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ABSTRACT

Recently, hybrid multi-site big data analytics (that com-
bines on-premise with off-premise resources) has gained in-
creasing popularity as a tool to process large amounts of
data on-demand, without additional capital investment to
increase the size of a single datacenter. However, making
the most out of hybrid setups for big data analytics is chal-
lenging because on-premise resources can communicate with
off-premise resources at significantly lower throughput and
higher latency. Understanding the impact of this aspect is
not trivial, especially in the context of modern big data an-
alytics frameworks that introduce complex communication
patterns and are optimized to overlap communication with
computation in order to hide data transfer latencies. This
paper contributes with a work-in-progress study that aims to
identify and explain this impact in relationship to the known
behavior on a single cloud. To this end, it analyses a repre-
sentative big data workload on a hybrid Spark setup. Unlike
previous experience that emphasized low end-impact of net-
work communications in Spark, we found significant over-
head in the shuffle phase when the bandwidth between the
on-premise and off-premise resources is sufficiently small.
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1. INTRODUCTION

Due to exploding data sizes and the need to combine mul-
tiple data sources, single-site processing becomes insufficient
as big data analytics applications can no longer be accom-
modated within a single datacenter. To enable such complex
processing, a promising approach consists in simultaneously
provisioning resources on multiple datacenters at different
geographical locations from the same cloud provider (multi-
site) or combine permanent resources on a private datacenter
(or long-term leased cloud resources) with temporary, off-
premise resources (hybrid setups). This may have several
benefits: resilience to failures, better locality (e.g., by mov-
ing computation close to data or viceversa), elastic scaling
to support usage bursts, user proximity through content de-
livery networks, etc. In this context, sharing, disseminating

and analyzing the data sets may result in frequent large-
scale data movements across widely distributed sites. Stud-
ies show that the inter-datacenter traffic is expected to triple
in the following years [8, 11]. At the same time, this un-
precedented geographical distribution of data and resources
raises new challenges. Besides the complexity introduced by
the heterogeneity of resources from hybrid deployments, the
network constitutes a major bottleneck. Cloud datacenters
are interlinked with high-latency, low-throughput wide-area
networks, making inter-site data transfers up to an order of
magnitude slower than intra-site data transfers.

At the lower layers of the data analytics stack, significant
strides have been made in providing vastly scalable data
management solutions that also achieve high availability via
remote WAN resource provisioning. NoSQL systems like
Cassandra [10] or Riak [2] are able to gracefully scale up
at geographically distant locations, albeit at reduced replica
consistency. Even some databases, like Google’s F1 [17] have
managed to scalably process queries and transactions across
sites. Data transfers tools like JetStream [20] exploit the
inherent network parallelism of the hybrid setups and enable
fast data movements.

However, moving up the data analytics stack, large-scale
analytics frameworks like Hadoop [21] or Spark [24] have
not achieved the same level of scalable, cross-datacenter im-
plementation. Despite key design choices to leverage data
locality (such as coupling the analytics runtime with the
storage layer to be able to schedule the computation close
to the data), many inherently difficult communication pat-
terns (in particular concerning tightly coupled all-to-all com-
munication that happens during collective data aggregation
through reduce operations) have led to a situation where
users avoided the distribution of the same application on a
hybrid setup, preferring to use hybrid setups in order to ac-
celerate a set of independent or loosely coupled applications.

This paper aims to study how the weak link of a hybrid
setup impacts big data analytics applications that span be-
yond a single cluster, as a first step in understanding how
to optimize the runtime middleware for such configurations.
In particular, we focus on Spark as a representative big data
analytics framework, due to the recent interest in its capa-
bilities (both functional and non-functional) over Hadoop
MapReduce and its ecosystem. Our goal is to identify and



explain the performance bottlenecks under a hybrid scenario
for Spark when compared with a single cluster scenario,
where previous performance studies already showed that the
CPU is increasingly becoming a bottleneck versus the disk
or network [14].

We summarize our contributions as follows:

e We identify and discuss several challenges of running
a big data analytics application over a Spark deploy-
ment that spans multiple sites in a hybrid setup (Sec-
tion 3.2).

e We design an experimental setup that emulates an eas-
ily configurable real-life hybrid setup in order to facil-
itate the evaluation of multiple configurations under
controlled settings (Section 4.1).

We evaluate Spark in a series of extensive experiments
where we found significant job completion time over-
head due to low inter-cluster bandwidth, which is mostly
due to slower transfers during data shuffling (Sections 4.2
and 4.3).

2. RELATED WORK

While extensive research efforts have been dedicated to
optimize the execution of big data analytics frameworks,
there has been relatively less progress on identifying, an-
alyzing and understanding the performance issues of these
systems in a hybrid setup.

