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Abstract

This paper regards the problem of optimally placing unreliable sensors in a one-

dimensional environment. We assume that sensors can fail with a certain probability

and we minimize the expected maximum distance from any point in the environment

to the closest active sensor. We provide a computational method to find the optimal

placement and we estimate the relative quality of equispaced and random placements.

We prove that the former is asymptotically equivalent to the optimal placement when

the number of sensors goes to infinity, with a cost ratio converging to 1, while the cost

of the latter remains strictly larger.

1 Introduction

Sensor networks are used to monitor large or hazardous environments, for purposes ranging
from oceanographic research to security in airports, industrial plants, and other complex
infrastructures. In order to provide the best coverage of the assigned environment, sensors
have to be deployed at suitable locations. As sensors are prone to failures in collecting
and transmitting data, the robustness of the obtained coverage performance is a natural
concern: thus, we consider in this paper the problem of placing unreliable sensors in a given
environment in order to provide the optimal coverage of it.

Coverage optimization and related problems of optimal facility location have been studied
by the operations research community for a long time, often using concepts from geometric
optimization and computational geometry [24, 7]. During the past decade, conditions for sen-
sor networks to provide a certain level of coverage have been found in a variety of situations,
which include both random and deterministic placement strategies [11]. Many available re-
sults allow sensors to fail or to spend time in a sleeping mode to save energy: in fact, these
two scenarios can be given a unified treatment [17, 25] using probabilistic methods [14, 9].
However, it appears that the issue of the optimality of such placements, although recognized
as central, has been left in the background [26].
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Control scientists have also become interested in these topics, after realizing that feedback
control can enable the autonomous deployment of self-propelled sensors [15]. The main
references for this research are the book [2] and the related papers [5, 4], while very recent
developments include [1, 21, 18, 19]. Most literature from the control community assumes
sensors to behave reliably, but recent results are making clear that this assumption is not
free from risks. In fact, sensor failures deteriorate the performance of the sensor network
and it is not even clear if optimal solutions derived for the case without failures retain good
properties in other cases. Indeed, simulations reported in [16] show the solutions that are
optimal in the presence of failure are qualitatively different from those optimal in the fully
reliable case.

The common sense countermeasure to failing sensors is adding some redundancy and
letting more than one sensor “responsible” for covering a certain region of the environment,
so that they can back up each other in case a failure occurs. To this aim, sensors can cluster
into groups, such that the members of each group have the same location. This approach
has been exploited by Cortés [3], under the assumption that the number of failed sensors is
precisely known. As a consequence, the number of clusters in the optimal solution is directly
determined by this number.

In this paper, we consider the problem of optimal disk-coverage in a one-dimensional
environment by unreliable sensors, under a probabilistic failure model that does not assume
any a priori information about the number or the location of the failures. Rather, we assume
that sensors fail independently and with the same probability. We then aim to minimize, in
expectation, the largest distance between a point in the environment and an active sensor.

This cost function was already used in [3], which was motivated by random field estima-
tion [13]. It is consistent with the spirit of standard coverage questions in sensor networks,
in which one is interested in guaranteeing a full coverage of the environment using a given
number of sensors with a certain coverage radius [17, 23]. Note that it also corresponds to the
classical problem of facility location, where a number of facilities have to service customers
in a given area and want to optimize the worst-case servicing delay [2, Ch. 2].

Regarding the choice of the environment, most prior works about sensor networks have
chosen two-dimensional settings. In contrast, our choice of working in dimension one allows
us to achieve sharper characterizations and results about optimality, both asymptotical and
for finite networks. Results of this kind are scarce in the literature, even if one-dimensional
settings have often been studied, both in classical [14] and recent works [19, 20].

Our first result – Theorem 1 – states that the problem at hand is equivalent to a linear
program, albeit with a number of variables growing exponentially with the number of sensors.
This fact allows for a computational solution that is tractable if the number of sensors is not
large. Secondly, we show that for large number of sensors n, the cost of the equispaced
placement decreases to zero with leading term 1

2 log p−1

logn
n , where p is the probability of

failure. In Theorem 2, we provide analytic bounds on the optimal cost and prove that the
equispaced placement is nearly optimal: the ratio between its cost and the optimal cost tend
to 1 when n grows. By contrast, we show in Theorem 3 that a random placement has a larger
cost of order 1

2(1−p)
log n
n . The almost optimality of the deterministic placement and its strict

difference with the random placement had not been noticed before in the literature.
Our analysis also bear consequences for the failure model adopted by Cortés [3]: for

instance, we show that the equispaced placement is nearly optimal in this case as well.
Finally, we note that our results extend and refine those recently presented by some of the
authors in [10], where a similar model of unreliable coverage was proposed.
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Paper structure

The rest of the paper is organized as follows. The formal definition of the problem is presented
in § 2. Translation to a linear optimization problem is shown in § 3. In § 4 we assess the
performance of the equispaced placement. In § 5 we analyze the special cases when the failure
probabilities are close to 0 or to 1. § 6 deals with the case of random sensor placement. In
§ 7 we adapt our results to the failure model by Cortés. Conclusions are drawn in § 8.

2 Problem definition

We assume that we have a set of sensors indexed in [n] = {1, . . . , n} which have to cover the
interval [0, 1]. Since sensors may fail, we consider for each placement x ∈ [0, 1]n the coverage
cost defined as the largest distance between a point in [0, 1] and its closest active (not failing)
sensor. To formalize this notion, we let A denote the set of active sensors: we will use |A| to
denote the cardinality of A and Ak to denote the kth smallest index present in the set A, for
k = 1, . . . , |A|. We also call xA ∈ [0, 1]|A| the restriction of the vector x to those entries for
which the corresponding sensors are active. The cost incurred when the set of sensors A is
active is thus

C0(xA) = max
s∈[0,1]

min
j∈A

|s− xj |. (1)

To be formally complete, we assign the arbitrary cost C0(x∅) = 1 to the situation where
all sensors fail. This convention has no effect when we seek to optimize the locations of the
sensors, as locations are irrelevant when they all fail. Observe that if no sensor fails (A = [n]),
then the cost (1) reduces to

C0(x) = max
s∈[0,1]

min
j∈[n]

|s− xj |.

In this case, it is known that the equispaced placement of n sensors, namely

xeq =
1

2n
(1, 3, . . . , 2n− 1), (2)

is the optimal solution and achieves a cost C0(x
eq) = 1

2n . Since we assume that failures
are random, we define the event EA = {A is the set of active sensors} and we consider the
expected value of the cost C0, which is

C(x) =
∑

A⊆[n]

Pr(EA)C0(xA), (3)

where Pr(EA) is the probability of EA. In the rest of this paper, with the exception of
§ 7, we assume that each sensor fails with probability p, independently from the others.
Consequently,

Pr(EA) = pn−|A|(1− p)|A|. (4)

We are then ready to formally state our optimization problem.

