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Abstract:  We consider the image retrieval problem of nding the images in a dataset that are most
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ing a search without sacri cing accuracy of the returned images. We adopt a group testing formulation
and design the decoding architecture using either dictionary learning or eigendecomposition. The latter
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whereas dictionary learning is applicable in large-scale scenario. We evaluate our approach both for global
descriptors obtained from SIFT and CNN features. Experiments with standard image search benchmarks,
including the Yahoo100M dataset comprising 100 million images, show that our method gives comparable
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accuracy compared to approaches based on dimensionality reduction or locality sensitive hashing.
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De I'utilité de la factorisation de matrice pour la recherche par
similarité grande échelle

Résumé : Nous considérons le probléme de la recherche d'images similaires a une image requéte dans
une grande base. Notre but est de réduire le nombre d'opérations et I'emprunte mémoire nécessaire sans
trop dégrader les performances des recherches approximatives. Nous adoptons une approche inspirée des
tests par groupe mariant apprentissage de dictionnaire et décomposition en valeurs propres. La derniere
option s'avére adaptée aux bases d'images de taille moyennes avec des descripteurs images grands, alors
que la premiére option concerne les bases d'images a tres grande échelle. Nous évaluons notre approche
a la fois avec des descripteurs globaux agrégations de descripteurs locaux comme les SIFT, et avec des
descripteurs “réseaux de neurones convolutionnels”. Les expériences réalisées sur des jeux de données
standards, notamment la base Yahoo100M contenant 100 millions d'images, montre que notre méthode
donne des résultats comparables (et parfois méme supérieurs) a la recherche exhaustive tout en consom-
mant dix fois moins de mémoire et de calculs. A complexité donnée, notre méthode donne des résultats
meilleurs que les approaches basée réduction de dimensions ou signatures binaires.

Mots-clés : recherche d'images, recherche d'information large échelle, indexation
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1 Introduction

This paper is about image retrieval and similarity search for large datasets. Image retrieval aims at nding
the images in a large scale dataset most similar to a given query image. Recent approaches [16, 23]
aggregate local SIFT [17] features or use deep-learning networks [4] to create a global descriptor vector
for each image. Visual similarity is then quanti ed by measuring the similarity of these vectors (e.qg.,
cosine similarity). If the dataset h&s images each represented bg-dimensional feature vector, then

an exhaustive search for each query requifésoperations.

A common approach to accelerate image search is indexing, which operates in sub-linear time [20].
Indexing partitions the feature spaB# into clusters and computes similarities between the query and
dataset vectors that fall in the same or neighboring clusters. Yet, as the dimdrggians, the chance
that similar images are assigned to different clusters increases, and the ef ciency of these techniques
collapses [20, 30]. This is problematic in computer vision since most state-of-the-art image descriptors
have high intrinsic dimensionality. A recent approach tries to solve this issue by indexing descriptors
based on their sparse approximation [5].

Another popular approach to ef cient image search performs a linear scan over the dataset, computing
approximate similarities using compact codes [2, 3, 6, 8, 14, 31]. These techniques have a complexity of
dN whered® < d is the reduced dimensionality of the compact code. The similarity between vectors
in RY is approximated by the distance between their compact codes. State-of-the-art large scale search
algorithms combine indexing strategies with approximated similarities [14].

Recently, a complementary approach inspired by group testing has emerged [11, 27]. Here the goal
is to reduce the number of vectors against which the query is compared. The full datdsegctors is
rst summarized byM N group vectors, where each group vector is alstimensional. As the name
suggests, each group vector represents a small subset of images in the original dataset. These groups are
composed by a random partition of the dataset. Computation of the group vectors is performed of ine
under a speci ¢ construction such that a comparison group vestquery vector measures how likely
the group contains query matching vectors. Then, when presented with a query, the system compares the
query with the group vectors instead of individual image vectors. This reduces the complexitgNrom
todM.

Initial attempts [11,27] considered adaptivegroup testing approacil groups are composed from
the dataset, and querying proceeds in two stages. In the rst stage, the scores between group vectors and
the query are computed. They measure how likely their group contains some matching images. Then, in
the second stage, the query is compared with individual image vectors for only the mostly likely positive
groups. If the groups are roughly balanced in size and the query only matches a small number of group
vectors, then the complexity is reduced frdid to d(M + N=M ). Although this results in ef cientimage
retrieval, it has one major drawback: memory usage is increased since the group vectors and mapping
from images to groups are stored in addition to the dataset feature vectors. In other words, these works
trade complexity for memory. This is not a tractable option for ldgdatasets.

