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Abstract

We analyze functional manipulations of handheld ob-
jects, formalizing the problem as one of Þne-grained grasp
classiÞcation. To do so, we make use of a recently developed
Þne-grained taxonomy of human-object grasps. We intro-
duce a large dataset of 12000 RGB-D images covering 71
everyday grasps in natural interactions. Our dataset is dif-
ferent from past work (typically addressed from a robotics
perspective) in terms of its scale, diversity, and combination
of RGB and depth data. From a computer-vision perspec-
tive, our dataset allows for exploration of contact and force
prediction (crucial concepts in functional grasp analysis)
from perceptual cues. We present extensive experimental
results with state-of-the-art baselines, illustrating the role
of segmentation, object context, and 3D-understanding in
functional grasp analysis. We demonstrate a near 2X im-
provement over prior work and a naive deep baseline, while
pointing out important directions for improvement.

1. Introduction

Humans can interact with objects in complex ways, in-
cluding grasping, pushing, or bending them. In this work,
we address the perceptual problem of parsing such inter-
actions, with a focus on handheld, manipulatable objects.
Much previous work on hand analysis tends to focus on
kinematic pose estimation [17, 12]. Interestingly, the same
kinematic pose can be used for dramatically differentfunc-
tional manipulations(Fig. 1), where differences are mani-
fested in terms of distinct contact points and force vectors.
Thus, contact points and forces play a crucial role when
parsing such interactions from a functional perspective.

Problem setup: Importantly, we wish to analyze
human-object interactionsin situ. To do so, we make use of
wearable depth cameras to ensure that recordings are mo-
bile (allowing one to capture diverse scenes [33, 7]) and
passive (avoiding the need for specialized pressure sen-
sors/gloves [6, 24]). We make no explicit assumption about
the environment, such as known geometry [32]. However,
we do make explicit use of depth cues, motivated by the fact

Figure 1.Same kinematic pose, but different functions: We
show 3 images of near-identical kinematic hand pose, but very
different functional manipulations, including a wide-object grasp
(a), a precision grasp (b), and a Þnger extension (c). Contact re-
gions (green) and force vectors (red), visualized below each image,
appear to deÞne such manipulations. This work (1) introduces a
large-scale dataset for predicting pose+contacts+forces from im-
ages and (2) proposes an initial method based on Þne-grained
grasp classiÞcation.

that humans make use of depth for near-Þeld analysis [15].
Our problem formulation is thus: given a Þrst-person RGB-
D image of a hand-object interaction, predict the 3D kine-
matic hand pose, contact points, and force vectors.

Motivation: We see several motivating scenarios and
applications. Our long-term goal is to produce a truly
functional description of a scene that is useful for an au-
tonomous robot. When faced with a novel object, it will be
useful to know how if it can be pushed or grasped, and what
forces and contacts are necessary to do so [40]. A practi-
cal application of our work is imitation learning or learning
by demonstration for robotics [3, 16], where a robot can
be taught a task by observing humans performing it. Fi-
nally, our problem formulation has direct implications for
assistive technology. Clinicians watch and evaluate patients
performing everyday hand-object interactions for diagnosis
and evaluation [2]. A patient-wearable camera that enabled
automated parsing of object manipulations would allow for
long-term monitoring.

Why is this hard? Estimating forces from visual signals
typically requires knowledge of object mass and velocity,
which is difÞcult to reliably infer from a single image or



even a video sequence. Isometric forces are even more dif-
Þcult to estimate because no motion may be observed. Fi-
nally, even traditional tasks such as kinematic hand pose es-
timation are now difÞcult because manipulated objects tend
to generate signiÞcant occlusions. Indeed, much previous
work on kinematic hand analysis considers isolated hands
in free-space [43], which is a considerably easier problem.

Approach: We address the continuous problem of
pose+contact+force prediction as a discrete Þne-grained
classiÞcation task, making use of a recent 73-class tax-
onomy of Þne-grained hand-object interactions developed
from the robotics community [28]. Our approach is inspired
by prototype-based approaches for continuous shape esti-
mation that treat the problem as a discrete categorical pre-
diction tasks, such as shapemes [34] or poselets [5]. How-
ever, rather than learning prototypes, we make use of expert
domain knowledge to quantize the space of manipulations,
which allows us to treat the problem as one of (Þne-grained)
classiÞcation. A vital property of our classiÞcation engine
is that it is data-driven rather than model-based. We put
forth considerable effort toward assembling a large collec-
tion of diverse images that span the taxonomy of classes.
We experiment with both parametric and exemplar-based
classiÞcation architectures trained on our collection.