Problem 1 (Independent failures). For given p ∈ (0, 1) and n ∈ N, find x∗ ∈ [0, 1]n that
minimizes the cost (3) with (4).

In what follows we assume, for simplicity and without loosing generality, that x is ordered
x1 ≤ x2 ≤ · · · ≤ xn. This assumption implies that

C0(xA) = max

{

xA1
, 1− xA|A|

, max
k=1,...,|A|−1

1

2
(xAk+1

− xAk
)

}

. (5)
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3 Formulation as a linear program

A solution of Problem 1 can be numerically computed by means of the following result, that
shows its equivalence to a suitable linear program.

Theorem 1 (Linear program). Let n ∈ N and p ∈ (0, 1). The (ordered) vector x∗ ∈ [0, 1]n

is an optimal solution of Problem 1 if and only if there exists a vector w∗ ∈ R
2n−1 such that

(x∗, w∗) is an optimal solution to the following linear program:

min
∑

A 6=∅

Pr(EA)wA (6)

s.t.

0 ≤ x1 ≤ · · · ≤ xn ≤ 1, (7)

and ∀A ⊆ [n], A 6= ∅,

wA ≥ 1

2
(xAk+1

− xAk
), for k = 1, . . . , |A| − 1, (8)

wA ≥ xA1
, wA ≥ 1− xA|A|

. (9)

Proof. As the constant term Pr(E∅) can be ignored when looking for the x minimizing C(x),
Problem 1 is equivalent to

min
x1≤···≤xn

∑

A⊆[n],A 6=∅

Pr(EA)C0(xA).

Since Pr(EA) ≥ 0 for every A, this problem is in turn equivalent to

min
x1≤···≤xn

∑

A⊆[n],A 6=∅

Pr(EA)wA s.t. wA ≥ C0(xA) for every A 6= ∅,

that is, to (6) under the constraints (7) and wA ≥ C0(xA) for every A 6= ∅. Thanks to (5),
the constraint wA ≥ C0(xA) can be separated in wA ≥ xA1

, wA ≥ (1 − xA|A|
), and wA ≥

1
2 (xAk+1

− xAk
) for k = 1 . . . , |A| − 1, that is, in (8) and (9), which achieves our proof.

The formulation as a linear program implies that the optimal solution corresponds to one
of the vertices of the polytope defined by the constraints. Unfortunately, the number of such
constraints is exponentially large in the number of sensors and thus the program becomes
quickly intractable. Nevertheless, we are able to calculate the optimal placements as long
as n is not too large. In Figure 1 we illustrate the evolution of the optimal placement for
Problem 1 as a function of p. We can see that the dependence on p is rather complex and it
is not clear how, or if, one could provide a simple exact description of the optimal location of
the sensors as a function of n and p. Still, in § 5 we will show that the equispaced placement
is optimal when p is near 0 and a single cluster at 1/2 is optimal when p is near 1.

Observe that the the optimal x is a piecewise constant function of p. This feature can
actually be explained by the structure of the linear program in Theorem 1. Indeed, one can
see that the constraints do not depend on p, which only affects the cost function. For any p,
one can thus always find an optimal (x∗, w∗) among the finitely many vertices of the polytope
defined by these constraints. It is therefore natural to observe only finitely many different
optimal solutions.
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Figure 1: Optimal sensor placement for Problem 1 for n = 12 sensors and varying p.

4 Performance of the equispaced placement

The difficulty of providing explicit formulas or efficient computational methods to solve Prob-
lem 1 motivates us to investigate the properties of simple near-optimal solutions. We concen-
trate on the equispaced placement, which we have seen to be optimal in case of no failures,
achieving a cost C0(x

eq) = 1
2n . In the case of positive failure probability, we can prove that

the cost of the equispaced placement is nearly optimal.

Theorem 2 (Cost of equispaced). Let p ∈ (0, 1) and let x∗ denote the optimal placement for
this p. Then,

C(xeq) =
1

2 log p−1

logn

n
+O

(
1

n

)

for n → ∞ (10)

and for every n ∈ N

C(xeq) ≤ C(x∗) +
p

1− p

2

n
. (11)

Equation (10) is illustrated in Figure 2 (§ 6). A few relevant observations follow from
this theorem: (i) the order of growth of C(xeq) is only worse than the order of C0(x

eq) by

a logarithmic factor; (ii) xeq asymptotically achieves the optimal cost, since C(xeq)
C(x∗) → 1;

and (iii) the difference in cost between xeq and the optimum can be estimated at finite n,
too. Consequently, the equispaced placement can be seen as a valid heuristic solution, when
finding an exact solution proves to be intractable.

The rest of this section is devoted to prove Theorem 2. We first prove equation (10) in
§ 4.1: its proof is based on classical results about the properties of the runs of consecutive
ones in sequences of Bernoulli trials. Next, in § 4.2 we prove (11); the proof of this formula
relies on an alternative version of Problem 1 defined on the circle, for which the equispaced
solution is actually optimal.

4.1 Longest runs of failures and proof of (10)

Let Rn be the maximum number of sensors which fail “in a row”, i.e., the length of the
longest run of failures over n sensors. The random variable Rn is closely related to the cost,
as we detail below. On the other hand, the distribution of Rn and its asymptotic behavior
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for large n are well studied in the literature, due to their relevance in combinatorics [8]. The
following lemma, taken from [12], characterizes the asymptotic behavior of E[Rn].

Lemma 1. Let Rn be defined as above and p ∈ (0, 1). Then, for n → ∞,

E[Rn] =
1

log p−1
logn+

log(1−p)

log p−1
+

γ

log p−1
− 1

2
+ rp(n) + o(1) ,

where γ is the Euler-Mascheroni constant and rp(n) is a periodic function which remains
bounded and, more precisely, satisfies for all n

|rp(n)| ≤
1

2π

√
θ

e−θ

(1− e−θ)2
with θ =

π2

log p−1
.

Recall that we denote by A the set of active sensors and that the sensors are sorted
according to their location. The cost C(xeq) is tightly related with the lengths of runs of
failures, and in particular the maximum run-length. For a given set A of active sensors,
denote by R the longest run-length of failures for that set A (elements of [n] not in A): R
is thus the realization of Rn corresponding to A. Notice that if 1 ∈ A and n ∈ A, then the
coverage cost is precisely determined by the longest run of failures, since C0(x

eq
A ) = R+1

2n .
However, when a failure occurs in sensors 1 or n (or both), the runs of failures involving
border sensors contribute to the cost by a larger amount. Denote by Li and Lf the lengths of
the runs of failures involving the initial sensor 1 and the final sensor n, respectively, namely,
Li = A1 − 1 and Lf = n−A|A| for A 6= ∅, and Li = Lf = n for A = ∅. Now notice that, for
all A 6= ∅,

C0(x
eq
A ) = max

{
R+ 1

2n
,
2Li + 1

2n
,
2Lf + 1

2n

}

.