In this work, we pursue the idea of deducing which vectors are matching in a database Nf size
from onlyM < N measurements. We re-examine the group testing formulation. Rather than a random
partition of the dataset into groups followed by a speci ¢ construction of the group vectors, we formulate
the problem of nding an optimal group testing design for a given image dataset. Removing the restric-
tion to binary designs, the continuous version of this optimization problem turns out to be equivalent to
dictionary learning. For small and medium sized datasets, Mithd , one can remove the requirement
of a sparse design matrix, and then the problem simpli es further to that of a matrix factorization whose
solution is given by the SVD.

The paper is organized as follows. Section 2 introduces the problem formulation and notation. Sec-
tion 3 proposes different techniques to solve the problem depending on the pardwhetedsl. Sec-
tion 4 shows the compatibility of our approach with an existing coding method in the literature. Section 5
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presents the evaluation of proposed method using real image datasets.

2 Problem statement

The dataset is composed fd-dimensional vectorbx; g\, such thakx;k = 1, for all i, and eaclx;
is the global feature vector of one image in the dataset. The similarity between two vgciordx; is

As mentioned in Section 1, we aim at ndifg group vectors of dimensiod, fy;gM, , stored in
d M matrix Y. Unlike the previous group testing approaches, we do not randomly assign dataset
vectors to groups and we do not compute the group vectors according to a speci ¢ construction. Our goal
is to directly nd the bestM group vectors globally summarizing the dataset. We call this process the
encoding, and we restrict our scope to a linear encoding:

Y = endX)= XG”: Q)
Given a query image, represented by its global descriptor vgctee compute the group scores,
s=q7Y: 2

Finally, we estimate the similarities between query and database vectorg” X from the measure-
mentss. Again, we assume a linear estimator:

€ = deds) = sH: 3)

Our aim is to desigr 2 RM N andH 2 RM N to allow for a fast and accurate search. Note
that this setup is similar to the pioneering work of 8hal [27]: in their paperG is indeed a randomly
generated binary matrix whef@(i;j ) = 1 if x; belongs to the-th group and3(i;j ) = O otherwise.
Hence, in the previous group testing approdgtgaptures both how groups are made and how the group
vectors are computed (a simple sum in [27]). On the contrary, we look for the best matrix representing
the dataset, which will heavily depend #n

Complexity. Exhaustive search involves computigg X , which has a complexity afN . Computing the
group measurements (2) takdg operations, and the decoding (3) talkésl . This gives a complexity
ofdM + NM for group-testing search, comparedifté operations for exhaustive search. The complexity
ratio is thus = M=N + M=d, implying thatM must be smaller than boti andd to yield ef cient
queries.

In previous works based on group testing [11,27], groups are designed so that every colairhasf
exactlym M ones, meaning that each dataset vector belongs twoups. This produces a sparse
decoding matribH which, in turn, yields the better complexity raticc M=N + m=d. However, none of
the approaches mentioned above attempt to opti@izndH . They either creat& randomly or use a
clustering algorithm to coarsely group similar dataset vectors [11]. In the following sections, we discuss
two techniques that optimize the matric@sandH for a particular datasef .

We focus on the complexity of performing a query. Determining the optimal encoding and decoding
matricesG andH requires additional computation and is applied of ine or periodically. In this paper, we
assume that the corresponding complexity is not as critical as in the query stage. Our only requirement is
that the complexity of this of ine computation be polynomialfhandd to ensure that it is tractable.

3 Proposed solutions
We now provide two alternative solutions for the setup described in Section 2. As we will show in the

experimental section, both solutions have advantages and drawbacks, and can be chosen depending on
the feature vectors and the number of items in the dataset.