Execution optimization. Since the targeted applica-
tions are mostly data-intensive, a first approach to improv-
ing their performance in hybrid environments is to make
network optimizations. Multi-hop path splitting solutions
[7] replace a direct TCP connection between the source and
destination by a multi-hop chain through some intermedi-
ate nodes. Multi-pathing [16] employs multiple independent
routes to simultaneously transfer disjoint chunks of a file to
its destination. JetStream [20] is specifically targeting geo-
graphically distributed data transfers: building on the net-
work parallelism, the throughput can be enhanced by rout-
ing data via intermediate nodes chosen to increase aggre-
gate bandwidth. These solutions come at some costs: under
heavy load, per-packet latency may increase due to time-
outs while more memory is needed for the receive buffers.
On the other hand, end-system parallelism can be exploited
to improve utilization of a single path. This can be achieved
by means of parallel streams [6] or concurrent transfers [13].
Although using parallelism may improve throughput in cer-
tain cases, one should also consider system configuration
since specific local constraints (e.g., low disk 1/O speeds
or over-tasked CPUs) may introduce bottlenecks. More re-
cently, a hybrid approach was proposed [22] to alleviate from
these. It provides the best parameter combination (i.e. par-
allel stream, disk, and CPU numbers) to achieve the highest
end-to-end throughput between two end-systems. Storage
optimizations try either to better exploit disk locality [19]
or simply to eliminate the costly disk accesses by complex
in-memory caches [23, 12]. In both cases, the resulting ag-
gregated uniform storage spaces will lag behind in widely
distributed environments due to the huge access latencies.

Performance analysis and prediction. The vast ma-
jority of research on this field focuses on the Hadoop frame-
work, since, for more than a decade, this has become the

de-facto industry standard. The problem of how to pre-
dict completion time and optimal resource configuration for
a MapReduce job running on a hybrid cloud was proposed
in [?]. To this end, the work introduces a methodology that
combines analytical modelling with micro-benchmarking to
estimate the time-to-solution in a given hybrid configura-
tion. The problem of disproportionately long-running tasks,
also called stragglers, has received considerable attention,
with many mitigation techniques being designed around spec-
ulative execution [4, 5]. This approach waits to observe
the progress of the tasks of a job and launches duplicates
of slower tasks. However, speculative execution techniques
have a fundamental limitation in hybrid setups: waiting to
collect meaningful task performance information and then
remotely scheduling tasks limits drastically their reactiv-
ity. Other studies focus on the partitioning skew [9] which
causes huge data transfers during the shuffle phases, leading
to significant unfairness between nodes. More recent perfor-
mance studies specifically target Spark [14]. However, the
authors are only interested in the impact of several parame-
ters (CPU, network, disk) on applications running within a
single datacenter.

Overall, most of the previous work typically focuses on
some specific issues of big data frameworks: either a single
cluster, or, if the work targets a hybrid setup, the focus falls
on specific low-level issues that are not necessarily well cor-
related with the higher level design. It is precisely this gap
that we aim to address in this work by linking bottlenecks
observed through low level resource utilization with high-
level behavior in order to better understand performance in
a hybrid setup.

3. BACKGROUND
3.1 The Spark Architecture

Spark is a big data analytics framework that facilitates
the development of multi-step data pipelines using directly
acyclic graph (DAG) patterns. The user implements a driver
program that describes the high-level control flow of the ap-
plication, which relies on two main parallel programming ab-
stractions: (1) resilient distributed datasets (RDDs), which
describe the data itself; and (2) parallel operations on the
RDDs.

An RDD is a read-only, resilient collection of objects par-
titioned across multiple nodes that holds provenance infor-
mation (referred to as lineage) and can be rebuilt in case of
failures by partial recomputation from ancestor RDDs. An
RDD can be created in three ways: (1) by using the im-
plicit partitioning of an input file stored in the underlying
distributed file system (e.g., HDFS); (2) by explicit parti-
tioning of a native collection (e.g. array); or (3) by applying
a transformation to an already existing RDD. Furthermore,
each RDD is by default lazy and ephemeral. The lazy prop-
erty has the same meaning as in functional programming
and refers to the fact that an RDD is computed only when
needed. Ephemeral refers to the fact that once an RDD ac-
tually got materialized, it will be discarded from memory
once it was used. However, since RDDs might be repeatedly
needed during computations, the user can explicitly mark
them as persistent, which moves them in a dedicated cache
for persistent objects.

There are three major transformations possible on RDDs:
reduce, collect and foreach. Reduce has the same meaning



as the reduce phase of MapReduce: it represents a same key
aggregation of values according to a custom function. Col-
lect gathers the elements of an RDD into a native collection
on the driver program (e.g. array). Foreach is similar to the
map phase of MapReduce: it applies a parallel transforma-
tion on all elements of the RDD.

These transformations seem to emulate the expressivity
of the MapReduce paradigm overall, however, there are two
important differences: (1) due to the lazy nature, maps will
only be processed before a reduce, accumulating all com-
putational steps in a single phase; (2) RDDs can be cached
for later use, which greatly reduces the need to interact with
the underlying distributed file system in more complex work-
flows that involve multiple reduce operations.