For the case where A = ∅, recall that C0(x
eq
∅ ) = 1. Hence, for all A, we have the following

bounds:

C0(x
eq
A ) ≥ R+ 1

2n

and

C0(x
eq
A ) ≤ max

{
R+ 1

2n
,
2Li + 1

2n
,
2Lf + 1

2n

}

≤ R+ 1

2n
+

2Li + 1

2n
+

2Lf + 1

2n
.

The bounds on the averaged cost C(xeq) are then obtained by taking the expectation.
Notice that, with the failure model from Problem 1 the maximum run-length R is the above-
described random variable Rn, and hence its average satisfies Lemma 1. For the initial and
final run-lengths, they are truncated geometric r.v.’s, in the following sense. Let X be a
geometric r.v. of parameter p, namely Pr(X = k) = pk(1 − p). Now notice that Pr(Li = k)
and Pr(Lf = k) are equal to Pr(X = k) for k < n, to Pr(X ≥ n) for k = n and to 0 for larger
k, so that ELi = ELf ≤ EX = p

1−p .
We can now conclude the proof: for the lower bound

C(xeq) ≥ ERn + 1

2n
=

1

2n

(
1

log p−1
logn+O(1)

)

for n → ∞ ,

while for the upper bound

C(xeq) ≤ ERn + 1

2n
+ 2

2EX + 1

2n
=

1

2n

(
1

log p−1
log n+O(1)

)

for n → ∞ .
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4.2 Coverage on a circle and proof of (11)

In order to complete the proof of Theorem 2 we introduce a proxy model. Instead of covering
the unit interval, this time we attempt to find a good coverage on a circle with circumference 1.
If we represent the locations by values in [0, 1], this means that the distance between two
points x, y ∈ [0, 1] is min(|y − x| , 1− |y − x|). Employing this distance to determine the cost
as in (1) leads to define the following problem.

Problem 2 (Independent failures – Circle). For given p ∈ (0, 1) and n ∈ N, find x ∈ [0, 1]n

that minimizes C̃(x) =
∑

A⊆[n] Pr(EA)C̃0(xA), where Pr(EA) = pn−|A|(1− p)|A| and

C̃0(x) = max

{
1

2
(1− xn + x1), max

i=1,...,n−1

1

2
(xi+1 − xi).

}

(12)

Problem 2 can also be formulated as a linear problem; a result similar to Theorem 1 with
a minor modification to constraints (9) can be proved exactly in the same way.

Corollary 1 (Linear program – Circle). Let n ∈ N and p ∈ (0, 1). The (ordered) vector
x∗ ∈ [0, 1]n is the optimal solution of Problem 2 if and only if there exists a vector w∗ ∈ R

2n−1

such that (x∗, w∗) is an optimal solution to the following linear program:

min
∑

A 6=∅

Pr(EA)wA

s.t.

0 ≤ x1 ≤ x2 ≤ · · · ≤ xn ≤ 1,

and ∀A ⊆ [n], A 6= ∅,

wA ≥ 1

2
(xAk+1

− xAk
), for k = 1, . . . , |A| − 1,

wA ≥ 1

2
(1 − xA|A|

+ xA1
). (13)

We now show that the equispaced solution xeq is the optimal sensor placement for the
circle. We will then relate it to the original problem on the line.

Proposition 1 (Optimal solution – Circle). The equispaced sensor placement xeq is the only
optimal sensor placement (up to translation) on the circle for Problem 2.

Proof. The linear program nature of the problem allows us to combine different sensor place-

ments. Given (x,w) and (x′, w′) we may form
(

x+x′

2 , w+w′

2

)

. This is a valid point of the

polytope of constraints, and the cost is between the cost of the two initial placements. On
the other hand, using the symmetry of the circle it follows that the rotation of x (formally
a translation modulo 1) does not change the associated cost, even though w may need to be
changed appropriately. Without loss of generality, we assume thus x1 = 0.

Let us fix an initial (x,w) and define the rotated versions x1, x2, . . . , xn such that xk

becomes (xk)1 = 0. For every xk we have the corresponding best wk which all give the same
cost. We want a closer look on their average

(x∗, w∗) =

(

1

n

n∑

k=1

xk,
1

n

n∑

k=1

wk

)

.

Using our previous observations, this is a valid sensor placement and w∗ has the same cost
as any wk. But what is this x∗? Let us check the distance of two consecutive sensors (out of
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bound indices and distances have to be interpreted appropriately):

x∗
i+1 − x∗

i =
1

n

n∑

k=1

(xk
i+1 − xk

i ) =
1

n

n∑

k=1

(xk+i − xk+i−1) =
1

n
.

Therefore x∗ = xeq. This already shows that the equispaced placement is optimal. We now
show that it is the only optimal solution.
For the sensor placement x∗ the accompanying w∗ is not necessarily the best possible. We
claim that whenever x1 is not equispaced, there is a w̃∗ such that (x∗, w̃∗) is valid and strictly
cheaper than (x,w). When x is not equispaced, it means that there are two consecutive
sensors which are more than 1/n apart. In other words, w[n] > 1/(2n). By the construction
above, we get w∗

[n] = w[n] > 1/(2n). On the other hand, we know that we can decrease w∗
[n]

to 1/2n for the equispaced placement without violating any constraints. Define

w̃∗
[n] = 1/(2n),

w̃∗
A = w∗

A otherwise.

This way (x∗, w̃∗) is a valid point of the polytope. The costs of the different settings compare
as follows:

C̃(x) = Pr(E∅) +
∑

A 6=∅

Pr(EA)wA = Pr(E∅) +
∑

A 6=∅

Pr(EA)w
∗
A

≥ Pr(E∅) +
∑

A 6=∅

Pr(EA)w̃
∗
A ≥ C̃(x∗).

This becomes a strict inequality whenever Pr([n]) > 0. Consequently Pr([n]) > 0 is a
sufficient condition for x∗ = xeq to be the strong optimum. This condition obviously holds
for independent failures which concludes our proof.

Remark 1. The same proof shows that xeq is an optimal sensor placement for any variation
of Problem 2 where Pr(EA) is independent of the positions of the sensors and invariant under
permutation. Moreover, if there is a nonzero probability that all sensors are active, it is the
only optimal placement, up to translations.

Next, we show that the optimal cost of our initial Problem 1 lies between the cost C̃(xeq)
of the (optimal) equispaced solution xeq for Problem 2 on the circle and the cost C(xeq) of the
same distribution for Problem 1. For this purpose, we need the following lemma providing a
bound on the difference of cost for each set A of active sensors, which will also prove useful
later.

