unknowns Ai, Bi, Ci, Qi, either
counted in the matrix sense or in the scalar sense. Because
of the extra unknowns ˜̃T i , the entire unknowns are
then clearly underdetermined by the whole set equations.
Proposition 1 is thus proved. 2

3.2 Examples using global structural assumptions

The result of Proposition 1 may seem in contradiction with
some known publications proposing methods for making
local LTI models coherent. In fact, each of these existing
methods assumes, explicitly or implicitly, some particular
structure of the matrix-valued functions A(p), B(p) etc.,
therefore they do not cover the case studied in this paper.
To better clarify the situations, some examples of the pub-
lished methods are recalled in this subsection, by pointing
out their particular global structural assumptions.

Coherent LTI models based on canonical forms

In order to make local LTI models coherent, a natural
method is to find the similarity transformations leading
to some canonical state-space form of the LTI systems,
typically the controllable or the observable form. The idea
behind this method is that the local models should be
coherent when they are all transformed into the same
canonical form.

For the sake of presentation simplicity, consider a single-
input-single-output (SISO) LFPV system. In the control-
lable form, the m local models involve, for i = 1, 2, . . . ,m,

Ãi =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
... · · ·

...

a
(1)
i a

(2)
i a

(3)
i · · · a(n)i

 , B̃i =


0
0
0
...
1

 . (12)

The assumption that the local LTI models in their canon-
ical form are coherent implies that there exists a single
invertible matrix T ∈ Rnx×nx such that, for all i =
1, 2, . . . ,m, Ãi = TAiT

−1. Let S(M) denote the sub
matrix of M excluding its last row, then

S
(
TAiT

−1
)

=

0 1 0 · · · 0
...

...
... · · ·

...
0 0 0 · · · 1

 , ∀i = 1, 2, . . . ,m. (13)



The assumption that S
(
TAiT

−1
)

are equal to the same
particular matrix for all i = 1, 2, . . . ,m is indeed a strong
global structural assumption about A(p).

Coherent LTI models based on the observability matrix

In (De Caigny et al., 2014) another method is proposed
to make local LTI models coherent. The class of systems
considered in (De Caigny et al., 2014) is more general than
that of the present paper. When applied to the LFPV
systems as considered in the present paper, this method
consists in finding different similarity transformations so
that the m transformed LTI models all have the same
observability matrix.

This method is based on the assumption that the local LTI
systems composing the considered LFPV system all have
the same observability matrix, or more explicitly,

CiA
s
i = CjA

s
j (14)

for all i, j ∈ {1, 2, . . . ,m} and s ∈ {0, 1, . . . , nx − 1}.
This is clearly also a global structural assumption about
A(p), C(p).

Notice that this observability matrix-based method is in-
compatible with the previously presented canonical form-
based method, as in general the local LTI models in their
canonical form do not have the same observability matrix.
This incompatibility between the two “natural” methods
confirms the fact that there is no generally natural global
structural assumption for making estimated local LTI
models coherent.

4. DATA-BASED TRANSFORMATIONS FOR
COHERENT LTI MODELS

It was shown in the previous section that, in the local
approach to LFPV system identification, it is impossible to
determine similarity transformations to make independent
local LTI models coherent solely from the estimated local
LTI models themselves. It is thus necessary to make use
of other information, not contained in the local LTI
models. By excluding global structural assumptions, the
only information left seems the available input-output data
and the scheduling variable sequence. These data have
already been used for the estimation of local LTI models,
but they can also provide more information, for making
the local models coherent.

4.1 The case of m = 2

For the ease of presentation, let us first consider the case
of a LFPV system with only 2 local LTI systems (m = 2).
The more general case will be considered later.

Assume that p(t) changes from p1 to p2 at t = k, or more
accurately, p(t) = p1 for t ∈ Tk

l = {l, l + 1, l + 2, . . . , k}
and p(t) = p2 for t ∈ Tq

k+1 = {k + 1, k + 2, . . . , q}. Assume
further that the two corresponding input-output data
segments are informative enough so that two local LTI
models of order nx can be estimated from them, with any
of the classical LTI system identification methods (Ljung,
1999). These estimated local models will be denoted by

LTI1 = (Â1, B̂1, etc.) and LTI2 = (Â2, B̂2, etc.). (15)

With the two estimated LTI models and the input-output
data, the state sequence x(t) for t ∈ Tk

l and t ∈ Tq
k+1 can

be estimated with different approaches. For some subspace
identification methods, the state sequence estimate x̂(t) is
a co-product (Van Overschee and De Moor, 1996). With
the PEM (Ljung, 1999), the initial state estimate (for
each of Tk

l ,T
q
k+1) is also provided with the estimated LTI

model, then the whole state sequence, separately for t ∈ Tk
l

and t ∈ Tq
k+1, can be estimated by the Kalman filter.

