Depth-Assisted Rectification for Real-Time Object Detection and Pose Estimation

J Lima 1 F Simões 1 Hideaki Uchiyama 2 Veronica Teichrieb 1 Eric Marchand 2
2 Lagadic - Visual servoing in robotics, computer vision, and augmented reality
CRISAM - Inria Sophia Antipolis - Méditerranée , Inria Rennes – Bretagne Atlantique , IRISA-D5 - SIGNAUX ET IMAGES NUMÉRIQUES, ROBOTIQUE
Abstract : RGB-D sensors have become in recent years a product of easy access to general users. They provide both a color image and a depth image of the scene and, besides being used for object modeling, they can also offer important cues for object detection and tracking in real-time. In this context, the work presented in this paper investigates the use of consumer RGB-D sensors for object detection and pose estimation from natural features. Two methods based on depth-assisted rectifi-cation are proposed, which transform features extracted from the color image to a canonical view using depth data in order to obtain a representation invariant to rotation, scale and perspective distortions. While one method is suitable for textured objects, either planar or non-planar, the other method focuses on texture-less planar objects. Qualitative and quantitative evaluations of the proposed methods are performed, showing that they can obtain better results than some existing methods for object detection and pose estimation, especially when dealing with oblique poses.
Type de document :
Article dans une revue
Machine Vision and Applications, Springer Verlag, 2016, 27 (2), pp.193-219
Liste complète des métadonnées

Littérature citée [59 références]  Voir  Masquer  Télécharger
Contributeur : Eric Marchand <>
Soumis le : mardi 24 novembre 2015 - 13:31:04
Dernière modification le : mercredi 28 février 2018 - 10:22:56
Document(s) archivé(s) le : jeudi 25 février 2016 - 13:00:53


2015_mva_lima (2).pdf
Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01233046, version 1


J Lima, F Simões, Hideaki Uchiyama, Veronica Teichrieb, Eric Marchand. Depth-Assisted Rectification for Real-Time Object Detection and Pose Estimation. Machine Vision and Applications, Springer Verlag, 2016, 27 (2), pp.193-219. 〈hal-01233046〉



Consultations de la notice


Téléchargements de fichiers