Lemma 2. Let A be a non-empty set of active sensors and xA their positions. There holds
C̃0(xA) ≤ C0(xA), Moreover, if C̃0(xA) < C0(xA), then C0(xA) = max{xA1

, 1− xA|A|
}.

Proof. Consider (5). Adding the average of the first two terms in the set on which the
maximum is taken does not affect the value of the maximum. We have therefore

C0(xA) = max

{

xA1
, (1− xA|A|

),
1

2
(1 + xA1

− xA|A|
), max

k=1,...,|A|−1

1

2
(xAk+1

− xAk
)

}

. (14)

Observe that every quantity appearing in the definition

C̃0(xA) = max

{
1

2
(1 + xA1

− xA|A|
), max

k=1,...,|A|−1

1

2
(xAk+1

− xAk
)

}

(15)

8



also appears in (14). Therefore, we have C̃0(x) ≤ C0(xA). Moreover, in case this inequality
is strict, C0(xA) must be equal to one of the elements that appear in (14) but not in (15),
that is, either xA1

or 1− xA|A|
.

Lemma 3. Let x∗ be an optimal solution to Problem 1 for given n and p. There holds

C̃(xeq) ≤ C̃(x∗) ≤ C(x∗) ≤ C(xeq).

Proof. The inequality C(x∗) ≤ C(xeq) follows from the optimality of x∗ for Problem 1. Sim-
ilarly, C̃(xeq) ≤ C̃(x∗) follows from the optimality of xeq for Problem 2 proved in Theorem 1.
Finally, since C(x)− C̃(x) =

∑

A 6=∅ Pr(EA)(C0(xA)− C̃0(xA)), it follows from Lemma 2 that

C̃(x) ≤ C(x) for every x, and in particular that C(x∗) ≤ C(x∗).

Thanks to Lemma 3, now we just have to evaluate the difference between the cost of the
equispaced solution xeq in Problems 1 and 2.

Lemma 4. For any n ∈ N, p ∈ (0, 1), there holds

C(xeq) ≤ C̃(xeq) +
2

n

p

1− p
.

Proof. We first consider a (non-empty) set of active sensors A and find a bound on the
difference of cost C0(x

eq
A )− C̃0(x

eq
A ). Observe first that xeq

i = 1
2n (2i− 1), and therefore that

C̃0(x
eq
A ) ≥ 1

2n in all cases. Suppose now that C0(x
eq
A ) and C̃0(x

eq
A ) are different. It follows in

that case from Lemma 2 that C(xeq
A ) > C̃(xeq

A ), and that

C0(x
eq
A ) = max(xA1

, 1− xA|A|
) =

1

2n
max(2A1 − 1, 1 + 2(n−A|A|)).

Whenever C0(x
eq
A ) 6= C̃0(x

eq
A ), we have thus

C0(x
eq
A )− C̃0(x

eq
A ) ≤ 1

2n
max(2A1 − 2, 2(n−A|A|) ≤

1

n
(A1 − 1 + n−A|A|). (16)

When C0(x
eq
A ) = C̃0(x

eq
A ), the inequality also holds since the right-hand side of (16) is non-

negative.
We now sum the inequality (16) over all events and use the symmetry of our problem to

obtain

C(xeq)− C̃(xeq) ≤ 1

n

∑

A 6=∅

Pr(EA)(A1 − 1) +
1

n

∑

A 6=∅

Pr(EA)(n−A|A|)

=
2

n

∑

A 6=∅

Pr(EA)(A1 − 1)

=
2

n

n∑

k=1

Pr(A1 = k)(k − 1), (17)

where the event A1 = k implicitly implies that A is non-empty. Observe that the proba-
bility for the kth sensor to be the first active one is pk−1(1 − p). Therefore, the expression
∑n

k=1 Pr(A1 = k)(k− 1) is the expected value of a truncated geometric random variable (i.e.
a geometric random variable whose value is set to 0 if it exceeds n), and is bounded by p

1−p .

Reintroducing this into (17) leads to the desired result C(xeq)− C̃(xeq) ≤ 2
n

p
1−p .

The inequality (11) in Theorem 2 follows then from the combination of Lemmas 3 and 4.
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5 Extreme values of p

In this section, we study the optimal placement when p takes on extreme values, either close
to 0 or to 1. Our first result gives the optimal placements under such conditions.

Proposition 2 (Small and large p). If p is in a neighborhood of 0, then the equispaced
placement xeq is optimal. Similarly, if p is in a neighborhood of 1, then the optimal placement
is xsgl, where xsgl

i = 1
2 for all i ∈ [n].

Proof. We rely on the linear program formulation in § 3. We have seen that the polytope
of constraints is independent of p, and that the cost vector evolves continuously with p. For
p = 0 we know that the unique optimal solution is xeq. This means that for any other vertex
x of the polytope of constraints we have

C(xeq) < C(x).

Let us denote the set of vertices of the polytope of constraints by V . Knowing that V is
finite, we get

C(xeq) < min
x∈V \{xeq}

C(x).

The strict inequality and the continuity of the cost function with respect to p imply that, for
a sufficiently small perturbation of the cost vector, xeq will remain the optimal placement.
In other words, xeq is optimal as long as p is in a sufficiently small neighborhood of 0.

For large failure probability p = 1 − ε the most relevant events are those with just one
active sensor, in the sense that any A with size two or more has Pr(EA) = O

(
ε2
)
. Then,

C(x) = (1− ε)n + ε(1− ε)n−1
n∑

i=1

max(xi, 1− xi) +O
(
ε2
)
.

This holds for any placement x, so in particular for all x ∈ V . Clearly xsgl is strictly optimal
concerning the main term

∑n
i=1 max(xi, 1− xi). Recalling that V is finite, this implies that

one can find a sufficiently small ε̄ such that, for all ε ≤ ε̄, C(xsgl) < C(x) for all x ∈ V \{xsgl},
i.e., xsgl is optimal.

The next two results provide estimates on the sizes of the neighborhoods in Proposition 2,
showing that their sizes asymptotically vanish as n diverges. Their proofs, presented in
Appendices A and B, rely on comparing xeq and xsgl with alternative placements, and showing
that the former are not optimal when p differs from respectively 0 or 1 by more than a certain
value that decays in O(1/n).

Proposition 3 (Neighborhood of 0). The neighborhood of 0 where xeq is optimal is at most
c0/n long, with some constant c0 > 0.

Proposition 4 (Neighborhood of 1). The neighborhood of 1 where the single cluster place-
ment xsgl is optimal is at most 3/n long.