Inria



Ef cient Large-Scale Similarity Search Using Matrix Factorization 5

3.1 First solution: Eigendecomposition

In a rst approach, we consider nding matricé& 2 RM N andH 2 RM N so that the approximate
scorest and exact scoresare as close as possible. Based on (1), (2) and (3), this amounts to:

X
minimize ke ek3 =
G;H
%(ZQ
migi_rnize kg"X q"XG > HK3:
’ q2Q

whereQ is assumed to be representative of typical queries. Of course, this distance cannot be zero for all
q 2 RYsincetheN N matrixG> H has rank at modtl < N . We focus on providing accurate scores

for typical queries. We use the dataset of vectors itself as a proxy of the typical ensemble of queries. This
amounts to replacing by X and to consider the Frobenius matrix norm:

minimize X>X X>XG>H > @)
G:H F

This problem is commonly solved by eigendecomposition. Aet X~ X the Gramian symmetric
matrix associated tX. As a real symmetric matrixA is diagonalizableA = U U~ , whereU is
an orthogonal matrix” U = UU~ = ly). This means that we can simply assign= Uy, and
H = Unm, whereU )y, are the eigenvectors associated withMhdargest eigenvalues.

In practice, we do not need to compute the Gram mahrix X~ X . The singular value decom-
position (SVD) ofX isdened asX = S U~ , whereS are the eigenvectors &fX >, andU are the
eigenvectors oK > X. Hence, this SVD gives us the desired output without having to calcilaté
is worth noting that this solution resembles a well known dimension reduction method: Principal Com-
ponent Analysis (PCA). However, while PCA is usually employed to reduce the dimensionality of the
vectors fromd to d° components, in our approach we use it to reduce the number of vectord\fram
M.

The major drawback of this approach is thhis not sparse. Therefore, the complexity of the decod-
ing (3) isinO(MN ). Hence, this solution is only suitable for scenarios wlikielarger tharN .

3.2 Second solution: Dictionary learning

Dictionary learning has been widely applied in imaging problems, e.g., to obtain ef cient representations
and discover structure using local patches; see [18] for a survey. Our second solution applies dictionary
learning to nd a sparse description of the dataset enabling ef cient image search. For anygguery
expect the score vectarto be sparse; the few high-amplitude coef cients correspond to the matching
images, and remaining low-amplitude coef cients correspond to non-matching images. Moreover, we do
not need the estimateto be very close ta, per se, as long as the matching images receive a substantially
higher score than the non-matching ones.

Because the three steps (1), (2) and (3) of our method are linear, this reconstruction of the similarities
through a sparse matrit implies a sparse representation of the dataset vectors, which leads to the con-
nection with dictionary learning. Speci cally, we aim at approximatkgy YH whereH 2 RM N
stores the sparse representations of the dataset vectors in terms of columns (so-called atoms) of the dic-
tionaryY 2 RY M This leads to the following optimization problem:

N 1 2
m|Q|;rL1|ze > kX YH kg + kHkK;
subjectto kygk, 1forall0 k<M:
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The™;-norm penalty orH (sum of the magnitude of its elements) encourages a solution where each
column of X can be represented as a sparse combination of columns of the dictibnariie level of
sparsity depends on Unlike the previous solution of Section 3.1, this scheme is competitive Whisn
larger thard since we bene t from the reduced complexity of sparse matrix multiplication. An algorithm
such as Orthogonal Matching Pursuit (OMP) [7, 22] allows us to strictly control the sparsity Bbr a
given dictionaryY , OMP ndsH =[hy; ;hy]by sequentially solving

minimize %kxi Yhikg

subjectto khik, m:

Adopting this algorithm, we control the sparsity of the matiixoy settingm to a desired value.

This solution is similar to the recently proposed indexing strategy based on sparse approximation [5],
which also involves training a dictionary and a sparse matrid . However, the way these matrices
are used in [5] is completely different from the approach proposed here. Their framework adheres to
a space partitioning approach; it indexes each descriptor in buckets using an inverted le based on the
non-zero entries dfl . For a given query, their system runs orthogonal matching pursuit (OMP) to nd
a sparse approximation, and then it calculates distances between the query and the dataset vectors that
share the same buckets. In contrast, the method proposed here involves no indexing and makes no direct
distance calculations between the query and the dataset vectors. Indeed, this allows us to completely
avoid touching dataset vectors at query time.

3.3 Large-scale dictionary learning

When designing an image search system, one must consider large-scale problems consisting of millions to
billions of images. As explained in Section 1, our primary goal is an ef cient image search system whose
query time complexity (computational, and memory) is reduced. Although we have been ignoring the
complexity of the encoding phase, by assuming that the complexity of this stage is less critical application-
wise, it should remain tractable.

One of the most widely-known dictionary learning algorithms is that proposed by Muiedl[19].

