A. Gorban, H. Idrees, Y. Jiang, A. Zamir, I. Laptev et al., THUMOS challenge: Action recognition with a large number of classes, 2015.

D. Oneata, J. Verbeek, and C. Schmid, The LEAR submission at Thumos 2014, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01074442

X. Peng, L. Wang, Z. Cai, Y. Qiao, and Q. Peng, Hybrid supervector with improved dense trajectories for action recognition, ICCVW, 2013.

X. Peng, L. Wang, X. Wang, and Y. Qiao, Bag of visual words and fusion methods for action recognition: Comprehensive study and good practice, Computer Vision and Image Understanding, vol.150, 2014.
DOI : 10.1016/j.cviu.2016.03.013

K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale image recognition. arXiv preprint, 2014.

H. Wang, A. Kläser, C. Schmid, and C. Liu, Dense Trajectories and Motion Boundary Descriptors for Action Recognition, International Journal of Computer Vision, vol.73, issue.2, pp.60-79, 2013.
DOI : 10.1007/s11263-012-0594-8

URL : https://hal.archives-ouvertes.fr/hal-00725627

H. Wang, D. Oneata, J. Verbeek, and C. Schmid, A Robust and Efficient Video Representation for Action Recognition, International Journal of Computer Vision, vol.103, issue.1, 2015.
DOI : 10.1007/s11263-015-0846-5

URL : https://hal.archives-ouvertes.fr/hal-01145834

L. Wang, Y. Qiao, and X. Tang, Action recognition with trajectory-pooled deep-convolutional descriptors, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015.
DOI : 10.1109/CVPR.2015.7299059

Z. Xu, Y. Yang, and A. G. Hauptmann, A discriminative CNN video representation for event detection, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015.
DOI : 10.1109/CVPR.2015.7298789