The proof of Proposition 4 actually shows the slightly stronger result that xsgl is sub-
optimal for any p < 1 − 3/n. In other words, it does not become optimal again for smaller
values of p.

10
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Figure 2: The plot compares E[C(xrand)], C(xeq), and their approximations according to
Theorems 3 and 2, respectively. The expected costs are simulated as Monte Carlo averages
over 100 independent realizations of the placements and of the failures, taking p = 0.3.

6 Performance of a random placement

In this section we consider a random placement xrand of the sensors. More precisely, the
positions xrand

1 , . . . , xrand
n are i.i.d. random variables, uniformly distributed in the interval

[0, 1]. Notice that (differently from x in the rest of the paper), here xrand has entries which
are not ordered, so that the cost definition in (1) applies, while the one in (5) does not.

The following result describes the asymptotic behavior of E[C(xrand)], where E denotes
expectation with respect to the random positions of sensors. Note that the cost C(x) defined
in (3) is itself averaged with respect to sensor failures.

Theorem 3 (Cost of random placement). Let xrand be the above-defined random sensor
placement. Then,

E[C(xrand)] =
1

2(1− p)

logn

n
+O

(
1

n

)

for n → ∞ .

From Theorem 3 we can argue that E[C(xrand)] has the same order of growth as C(xeq),
but with a larger constant, thus leading to an asymptotically worse performance: this com-
parison is illustrated in Figure 2. The rest of the section describes the main steps of the
proof, while some lengthier details are postponed to the appendix.

From the definition in (3) and by linearity of expectation,

E[C(xrand)] =
∑

A⊆[n]

Pr(EA)E[C0(x
rand
A )] .

The key remark is that all sets A having the same cardinality m have the same average
cost E[C0(x

rand
A )], which corresponds to the average cost of a vector of m active sensors in

random positions. Then, we define xrand,m as a vector with m entries xrand,m
1 , . . . , xrand,m

m ,
i.i.d. uniform in [0, 1]. With this notation, E[C0(x

rand
A )] = E[C0(x

rand,m)] with m = |A|, so

11



that

E[C(xrand)] =

n∑

m=0

Pr(|A| = m)E[C0(x
rand,m)] . (18)

Hence, we focus on finding bounds for E[C0(x
rand,m)]. To do so, we make use of classic

results about lengths of segments when cutting a rope at random points, as described below.
We introduce the notation V1, . . . , Vm+1 for the lengths of the segments obtained when cutting
the [0, 1] interval at points from xrand,m. More precisely, let y = (y1, . . . , ym) be the vector
obtained re-ordering entries of xrand,m in non-decreasing order; also define y0 = 0 and ym+1 =
1; finally define Vi = yi−yi−1, for i = 1, . . . ,m+1. The average cost E[C0(x

rand,m)] is related
to the distribution of the segment lengths V1, . . . , Vm+1, as follows.

Lemma 5. For any m ≥ 1,

E[C0(x
rand,m)] =

∫ 1

0

Pr(C0(x
rand,m) > v)dv , (19)

where Pr(C0(x
rand,m) > v) = Pr

(

{V1 > v} ∪
{
V2

2
> v

}

∪ · · · ∪
{
Vm

2
> v

}

∪ {Vm+1 > v}
)

.

Proof. By computing the expectation as the integral of the survival function, (19) immedi-
ately follows. From (5) applied to y, we have C0(x

rand,m) = max
(
V1,

V2

2 , V3

2 , . . . , Vm

2 , Vm+1

)
,

which implies the second equality.

We will then take advantage of the following result about the distribution of the segment
lengths V1, . . . , Vm+1.

Lemma 6 ([6, Sect. 6.4]). Let V1, . . . , Vm+1 be the above-defined segment lengths. Given
r ≤ m + 1 non-negative parameters c1, . . . , cr such that

∑

i ci ≤ 1, and distinct indices
i1, . . . , ir ∈ [m+ 1], then

Pr(Vi1 > c1, . . . , Vir > cr) = (1− c1 − · · · − cr)
m .

The above lemmas, together with inclusion-exclusion principle, allow us to find the fol-
lowing bounds for E[C0(x

rand,m)]. The bounds involve the harmonic numbers Hm =
∑m

h=1
1
h .

The details of the proof are given in Appendix C.

Lemma 7. For all m ≥ 0,

E[C0(x
rand,m)] ≥ Hm+1

2(m+ 1)
.

Moreover, for all m ≥ 2,

E[C0(x
rand,m)] ≤ Hm−1 + 4

2(m+ 1)
.

Then, using Lemma 7, we can find the following bounds for E(C(xrand)). The proof is
described in detail in Appendix D.

Lemma 8. For any ε ∈ (0, p),

E[C(xrand)] ≥ (1 − e−2ε2n)
H⌈(1−p+ε)n⌉

2⌈(1− p+ ε)n⌉ .

Moreover, for any ε ∈ (0, 1− p),

E[C(xrand)] ≤ e−2ε2n +
H⌈(1−p−ε)n⌉ + 4

2⌈(1− p− ε)n⌉+ 2
.
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The statement of Theorem 3 follows from Lemma 8, by taking ε =
√

logn
n and by exploit-

ing the fact that the asymptotic growth of harmonic numbers is Hm ∼ logm for m → ∞.

7 Cortés model

As mentioned in the Introduction, the paper [3] studies the coverage problem in one-dimension
with the following failure model for the sensors. The number of failing sensors is known (and
indicated with k) but which sensors fail is unknown and random: more precisely, the set of
the k failing sensors is sampled from a uniform distribution over the subsets of {1, . . . , n}
with k elements. The problem can be summarized as follows.

Problem 3 (Constant number of failures – Cortés model). For given positive integers k, n
with k < n, find x ∈ [0, 1]n that minimizes C(x) = Pr(E∅) +

∑

A 6=∅ Pr(EA)C0(xA), where

C0(x) is defined by (1) and Pr(EA) =
(

n!
k!(n−k)!

)−1

if |A| = k and 0 otherwise.

Observe that the only difference with our Problem 1 is that the probabilities Pr(EA) have
changed. The following lemma indicates how the Cortés model can be approximated by the
independent failure model.

Lemma 9. For any x ∈ [0, 1]n, k < n and 0 < ǫ < min(k/n, 1− k/n),

C
k

n
−ǫ(x)− e−2ǫn2 ≤ Ck,n(x) ≤ C

k

n
+ǫ(x) + e−2nǫ2 ,

were we use the notation Ck,n for the cost of Cortés model and Cp for the independent failure
model.