This algorithm provides a fast implementation and allows other possibilities such as mini-batch learning
and online dictionary updates. These features make it an attractive algorithm for large-scale problems.
However, the training time increases dramatically withfor largeN datasets, as reported in Section 5.
Even though this calculation needs to be done only once in the of ine stage, we still need a scalable
training approach to index all dataset vectors easily.

One solution is to use a subset of dataset vectors as a surrogate for the entire dataset. Once the
dictionaryY is trained on the subset, a less expensive sparse decoding algorithm, such as OMP, can be
used to compute the matrik for the entire dataset.

Elhamifaret al. [9] propose a solution similar to dictionary learning, with the sole aim of nding
representatives from the data. A related approach is tocosesetq1]. A coresetC is a problem-
dependent approximation of a dataXetFeldmaret al. [10] show that for everyX and > Othere exists
acoreseC 2 RY N° NO< N, for which the following inequality holds:

. 2
@a ) Hznggﬂn . kX YH kg

2 (5)
mn C Y8 1+ ) min kX YH kﬁ :
B2RM NO F H2RM N
Typically, C has many fewer columns thaf, thereby summarizing the whole dataset with just a
few representatives. The main advantage of this approach is its speed. Finding a coreset for a large-scale

Inria
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datasets takes a short time, usually only a few seconds in our experiments. Then, running dictionary
learning on the coreset is signi cantly faster than on the original dataset. We empirically evaluate the
speedup and the effect on accuracy in the experimental section.

4 Compressed dictionaries

Instead of dealing with a databaseMfimage vectors of lengtt, our novel approach now manages a
database oM group vectors of the same dimension. Compared to a linear scan, we reduce the number
of comparisons fronN to M, and yet rankN items based on their likelihood using group testing.

Nevertheless, our scheme remains compatible with the traditional coding methods brie y introduced
in the introduction. Instead of a linear scan browsing group vectors, we can add on top of our method an
approximate search. This can take the form of either an embedding producing compact representations of
the group vectors, or an indexing structure nding the closest group vectors w.r.t. a query. This improves
even further the overall ef ciency.

Case study: Combination with PQ-codesAn embedding offers compact representation of group vec-
tors allowing a fast approximation of their dot products with the query. PQ-codes [14], for instanae, are
priori not compliant since they operate on Euclidean distances. We convert Euclidean distance to cosine

similarity in the following way. Each group vectgris splitinto™ subvectorst,, wherel u °. Each
subvectory, is quantized onto the codebo@k = fciy ginl DVy = argming i g Kyu Ciu k. The
compact representation gfis the list of codeword indice6rsy;:::;v-) 2 f1;:::;Qg . This is exactly

the same encoding stage as the original PQ-codes [14].
The dot product querysgroup vector is approximated by the dot product quesguantized group
vector:
X X
Qy= &Y & Cvu s (6)
u=1 u=1
wheree, is theu-th subvector of the query. As in the original application of PQ-codes, the quantities
f &7 ciu g are computed at query time and stored in a lookup table for evaluating (6) ef ciently over a
large number of group vectors. Using approximate dot products is an additional source of error, but
experiments in the next section show that the decoding schemes described above gracefully handle this.

5 Experiments

After detailing the experimental protocol, we report retrieval performance results together with a com-
parison with other image retrieval approaches.

5.1 Experimental setup

Datasets. We evaluate our retrieval system using the Oxford5k [24] and Paris6k [25] datasets, which
contain 5,063 and 6,412 images respectively. For large-scale experiments we add 100,000 Flickr dis-
tractor images [24], resulting in datasets referred as to Oxford105k and Paris106k. Additionally, we use
the Yahoo Flickr Creative Commons 100M dataset [29] (referred as to Yahool100M), which comprises
about 100 million image vectors. For comparison with other works, we also run experiments on the
Holidays [13] and UKB [21] datasets.

For each dataset, we follow its standard procedure to evaluate performances. The mAP (mean Average
Precision) metric measures the retrieval quality in all datasets except for UKB, where the performance is
gauged byt recall@4.
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Figure 1. Comparison of eigendecomposition, dictionary learning (DL), and LSH [6]. DL gives better
performance, all the more so as the dataset is large. We only evaluate DLMpNo = 1=10 for
Oxford105k and Paris106k. Performance eventually converges to the baseline after this point.