Here the final state estimate with LTI1 for t ∈ Tk
k,

namely x̂1(k), and the initial state estimate with LTI2 for
t ∈ Tq

k+1, namely x̂2(k + 1), are of particular interests.

If LTI1 and LTI2 were coherent, then according to (7), the
equality

x̂2(k + 1) = Â1x̂1(k) + B̂1u(k) (16)

would hold, up to random estimation errors of x̂1(k) and
x̂2(k + 1) and the noise w(k). In general, of course, LTI1
and LTI2 are not coherent and equality (16) does not hold.

Assume that after applying some similarity transformation
T1,2 to LTI1, the transformed LTI model will be coherent
with LTI2. The remaining part of this subsection is for the
purpose of introducing a method for the estimation of T1,2.

As the application of the transformation matrix T1,2 makes
LTI1 coherent with LTI2, the incorrect equality (16) should
be replaced by

x̂2(k + 1) = T1,2Â1T
−1
1,2 T1,2x̂1(k) + T1,2B̂1u(k) (17)

= T1,2Â1x̂1(k) + T1,2B̂1u(k). (18)

Define

x̂1(k + 1) , Â1x̂1(k) + B̂1u(k) (19)

as an estimate of x(k+1) from LTI1, then (18) is rewritten
as

x̂2(k + 1) = T1,2x̂1(k + 1). (20)

As x̂2(k + 1) and x̂1(k + 1) can be both estimated from
available data with the estimated local LTI models, they
provide information about T1,2 through (20).

The matrix T1,2 has nx × nx unknown entries, but (20)
contains only nx scalar equations. It is not yet sufficient to
determine T1,2 in order to make the two local LTI models
coherent.

Now assume that in the available data set there are more
than one jumps of p(t) within P = {p1, p2}. If each of these
jumps leads to an equation on T1,2 similar to (20), then it
is possible to determine T1,2 from these equations.

Assume that k(0), k(1), k(2), . . . , k(s+1) are jump instants
interlacing p(t) = p1 and p(t) = p2, such that for every

t ∈ Tk(j+1)

k(j)+1 = {k(j) + 1, k(j) + 2, . . . , k(j+1)}, (21)

p(t) = p1 if j is an odd number, and p(t) = p2 if j is an
even number.

If it was chosen to estimate separately one local LTI model

from the data within each Tk(j+1)

k(j)+1
, those corresponding to

odd numbers j would in principle all describe the same
local LTI model, but in different state bases. To avoid this
trouble, a simple idea is to treat all these data for t ∈
Tk(j+1)

k(j)+1
with odd numbers j as a whole multi-experiment



data set (Ljung, 2014), composed of different experiments

corresponding to different Tk(j+1)

k(j)+1
. A single LTI model,

namely LTI1, is then estimated from this multi-experiment
data set. Similarly, a single model LTI2 is estimated
from the multi-experiment data set corresponding to even
numbers j. A similar method was proposed in (Verdult
and Verhaegen, 2004) in the framework of subspace system
identification.

With the two estimated LTI models LTI1,LTI2 and the
available data subsets, after every jump instant k(j) for
j = 1, 2 . . . , s, two state estimates x̂1(k(j)+1) and x̂2(k(j)+
1) are computed, respectively with LTI1 and LTI2.

When j is an even number, x̂1(k(j) + 1) is computed from

the final state estimate within Tk(j)

k(j−1)+1
in a way similar

to (19), whereas x̂2(k(j) + 1) is simply the initial state

estimate within Tk(j+1)

k(j)+1
.

When j is an odd number, x̂1(k(j) +1) is simply the initial

state estimate within Tk(j+1)

k(j)+1
, whereas the computation of

x̂2(k(j) + 1) is made in a way similar to (19).

With these results, the vector equation (20) is generalized
to the matrix equation

[x̂2(k(1) + 1), · · · , x̂2(k(s) + 1)]

= T1,2[x̂1(k(1) + 1), · · · , x̂1(k(s) + 1)]. (22)

Assume that the matrix X̂1 , [x̂1(k(1)+1), · · · , x̂1(k(s)+
1)] has full row rank, then T1,2 can be estimated, by simply

inverting X̂1 if it is a square matrix, otherwise by solving
(22) for T1,2 in the least squares sense.

Remark that, for estimating two LTI models from the
two multi-experiment data sets (Ljung, 2014) formed from
the available data set, it is sufficient to assume that each
of these two multi-experiment data sets are informative
enough, instead of assuming that each of the data segment

corresponding to Tk(j+1)

k(j)+1
is informative enough.

4.2 The case of m ≥ 2

Now consider the case of m ≥ 2. The m local models LTIi
are first estimated from the available data, so is the whole
state sequence.

For each pair of indexes i 6= j, both belonging to
{1, 2, . . . ,m}, it is possible to estimate a transformation
matrix Ti,j to make the estimated LTIi and LTIj coherent,
by applying the method described in the previous subsec-
tion to appropriately selected data segments.