Proof. Problem 3 involves uniformly randomly selecting a subset A of k failed sensors among
n possible ones. One way of doing this is to first build a set B obtained by selecting indepen-
dently every sensor with a probability p. Then, if |B| > k, one obtains A by removing |B|−k
uniformly randomly selected sensors from B. If on the other hand |B| < k, one adds k− |B|
randomly selected sensors to B. Observe that A then always contains k sensors, and that all
sets A with cardinality k are equiprobable, so it is a valid selection process with respect to
Problem 3. The cost of x can be decomposed as the contributions of the event |B| > k and
|B| ≤ k.

Ck,n(x) = E(C0(xA)) = E (C0(xA)| |B| ≤ k) Pr(|B| ≤ k) + E (C0(xA)| |B| > k) Pr(|B| > k).
(20)

When |B| ≤ k, the set A contains the set B from which it was built, and the cost C0(xA) is
thus smaller than or equal to C0(xB). As a result, E (C0(xA)| |B| ≤ k) ≤ E (C0(xB)| |B| ≤ k).
On the other hand, the cost C0(xB) is always bounded by 1, and thus there always holds
C0(xB) ≤ 1 + C0(xA). In particular, E (C0(xA)| |B| > k) ≤ 1 + E (C0(xA)| |B| > k). Rein-
troducing these two bounds in (20) yields

Ck,n(x) ≤ E (C0(xB)| |B| ≤ k) Pr(|B| ≤ k) + E (C0(xB)| |B| > k) Pr(|B| > k) + Pr(|B| > k)

= E (C0(xB)) + Pr(|B| > k) = Cp(x) + Pr(|B| > k), (21)

where the last inequality follows from the fact that the sets B are built by randomly taking
each sensor with a probability p as in Problem 1. Now the size of B follows a binomial
distribution with parameters n and p. Hoeffding’s inequality implies then that Pr(|B| >
k) ≤ exp(−2 (np−k)2

n ). Taking p = k
n − ǫ, we obtain Pr(|B| > k) ≤ e−2ǫ2n, and the upper

bound of this lemma follows then from (21). The lower bound is obtained in a parallel
way.
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Results analogous to those presented in the previous sections can then be obtained for
the model in [3]. We collect them in the following Theorem.

Theorem 4 (Constant number of failures – Cortés model).

(a) Linear program. Theorem 1 is directly valid for Problem 3.

(b) Asymptotic cost of xeq. For fixed k/n and n → ∞, C(xeq) approximates 1
2 log n

k

logn
n .

More precisely, for any 0 < ǫ < min(k/n, 1− k/n) we have

1

2 log n
k−nǫ

logn

n
+O

(
1

n

)

≤ C(xeq) ≤ 1

2 log n
k+nǫ

log n

n
+O

(
1

n

)

for n → ∞,

where the O(1/n) term can depend on ǫ and k/n.

(c) Near-optimality of xeq. Let x∗ be the optimal solution to Problem 3. There holds

C(xeq) ≤ C(x∗) +
2

n

k

n− k
.

(d) Asymptotic cost of xrand. The average cost of the random placement has the asymp-
totic behavior

E[C(xrand)] =
logm

2m
+O

(
1

m

)

for m → ∞ ,

where m = n− k is the number of active sensors.

Proof. (a) The proof of Theorem 1 does not depend on the values of the probabilities Pr(EA).
It applies thus directly to other models of probabilities, including that of Problem 3. More-
over, the polytope of admissible solutions does not depend on Pr(EA) either. Therefore,
whenever the optimal solution is unique, it must belong to the (finite) set of vertices of that
polytope, independently of the model.

(b) This part of the result is obtained by combining the bound (10) in Theorem 2 with
Lemma 9.

(c) The proof follows the reasoning held in § 4. Specifically we can introduce a variation of
Problem 3 on the circle. As explained in Remark 1, Proposition 1 implies then that xeq is an
optimal solution of that problem (though not necessarily the only one since the probability
for all sensors to be active is zero if k > 0). Lemmas 2 and 3 can then directly be extended
with the same proof, so that C̃(xeq) ≤ C(x∗) ≤ C(xeq). The bound (c) follows then from a
variation of Lemma 4 showing that C(xeq)− C̃(xeq) ≤ 2

n
k

n−k .

(d) Similarly to the proof of Theorem 3, we get EC0(x
rand
A ) = EC0(x

rand,m) for any A
with |A| = m, and hence also EC(xrand) = EC0(x

rand,m). Then, applying Lemma 7, we get

Hm+1

2(m+ 1)
≤ EC(xrand) ≤ Hm−1 + 4

2(m+ 1)
,

which concludes the proof.

Our results on the asymptotic behavior of solutions to Problem 3 complement those
in [3], which focus on general properties of the optimization problem and on deriving explicit
formulas for certain values of k, n.
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8 Conclusion

In this paper we have presented our findings on a new model of coverage by unreliable sensors,
which extends the well-known disk-coverage problem to allow for independent sensor failures.
We have shown that the resulting optimization problem is a linear program, thus solvable by
standard methods. However, since the space of possible solutions grows exponentially with
the size of the problem, we do not know whether a solution can be found in a polynomial
time. Although the optimal solution can possibly be hard to find, and even if its properties
are difficult to describe precisely, we have been able to present a suboptimal solution which
asymptotically achieves the optimal performance as the number of sensors grows to infinity.
Remarkably, this near-optimal solution is just the equispaced placement, which is optimal
in the case without failures. We have also compared the performance of random sensor
placement to the equispaced setting to find that there is a constant factor deterioration of
the cost: nevertheless, the rate of growth is the same as the number of sensors increases.

This paper opens several research directions. The first natural direction is the extension
to higher dimensions. As mentioned in the introduction, the coverage performance of two-
dimensional sensor networks has been extensively investigated. Consistently with the results
in [17] and some preliminary results that we have obtained, we believe that both C(xeq) and

C(xrand) are asymptotically proportional to
√

logn
n . However, characterising the proportion-

ality constant and its optimality is an open question. In fact, our optimality analysis hinges
on the assumption of dimension one: crucially, the linear programming characterisation is
unlikely to effectively extend to higher dimensions. Secondly, in this paper we have chosen
a min-max disk-coverage cost: different cost functions would lead to interesting alternative
problems. For instance, one can consider the weighted integral of a non-decreasing function of
the distance to the closest sensor. Thirdly, one might consider the case of heterogeneous sen-
sors, where the failure probability can depend on the sensor itself or on its location. Finally,
a challenging question is finding feedback control laws that enable autonomous deployment
of self-propelled sensors, in such a way to take random failure into account. This problem
has been recently studied in relation to Cortés model in [22], but is completely open for the
failure model proposed in this paper.

A Proof of Proposition 3

We propose the alternative sensor placement

xalt =
1

2n− 2
(1, 2, 4, 6, . . . , 2n− 2, 2n− 4, 2n− 3)

and we show that, for some p = c/n and for sufficiently large n, this placement gives a better
(expected) cost than xeq. In order to do so, we estimate the cost difference C(xalt)−C(xeq).