Features. For most of our experiments, we extract features related to our own implementation of [26],
with the following modi cations: We use the full image size and do not change the aspect ratio; we
subtract the average pixel value instead of the average image. A feature vector is the (normalized) sum-
mation of the feature vectors obtained from uniformly sampled regions de ned on CNN response maps.
This choice improves the retrieval performance on the considered datasets. Depending on the network
used, these features have dimensionality of either512 or d = 256.1 We refer to these features as
rMCA for regional Max-pooling of Convolution layer Activations.

In section 5.3, we use T-embedding features [16] wlith 8 ; 064 to allow a more direct comparison
with the most similar concurrent methods. For Yahool100M, we use VLAD [15] dith 1;024, as
extracted in [28].

Complexity analysis. We report the complexity ratio, = (Md + s)=dN, wheres = nnZH) is the
number of non-zero elements of matkix For the eigendecomposition, we set MN , whereas for
dictionary learning (Section 3.2 controls the sparsity di making the complexity ratio = M=N +

m=d. Unless otherwise speci ed, we set= 10 for rMCA features; the decoding then contributes only

t0 0.02 in . The memory ratio, the ratio of the memaory required compared to that of exhaustive search,
is equal to for non-sparsél. WhenH is sparse, we need to staréN scalars and their indices, making

the memory rati?=N + m=d+ mlog,(M )=d

5.2 Retrieval performance

We rst evaluate our system for differeiM using either eigendecomposition or dictionary learning so-
lutions. We also include the popular sketching technique LSH [6], which approximates similarity by
comparing binary compact codes of length= d. We measure the retrieval performance in terms of
mAP and complexity ratio as mentioned in Section 5.1.

Figure 1 shows the retrieval performance for different complexity ratios. It is clearly seen that eigen-
decomposition suffers at low complexity ratio in large-scale datasets. This is expected because we must
setM to a very small value to obtain a low complexity ratio since the decoding nidtisnot sparse in
this solution. On the other hand, we caneto a much higher value for a given complexity ratio using
dictionary learning sincel is sparse.

Our variant based on dictionary learning performs better than the baseline on all datasets. One would
expect the performance to be worse than baselin®ifor N due to loss of information, but this is sur-
prisingly not the case. A possible explanation is that dictionary learning “denoises” similarities between
vectors. In computer vision, each image is represented by a global vector, which is usually obtained
by aggregating local features, such as SIFT, or response maps from convolutional neural networks (in
the case of rIMCA). These local features are obtained from both useful structure of the scene and also
from clutter. Our interpretation is that dictionary learning decreases the impact of features extracted from

IFeatures will be made available online
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Figure 2: Distributions of matching and non-matching vector similarities from Oxford5k dataset. Red
curves represent similarity distributions using original vectors, and blue plots represent distributions of
similarities reconstructed by dictionary learning. The main improvement comes from the reduction of
variance under the negative distribution.

Figure 3: Retrieval performance with differavit andm. Varyingm does not affect the performance in
most cases, except for Oxford105k, where increasirigiproves performance for smal .

clutter patches because they are not common across the image collection. In other words, it favors the
frequent visual patterns occurring in the image collection. To explore this phenomenon further, we plot
the distribution of matching and non-matching vector similarities from Oxford5k using the original global
descriptors. We repeat the same process using the reconstructed similarities from dictionary learning. As
we see in Figure 2, both reconstructed similarity distributions have a lower variance than the original dis-
tributions. This is especially true for the non-matching distribution. This variance reduction increases the
separation between the distributions, which translates to the better performance of our dictionary learning
method.

Sparsity of H is controlled by parameten in dictionary learning (see Section 3.2). This is an important
factor in the complexity ratio. The ratio betweem andd contributes to independently fronM . It is
possible to set this ratio to a small value to eliminate its in uence.

We compute a dictionary df1 atoms and we calculate several matrit€sby applying OMP to
differentm. We plot the retrieval performance for differemt andM in Figure 3. In most cases, the
performance does not vary much w.rh. The biggest difference is observed for Oxford105k where
largerm leads to better performance for smislll.

The dimensionality of the vectors is an important factor affecting the overall complexity. Lower dimen-
sionality implies lower complexity and less memory usage. Although our experiments up to now are done
in what can be considered as a low-dimensional feature splase5(2), we evaluate our system with

even smaller features, = 256, in Figure 4. The results are similar to those o= 512, although the
accuracy of eigendecomposition increases at a slower rate forNarge

The training stage compute¥ andH and is performed only once and of ine. However, it is important
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Figure 4: Retrieval performance using smaller featudes:256.