Our contributions: Our primary contribution is (1)
a new Òin-the-wildÓ, large-scale dataset of Þne-grained
grasps, annotated with contact points and forces. Impor-
tantly, the data is RGB-D and collected from a wearable per-
spective. (2) We develop a pipeline for Þne-grained grasp
classiÞcation exploiting depth and RGB data, training on
combinations of both real and synthetic training data and
making use of state-of-the-art deep features. Overall, our
results indicate that grasp classiÞcation is challenging, with
accuracy approaching 20% for a 71-way classiÞcation prob-
lem. (3) We describe a simple post-processing exemplar
framework that predicts contacts and forces associated with
hand manipulations, providing an initial proof-of-concept
system that addresses this rather novel visual prediction
task.

2. Related Work

Hand pose with RGB(D): Hand pose estimation is a
well-studied task, using both RGB and RGB-D sensors as
input. Much work formulates the task as articulated track-
ing over time [25, 23, 22, 4, 31, 42, 44], but we focus on
single-image hand pose estimation during object manipu-
lations. Relatively few papers deal with object manipu-
lations, with the important exceptions of [39, 38, 27, 26].
Most similar to us is [32], who estimate contact forces dur-
ing hand-object interactions, but do so in a Òin-the-labÓ sce-
nario where objects of known geometry are used. We focus
on single-frame Òin-the-wildÓ footage where the observer is
instrumented, but the environment (and its constituent ob-

jects) are not.
Egocentric hand analysis: Spurred by the availability

of cheap wearable sensors, there has been a considerable
amount of recent work on object manipulation and grasp
analysis from egocentric viewpoints [11, 8, 18, 7, 13]. The
detection and pose estimation of human hands from wear-
able cameras was explored in [36]. [8] propose a fully auto-
matic vision-based approach for grasp analysis from a wear-
able RGB camera, while [18] explores unsupervised clus-
tering techniques for automatically discovering common
modes of human hand use. Our work is very much inspired
by such lines of thought, but we take a data-driven perspec-
tive, focusing on large-scale dataset collection guided by a
functional taxonomy.

Grasp taxonomies: Numerous taxonomies of grasps
have been proposed, predominantly from the robotics com-
munity. Early work by Cutkosky [9] introduced 16 grasps,
which were later extended to 33 by Felix et al [14], fol-
lowing a deÞnition of a grasp as a Òstatic hand postures
with which an object can be held with one handÓ. Though
this excluded two-handed, dynamic, and gravity-dependent
grasps, this taxonomy has been widely used [37, 8, 7]. Our
work is based on a recent Þne-grained taxonomy proposed
in [28], that signiÞcantly broadens the scope of manipu-
lations to includenon-prehensileobject interactions (that
are technically not grasps, such as pushing or pressing) as
well as other gravity-dependent interactions (such as lift-
ing). The Þnal taxonomy includes 73 grasps that are an-
notated with various qualities (including hand shape, force
type, direction of movement and effort).

Datasets. Because grasp understanding is usually ad-
dressed from a robotics perspective, the resulting meth-
ods and datasets developed for the problem tend to be tai-
lored for that domain. For example, robotics platforms of-
ten require an unavoidable real-time constraint, limiting the
choice of algorithms, which also (perhaps implicitly) lim-
ited the difÞculty of the data in terms of diversity (few sub-
jects, few objects, few scenes). We overview the existing
grasp datasets in Table1 and tailor our new dataset to ÒÞll
the gapÓ in terms of overall scale, diversity, and annotation
detail.

Dataset View Cam. Sub. Scn Frms Label Tax.
YALE [ 7] Ego RGB 4 4 9100 Gr. 33
UTG [8] Ego RGB 4 1 ? Gr. 17

GTEA [13] Ego RGB 4 4 00 Act. 7
UCI-EGO [36] Ego RGB-D 2 4 400 Pose ?

Ours Ego RGB-D 8 > 5 12, 000 Gr. 71
Table 1.Object manipulation datasets. [7] captured 27.7 hours
but labelled only 9100 frames with grasp annotations. While our
dataset is balanced and contains the same amount of data for each
grasp, [7] is imbalanced in that common grasps appear much more
often than rare grasps (10 grasps sufÞce to explain80% of the
data). [8] uses the same set of objects for the 4 subjects.
