We first compare the cost difference for any fixed set of active sensors A. If A is empty, the
two costs are trivially the same. Now consider a non-empty fixed A, and let k be the length
of the longest sequence of consecutive failed sensors among the middle ones 2, 3, . . . , n − 1.
In the following, we are going to prove the following bounds:

(a) C0(x
alt
A )− C0(x

eq
A ) ≤ Ik :=

k + 1

2n(n− 1)
;

(b) if k ≤ 1 and sensor 1 fails, then C0(x
alt
A )− C0(x

eq
A ) ≤ −J := − n− 5

2n(n− 1)
.
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Both bounds are based on the following observation:

C0(x
eq
A ) = max

{
k + 1

2n
,
2h+ 1

2n

}

, C0(x
alt
A ) ≤ max

{
k + 1

2(n− 1)
,

h

n− 1

}

, (22)

where h = max{A1 − 1, n − A|A|} is the longest between the runs of failures involving the
first and last sensor. Notice that 0 ≤ h ≤ k + 1.

To prove (a), consider two cases. If k ≥ 2h, then both maxima in (22) are achieved by the
term involving k, and C0(x

alt
A )−C0(x

eq
A ) ≤ k+1

2(n−1)− k+1
2n = Ik. If k < 2h, then both maxima in

(22) are achieved by the term involving h, and C0(x
alt
A )−C0(x

eq
A ) ≤ h

n−1 − 2h+1
2n = 2h−(n−1)

2n(n−1) ;

the claim then follows using in the numerator the bounds h ≤ k + 1 and n− 1 ≥ k + 1 (the
latter is true since by definition k ≤ n− 2).

To prove (b), notice that the assumption that sensor 1 fails implies h ≥ 1; also recall that
h ≤ k + 1, and that by assumption k ≤ 1, so that we have k ≤ 1 ≤ h ≤ 2. In this case, both

maxima in (22) are achieved by the term involving h, and C0(x
alt
A ) − C0(x

eq
A ) ≤ 2h−(n−1)

2n(n−1) ;

the claim follows from the bound h ≤ 2.
Now we come back to the averaged costs. We denote by Ek the set of sets A for which

the longest sequence of failed sensors among the middle ones has length k, and by F1 the set
of sets A for which the sensor 1 fails. We study

C(xalt
A )− C(xeq

A ) =

n−2∑

k=0

Pr(Ek)E[C0(x
alt
A )− C0(x

eq
A )|Ek] .

For all terms with k ≥ 2, we use the bound (a) to get E[C0(x
alt
A ) − C0(x

eq
A )|Ek] ≤ Ik. For

k = 0 and k = 1, we separate the case where sensor 1 fails or is active:

1∑

k=0

Pr(Ek)E[C0(x
alt
A )− C0(x

eq
A )|Ek]

=

1∑

k=0

Pr(Ek ∩ F1)E[C0(x
alt
A )− C0(x

eq
A )|Ek ∩ F1] +

1∑

k=0

Pr(Ek ∩ F̄1)E[C0(x
alt
A )− C0(x

eq
A )|Ek ∩ F̄1].

For the first term, we can use the tighter bound (b), to get E[C0(x
alt
A )− C0(x

eq
A )|Ek ∩ F1] ≤

−J ; for the second term we use bound (a), together with the remark that I0 < I1, to get
E[C0(x

alt
A )− C0(x

eq
A )|Ek ∩ F̄1] ≤ I1. Notice that E0 and E1 are disjoint, and that F1 is and

independent event from any Ek since sensor failures are independent by assumption, with
Pr(F1) = p. Hence, we have

∑1
k=0 Pr(Ek∩F1)E[C0(x

alt
A )−C0(x

eq
A )|Ek∩F1] ≤ −Pr(E0∪E1)pJ

and
∑1

k=0 Pr(Ek ∩ F̄1)E[C0(x
alt
A )− C0(x

eq
A )|Ek ∩ F̄1] ≤ Pr(E0 ∪ E1)(1 − p)I1.

Collecting all terms, we have

C(xalt)− C(xeq) ≤
n−2∑

k=2

Pr(Ek)Ik + Pr(E0 ∪ E1)(1 − p)I1 − Pr(E0 ∪ E1)p ,

which we can re-write as

C(xalt)− C(xeq) ≤
n−2∑

k=2

Pr(Ek)Ik − Pr(E0 ∪ E1)p
J

2
︸ ︷︷ ︸

(α)

+ Pr(E0 ∪ E1) ((1 − p)I1 − p
J

2
)

︸ ︷︷ ︸

(β)

.
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We now show that (α), (β) are both negative when p = c
n for a suitable c and sufficiently

large n. Substituting the values of I1 and J in (β) leads to (β) = 1
4n(n−1) (4− pn+ p) , which

is negative for sufficiently large n when p = c/n for any c > 4.
To analyze (α), we start by bounding Pr(Ek). There are n−k− 1 possible sequences of k

consecutive middle sensors and the probability that all the sensors fail in one such sequence
is pk. Therefore,

Pr(Ek) ≤ (n− k − 1)pk < npk (23)

and as a consequence

Pr(E0 ∪ E1) = 1−
n−2∑

k=2

Pr(Ek) > 1−
∞∑

k=2

npk = 1− n
p2

1− p
. (24)

The first part of inequality (23) allows bounding the first term in (α):

n−2∑

k=2

Pr(Ek)Ik <

n−2∑

k=2

(n− k − 1)pk
k + 1

2n(n− 1)
<

1

2n

n−2∑

k=2

pk(k + 1)

<
1

2n

(
1

(1 − p)2
− 2p− 1

)

=
3p2 − 2p3

2n(1− p)2
.

Re-introducing this bound in (α) and using (24) leads then to

(α) <
3p2 − 2p3

2n(1− p)2
− p

(

1− n
p2

1− p

)
n− 5

4n(n− 1)

=
p

2n

(
3p− 2p2

(1 − p)2
−
(

1− n
p2

1− p

)
n− 5

2(n− 1)

)

.

Choosing p = c/n for any positive c, the expression in the parentheses converges to −1/2 as
n → ∞. Therefore it is negative for large enough n, which is what we needed.

Now, let us fix some c > 4. We have shown above that there exists a n0 such that, for
any n ≥ n0, if p = c

n then C0(x
alt) < C0(x

eq). This shows that for n ≥ n0 the size of the
neighborhood of p = 0 where xeq is optimal is at most c/n. On the other hand, for n < n0,
trivially the size of such neighborhood is at most 1 < n0/n. Hence, for any n, such size is at
most c0/n with c0 = max(c, n0).