Figure 5: Of ine training time needed for dictionary learning with 100 iterations.

that this stage is scalable for updating the dictionary if needed. Experimentally, a small number of itera-
tions ( 100) is suf cient for dictionary learning. This does not require much training time. Using Mairal
etal 's algorithm [19], we report the duration of the of ine training on Figure 5. All experiments are done
on a server with Intél Xeorl E5-2650 2.00GHz CPU and 32 cores. The training time is reasonable for
all datasets, but it increases dramatically within large datasets. Other training procedures would be
necessary for handling lard¢ andN .

Coresets as explained in Section 3.3, reduce the training time even further for large datasets. Instead of
using the entire dataset, we nd a core€etvhich represents the data with a few representatives vectors

to train the dictionaries. We report results for coresets of different sizes in Table 5.2. Empirically, we
achieve a similar performance by training the dictionary with this selected coreset of vectors. This allows
us to train the dictionary for largeM in just a few minutes. Note that Paris106k has fast training time
even without coresets. This is because the best performance for this dataset is obtaiMdBG82, a

rather small value. The drawback to using coresets isHhest less sparsen = 50. This results in the

same performance but slightly higher complexity.

5.3 Comparison with other methods

We compare our system with other image retrieval approaches. Our rst comparison is done with the
popular FLANN toolbox [20] using Oxford105k and rMCA features. We set the target precision to

Oxford105k Paris106k

mAP | Time [ mAP | Time
jCj=N=10 | 60.1 1.1 | 14.6 78.3 1.0 | 1.8
jCj = N=5 62.1 1.2 | 16.9 79.2 0.8 | 2.3
jCj=N=2 | 62.7 04| 239 | 795 0.4 | 3.3
X 65.5 455 81.2 5.3

Table 1: Performance and training time (in minutes) using coresets to train the dictionary instead of full
dataseX . M is set to5; 257 and532 for Oxford105k and Paris105k respectively, and= 50. Each
experiment is run 5 times, and we report the mean and the standard deviation.

Inria
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Memory Ratio | Holidays | Oxford5k | UKB
Baseline 1.0 77.1 67.4| 3.63
Iscenet al. [11]-Kmeans 1.4 76.9 67.3| 3.63
Iscenet al. [11]-Rand 14 75.8 62.0| 3.63
Shiet al. [27] w/ bp. 1.4 75.5 64.4 | 3.63
Borgeset al. [5] 1.0 59.2 59.9| 3.43
LSH [6] 0.4 73.9 65.8 | 3.61
PCA 0.4 75.4 64.3 | 3.61
Shiet al. [27] w/o bp. 0.4 8.7 24.1| 1.33
Ours - Eigen. 04 76.9 67.7| 3.63
Ours - Dict. Learn. 0.4 55.2 68.8 | 3.59

Table 2: Comparison to other group testing approaches in image retrieval for a given complexity ratio of
0:4, and to LSH. Our setup with eigendecomposition and dictionary learning generally performs better
with much less required memory ratio. Our framework gives even better performance than adaptive
methods requiring:4 memory ratio.

0.95 and use the “autotuned” setting of FLANN, which optimizes the indexing structure based on the
data. We repeat this experiment 5 times. The average speed-up ratio provided by the algorithm is 1.05,
which corresponds to a complexity ratio of 0.95. In other words, FLANN is ineffective for these rMCA
descriptors, most likely because of their high intrinsic dimensionality 612): as fairly discussed by

the authors of this library [20], FLANN is not better than a regular scan when applied to truly high-
dimensional vectors. In contrast, our approach does not partition the feature space and does not suffer as
much the curse of dimensionality. Note, our descriptors are whitened for better performance [12], which
tends to reduce the effectiveness of partitioning-based approaches.

Next we compare our method with other group testing and indexing methods in the image retrieval
literature. To have a fair comparison, we report the performance using the same high-dimensional features
(d = 8;064), same datasets, and the same complexity ratio as the group testing methods. Additionally,
we also compare our scores to a dictionary learning-based hashing method [5], LSH [6] and PCA, where
dimensionality of vectors is reduced such thét= 0:4d. Table 2 shows the comparison for a xed
complexity ratio. There are two interesting observations. First, we see that eigendecomposition works
well in these experiments. This is especially true for the Holidays dataset Wherel ; 491 andd =
8;064; largeM can be used while keeping the complexity ratio low sihte< d. This is clearly a
scenario where it is plausible to use the eigendecomposition approach.

