Convergence of discrete-time Kalman filter estimate to continuous-time estimate for systems with unbounded observation

Abstract : In this article, we complement recent results on the convergence of the state estimate obtained by applying the discrete-time Kalman filter on a time-sampled continuous-time system. As the temporal discretization is refined, the estimate converges to the continuous-time estimate given by the Kalman–Bucy filter. We shall give bounds for the convergence rates for the variance of the discrepancy between these two estimates. The contribution of this article is to generalize the convergence results to systems with unbounded observation operators under different sets of assumptions, including systems with diagonaliz-able generators, systems with admissible observation operators, and systems with analytic semigroups. The proofs are based on applying the discrete-time Kalman filter on a dense, numerable subset on the time interval [0,T] and bounding the increments obtained. These bounds are obtained by studying the regularity of the underlying semigroup and the noise-free output.
Type de document :
Pré-publication, Document de travail
2015
Liste complète des métadonnées

Littérature citée [20 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01236950
Contributeur : Atte Aalto <>
Soumis le : mercredi 2 décembre 2015 - 14:04:34
Dernière modification le : jeudi 11 janvier 2018 - 06:25:27
Document(s) archivé(s) le : jeudi 3 mars 2016 - 13:00:54

Fichiers

temp_sequel.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01236950, version 1
  • ARXIV : 1512.02473

Citation

Atte Aalto. Convergence of discrete-time Kalman filter estimate to continuous-time estimate for systems with unbounded observation. 2015. 〈hal-01236950〉

Partager

Métriques

Consultations de la notice

395

Téléchargements de fichiers

110