Rates of convergence for robust geometric inference

Frédéric Chazal 1 Pascal Massart 2, 3 Bertrand Michel 4
1 DATASHAPE - Understanding the Shape of Data
CRISAM - Inria Sophia Antipolis - Méditerranée , Inria Saclay - Ile de France
2 SELECT - Model selection in statistical learning
Inria Saclay - Ile de France, LMO - Laboratoire de Mathématiques d'Orsay, CNRS - Centre National de la Recherche Scientifique : UMR
4 GEOMETRICA - Geometric computing
CRISAM - Inria Sophia Antipolis - Méditerranée , Inria Saclay - Ile de France
Abstract : Distances to compact sets are widely used in the field of Topological Data Analysis for inferring geometric and topological features from point clouds. In this context, the distance to a probability measure (DTM) has been introduced by Chazal et al. (2011b) as a robust alternative to the distance a compact set. In practice, the DTM can be estimated by its empirical counterpart, that is the distance to the empirical measure (DTEM). In this paper we give a tight control of the deviation of the DTEM. Our analysis relies on a local analysis of empirical processes. In particular, we show that the rates of convergence of the DTEM directly depends on the regularity at zero of a particular quantile function which contains some local information about the geometry of the support. This quantile function is the relevant quantity to describe precisely how difficult is a geometric inference problem. Several numerical experiments illustrate the convergence of the DTEM and also confirm that our bounds are tight.
Type de document :
Rapport
[Research Report] INRIA. 2015
Liste complète des métadonnées


https://hal.inria.fr/hal-01232197
Contributeur : Frédéric Chazal <>
Soumis le : lundi 23 novembre 2015 - 11:04:49
Dernière modification le : jeudi 20 juillet 2017 - 09:28:14
Document(s) archivé(s) le : vendredi 28 avril 2017 - 18:19:34

Fichier

1505.07602v1.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Frédéric Chazal, Pascal Massart, Bertrand Michel. Rates of convergence for robust geometric inference. [Research Report] INRIA. 2015. <hal-01232197>

Partager

Métriques

Consultations de
la notice

357

Téléchargements du document

81