On the other hand, dictionary learning performs poorly for Holidays. This dataset contains only
N = 1;491images, which constrains the size of the dictiondryto be small and prevents sparsity: the
best parameters (via cross-validation) are found tddbes 519 andm = 409, giving = 0:4. Our
conclusion is that the Holidays dataset is too small to bene t from dictionary learning.

Yahool00Mis a recently released large-scale dataset consisting of approximately 100M images. Since
there is no manually annotated ground-truth, we use the following evaluation protocol: a dataset vector
is considered to match the query if its cosine similarity is at 18&st There are 112 queries randomly
selected from the dataset. Each query has between 2 and 96 matches, and 11.4 matches on average.
Table 5.3 shows some visual examples of queries and matches.

This dataset is split into chunks 8f° = 100k images. Then we run dictionary learning and OMP
independently on each chunk, and learn matri¢eandH for each chunk, settintyl © = N %100and
m = 100, resulting inM = N=100overall. This allows us to perform the of ine stage in parallel. At
query time, we pool scores from each chunk together and sort them to determine a nal ranking. When
we evaluate the retrieval performance, we obtain a mAP of 89.4 with 1=10. This is a signi cant
increase compared to running the same setup with LSH, which results in a m#&®ofurthermore, it
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Match Query Match Query Match
Match Match Match Match Match
Query Match Match Match Match Match

Table 3: Some examples of match and query in Yahoo1l00M dataset. Ground-truth is based on cosine
similarity between the vectors. Two vectors are considered a match if their similarity is above 0.5.

M = N=200 | M = N=100 | M = N=50
mAP mAP mAP

m =100 | 85.7 0.105| 89.4 0.11| 928 0.12
m =50 81.0 0.055| 84.7 0.06| 87.4 0.07
m =20 61.8 0.025| 714 0.03| 78.2 0.04

Table 4: Performance (mAP) and complexity ratidpifh Yahoo100M for differenM andm.

is still possible for the dictionary learning approach to obtain very good performance witth=10 by
settingM andm to smaller values as shown in Table 5.3.

Similar to other datasets, we also apply coresets for the Yahoo1l00M dataset. We learn a different
coreset for each chunk separately, which makes its calculation feasible. J&g setN=2, m = 100 and
M = N=100 and obtain a mAP of 87.9 compared to a mAP of 89.4 using the entire chunks.

Compatibility with coding methods. One of the main strengths of our method is its complementarity
with other popular coding strategies in computer vision. We combine our method with PQ-codes [14] as
explained in Section 4. We use= d=bsubvectors for different values bfandQ = 256 codewords per
each subquantizer (except for Paris6k wh@re 16 due to smalM ). This reduces the ter@(M  d)
by a factor ofbif we neglect the xed cost of complexity of building the lookup table.

Table 5 shows the difference of performance with and without PQ-codes. Observe that the perfor-
mance remains almost the same lior 8. The compression factor by PQ-code is signi ca8t gats
replaced by 1 byte).

Baseline| Our Method| b=8 | b=64
Oxford5k 66.9 73.4 73.1 72.9
Paris6k 83.0 88.1| 87.7 85.6
Oxford105k 61.6 65.5| 63.1 30.4
Paris106k 75.7 81.2 80.9 76.8

Table 5: Combination of our method with PQ-codes. We Mse= 350 for Oxford5k, M = 30 for
Paris6kM = 5257 for Oxford105k, andM = 532 for Paris106k.
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6 Conclusion

This paper lowers the complexity of image search by reducing the number of vector comparisons. We
formulate the image search problem as a matrix factorization problem, which can be solved using eigen-
decomposition or dictionary learning. We show that the former is a plausible option for small datasets,
whereas the latter can be applied for large-scale problems in general. When applied to real datasets com-
prising up tol0® images, our framework achieves a comparable, and sometimes better performance, than
exhaustive search within a fraction of complexity. It is worth noting that this approach is complementary
to other indexing/approximated similarity approaches such that it can be combined to further increase
ef ciency.
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