If a transformation matrix was estimated for each pair of
the m estimated local LTI models, there would be m(m+
1)/2 such estimated transformation matrices, but they are
not all necessary.

For example, assume that the available data set al-
lows the estimation of the m − 1 transformation ma-
trices T1,2, T2,3, . . . , Tm−1,m, then by applying the ma-
trix product Tm−1,m · Tm−2,m−1 · · ·T2,3 · T1,2 as a single
transformation matrix to LTI1, the transformed model
is coherent with LTIm. Similarly, the other local models

LTI2, . . . ,LTIm−1 are then also made coherent with LTIm.
Therefore, m− 1 estimated transformation matrices are
sufficient to make the m local LTI models coherent.

Generally, this method is based on the following assump-
tions.

A1. For each pi ∈ P , the data subset

Zi = {(u(t), y(t), p(t)) : t = 0, 1, . . . , N, p(t) = pi}
forms a multi-experiment data set sufficiently infor-
mative for the estimation of a state-space LTI model
of order nx, namely LTIi.

A2. There are sufficient jumps in the scheduling sequence
p(t) such that pairs of adjacent data segments allow
the estimation of m−1 transformation matrices Ti,j ,
each linking two local models LTIi and LTIj , so that
the entire m local LTI models are linked together
directly or indirectly by the of m−1 transformation
matrices.

The complete algorithm for estimating the m−1 transfor-
mation matrices is well described in (Verdult and Verhae-
gen, 2004).

5. NUMERICAL EXAMPLES

Let us consider the case of an LFPV system composed of 5
single input-single output local LTI systems (m = 5). Each
local LTI system has two conjugate complex poles with
modulus randomly drown in the interval [0.8, 0.9], and a
real zero randomly drawn in [−0.8, 0.8]. The models of the
local LTI system are converted to the state-space form,
each with an arbitrary state basis, before being linked
together to form an LFPV system model, which is then
used to data simulation.

The estimation data set is generated with a piecewise-
constant scheduling variable sequence p(t) ∈ P =
{1, 2, 3, 4, 5} as shown in Figure 1, and an independent
random input sequence uniformly distributed in [0, 1]. The
output is then simulated with the randomly generated
LFPV model as described above. No state noise is added
during the simulation, but a white Gaussian noise with
standard deviation 0.01 is added to the simulated output.

From one randomly generated estimation data set, 5 in-
dependent local LTI models of second order (nx = 2)
are first estimated with the PEM (Ljung, 1999), which
are then transformed into a coherent set of LTI models
with the method presented in this paper. The LFPV
model composed of the 5 coherent local LTI models is
then tested on an evaluation data set, which is generated
with an independent random scheduling variable sequence
p(t) equally distributed within P = {1, 2, 3, 4, 5}, which
is radically different from the one used in the estimation
data generation, as shown in Figure 2. The output simu-
lated with the estimated LFPV model is then compared
with the true output in Figure 2, where the two curves
(blue and green) are hardly distinguishable. The model
fit (percentage of the output variance explained by the
estimated model) in this example is 0.9537.

The above result is only based on one randomly generated
estimation data set and one validation set. The same simu-
lation is then randomly repeated 1000 times, with different
random realizations of the LFPV system composed of local
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Fig. 1. Scheduling sequence p(t) of the estimation data set.

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

6

 

 
p(t)

0 20 40 60 80 100 120 140 160 180 200
−2

−1

0

1

2

 

 
True y(t)
Coherent sim

t

Fig. 2. Top: scheduling sequence p(t) of the validation data
set. Bottom: comparison between the true output
(blue) and the output simulated with coherent local
LTI models (green).

0 20 40 60 80 100 120 140 160 180 200
−3

−2

−1

0

1

2

3

 

 
True y(t)
Coherent sim

t

Fig. 3. Comparison between the true output (blue) and the
output simulated with non coherent local LTI models
(green).

LTI models and different random noise realizations. Based
on these results, the empirical mean of the model fit is
0.9639, and standard deviation 0.0306.

In order to illustrate the importance of making estimated
local LTI models coherent, for the same random realization
as shown in Figure 2, the output simulated with the
estimated local LTI models before their “coherentization”
is compared to the true output in Figure 3. The benefit of
coherent models is then clear.

6. CONCLUSION

For the purpose of LPV system identification, a data-
based method has been proposed in this paper to make
independently estimated local LTI models coherent, with-
out making any global structural assumption about the
LPV system, based on an algorithm initially introduced
in (Verdult and Verhaegen, 2004).

As a final note, because the local model interpolation
problem, as studied in (De Caigny et al., 2011, 2014), is
not considered in the present paper, it does not matter if
the elements pi of the finite set P are scalar real values or
any other mathematical objects. Throughout this paper,
the values pi could have been replaced by their indexes i,
defined in any arbitrary order.
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