B Proof of Proposition 4

The result is trivial for n ≤ 3, so we assume in the sequel that n > 3. We compare the cost
of the single cluster with another candidate with three clusters as follows.

k n− 2k k

0 1/4 1/2 3/4 1

The numbers below the dots indicate the number of sensors aggregated at that point, k will
be chosen later. If we show that this new placement is better than the single cluster for a
certain p, it implies that having a single cluster is not optimal. For the single cluster, the
cost is always 1/2. For the three clusters we get
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1/4 if the left and right clusters are active,
1/2 if the left and/or right cluster fails, but the middle cluster is active,
3/4 if the left or right and the middle cluster fails.

We get less than 1/2 in expectation if the probability of getting 1/4 is higher than getting
3/4. The relation needed for the probabilities is

(1− pk)2 > 2pkpn−2k(1− pk).

Multiplying by pk/(1− pk) this is equivalent to

pk(1 − pk) > 2pn. (25)

We need to confirm this inequality with an appropriate choice of k. If p ≤ 1/3, then (25)
holds with k = 1 (and n > 3). Otherwise, observe that

2pn < 2

(

1− 3

n

)n

< 2e−3 <
3

16
. (26)

We have to choose pk from the sequence p, p2, . . . , p⌊n/2⌋. This sequence starts at p > 1/3
and ends at p⌊n/2⌋ < 1/2, and the ratio of consequent elements is greater than 1/3. Therefore
there is an element pk in the interval (1/4, 3/4). The left hand side of (25) is a quadratic
function in pk so it is easy to verify that

pk ∈
(
1

4
,
3

4

)

=⇒ pk(1− pk) >
3

16
.

Combining this with (26) we arrive at (25), which completes our proof.

C Proof of Lemma 7

We start by proving the lower bound. The case m = 0 is true, since in this case the cost is 1,
and H1 = 1 so that H1

2 < 1. Then consider m ≥ 1. From Lemma 5 we obtain the following
lower bound

Pr(C0(x
rand,m) > v) ≥ Pr

(
m+1⋃

i=1

{
Vi

2
> v

})

.

Using inclusion-exclusion principle and applying Lemma 6 with c1 = · · · = cr = 2v, we obtain

Pr(C0(x
rand,m) > v) ≥

∑

1≤r≤m+1 s.t. 2rv<1

(−1)r−1

(
m+ 1

r

)

(1− 2rv)m .

Then, substituting this in (19), we get

EC0(x
rand,m) ≥

∑

1≤r≤m+1

(−1)r−1

(
m+ 1

r

)∫ 1
2r

0

(1− 2rv)mdv .

By computing
∫ 1

2r

0
(1 − 2rv)mdv = 1

2r(m+1) and recalling that
∑

1≤r≤m+1(−1)r−1
(
m+1
r

)
1
r =

Hm+1, we end the proof of the lower bound.
For the upper bound we proceed similarly. By Lemma 5 and the union bound, we get

Pr(C0(x
rand,m) > v) ≤ Pr(V1 > v) + Pr(Vm+1 > v) + Pr




⋃

2≤i≤m

{Vi

2 > v}



 ,
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and then, by Lemma 6

Pr(V1 > v) = Pr(Vm+1 > v) = (1− v)m

and by the same lemma together with inclusion-exclusion principle,

Pr




⋃

2≤i≤m

{Vi

2 > v}



 =
∑

1≤r≤m−1 s.t. 2rv≤1

(−1)r−1

(
m− 1

r

)

(1− 2rv)m .

From this and using (19), we get

EC0(x
rand,m) ≤ 2

∫ 1

0

(1 − v)mdv +

m−1∑

r=1

(−1)r−1

(
m− 1

r

)∫ 1
2r

0

(1− 2rv)mdv

= 2
1

m+ 1
+

m−1∑

r=1

(−1)r−1

(
m− 1

r

)
1

2(m+ 1)r

=
2

m+ 1
+

Hm−1

2(m+ 1)
,

which proves the upper bound.

D Proof of Lemma 8

To get the lower bound, we consider (18). By discarding terms with large m and using
Lemma 7, we get

EC(xrand) ≥
⌈(1−p+ε)n⌉−1

∑

m=0

Pr(|A| = m)
Hm+1

2(m+ 1)

≥ Pr(|A| < ⌈(1− p+ ε)n⌉) min
m<⌈(1−p+ε)n⌉

Hm+1

2(m+ 1)

It is easy to show that Hm

m is decreasing with m, so that

min
m<⌈(1−p+ε)n⌉

Hm+1

2(m+ 1)
=

H⌈(1−p+ε)n⌉

⌈(1 − p+ ε)n⌉ .

Then,

Pr(|A| < ⌈(1−p+ε)n⌉) = 1−
n∑

⌈(1−p+ε)n⌉

(
n

m

)

(1−p)mpn−m = 1−
⌊(p−ε)n⌋
∑

m′=0

(
n

m′

)

pm
′

(1−p)n−m′

and, by Hoeffding inequality,
∑⌊(p−ε)n⌋

m′=0

(
n
m′

)
pm

′

(1 − p)n−m′ ≤ e−2ε2n, which ends the proof
of the lower bound.

For the upper bound, we proceed similarly. From now on, we assume that ⌊(1−p−ε)n⌋ ≥
2; notice that the bound is trivially true otherwise. We consider (18) and we split the
summation in two terms: a first term with m ≤ ⌊(1 − p − ε)n⌋, in which we use the trivial
bound C0(x

rand,m) ≤ 1, and the remaining sum in which we use the upper bound from
Lemma 7, as follows

EC(xrand) ≤ Pr (|A| ≤ ⌊(1− p− ε)n⌋) + Pr (|A| > ⌊(1− p− ε)n⌋) max
m>⌊(1−p−ε)n⌋

4 +Hm−1

2(m+ 1)
.
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By Hoeffding inequality, Pr (|A| ≤ ⌊(1− p− ε)n⌋) ≤ e−2ε2n. For the second term, it is easy

to show that Hm−1+4
m+1 is decreasing with m and hence

max
m>⌊(1−p−ε)n⌋

4 +Hm−1

2(m+ 1)
=

H⌊(1−p−ε)n⌋ + 4

2(⌊(1− p− ε)n⌋+ 2)
.

Finally we use the trivial bound Pr (|A| > ⌊(1− p− ε)n⌋) ≤ 1.
Then, the formulation of the upper bound stated in the proposition, which is slightly

weaker but has the advantage of not explicitly requiring to assume ⌊(1 − p − ε)n⌋ ≥ 2, is
obtained since H⌊(1−p−ε)n⌋ ≤ H⌈(1−p−ε)n⌉ and in the denominator 2⌊(1 − p − ε)n⌋ + 4 ≥
2⌈(1− p− ε)n⌉+ 2.
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