3.2 Challenges of running Spark in a Hybrid
Setup

Since the early days of big data analytics, MapReduce re-
lied heavily on a key idea to conserve network bandwidth in
order to achieve large-scale scalability on commodity clus-
ters: taking advantage of data locality. More specifically,
the storage layer is co-located with the runtime on the same
nodes and is designed to expose the location of the data
blocks, effectively enabling the scheduler to bring the com-
putation close to the data and avoid a majority of the storage-
related network traffic. This basic idea is also adopted by
modern big data analytics frameworks, including Spark.

Nevertheless, despite significant progress in exploiting data
locality, runtimes still face a major challenge: efficient ag-
gregation of intermediate results during the reduce phase.
While transparent for the user, from whose viewpoint the
reduce is a collective operation agnostic of the data distri-
bution, eventually all the burden of synchronization and col-
lection of relevant data pieces (which is why Hadoop MapRe-
duce and Spark are referred to as data shuffling) falls on the
runtime. At scale, this involves concurrent remote trans-
fers of significant data amounts between the nodes, which
unsurprisingly stresses the networking infrastructure.

However, in a hybrid setup, the link between the on-
premise infrastructure and the external off-premise resources
is typically of limited throughput and high latency. Thus,
communication between on-premise and off-premise resources
may create a network bottleneck both with respect to indi-
vidual data transfers (i.e. low end-to-end throughput) as
well as during parallel data transfers (i.e. low aggregated
throughput despite sufficient end-to-end throughput). For
the rest of this paper, we refer to the link between the on-
premise and off-premise resources and these I/O bottlenecks
it may cause simply as the “weak link”.

This weak link affects two aspects. First with respect to
input data, if the hybrid computation was specifically ini-
tiated to combine on-premise custom input data with off-
premise public data or if the computation is part of a multi-
stage job where the input data is already cached in memory,
then the off-premise resources can benefit from data local-
ity out-of-the-box. Otherwise, if input data needs to be
shipped to the off-premise resources, this can happen either
before the computation starts or during the computation
using asynchronous techniques (e.g. HDFS rebalancing [?]).
How to customize such asynchronous techniques to optimize
the use of network bandwidth at the same time as Spark is
using the network bandwidth itself is a direction we plan to
explore in future work.

limited
bandwidth
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N
off-premise

\
on-premise

Figure 1: Architecture of the experimental setup

For the purpose of this work, we assume the input data is
already distributed between the on-premise and off-premise
resources in order to isolate the impact of the weak link on
the data shuffling phase.

4. EXPERIMENTAL EVALUATION

This section presents a preliminary experimental evalua-
tion using WordCount, a popular benchmarking workload
initially used for MapReduce and ported to Spark, which
is used to count the number of occurrences of each unique
word in a large, distributed input dataset.

4.1 Setup

For our experiments we use Grid5000 [?], a large-scale ex-
perimental testbed comprising nine sites in France. We re-
served nodes on the Rennes cluster, which comprises nodes
interconnected with 10 Gigabit Ethernet. Each node has
two Intel Xeon E5-2630v3 (2.4GHz) processors (2x6 cores),
128 GB RAM, 500 GB HDD. On these nodes we deployed
Apache Spark 1.3.1 in standard configuration: one node is
the master, while the rest of the nodes are configured as
workers. Each worker is configured to use 45 GB memory
and the maximal number of cores. We used the standalone
cluster manager. Furthermore, we use HDFS as the under-
lying storage layer: all worker nodes are also configured to
run an HDFS DataNode, while the master is configured to
run an HDFS NameNode.

We split the worker nodes into two groups, which sim-
ulates a mix of on-premise and off-premise resources. This
separation is transparent for Spark and HDF'S, both of which
treat the whole deployment as if it were a single cluster. In
order to emulate the weak link between the on-premise and
off-premise worker nodes, we configured an additional node
to act as a proxy that forwards all traffic between the two
groups, as shown in Figure 1. Then, using the netem kernel
module we place configurable limits for this traffic, which
enables us to vary both aspects (mentioned in Section 3.2)
of the weak link for the study.

Note that this setup is very close to real life production
cloud systems based on OpenStack [?]: in a typical configu-
ration based on neutron (the standard OpenStack network
management service), there is a network node responsible
for network management. The VM instances are config-
ured to directly communicate with each other via the links
of their compute node hosts. However, all communication
with the outside of the cloud is routed through the network



node. Thus, in a real-life hybrid cloud setup that involves
two OpenStack deployments, any communication between
on-premise and off-premise VMs will pass through the net-
work nodes, which become the weak link.

During the experiments, we monitor all nodes in order to
collect fine-grain system-level information regarding CPU,
memory, disk and network interface. For this purpose, we
run a sar-based daemon that logs all information at 5 second
intervals. This information is then processed and aggregated
after the experiments to produce the graphs presented in
Section 4.

4.2 Methodology

The goal of the experiments is to study the end-impact of
the weak link in a hybrid setting under variable scalability
requirements. To this end, we vary two parameters: (1) the
total number of nodes; and (2) the capacity of the weak
link. We generate various combinations of (1) and (2) to
create hybrid setups that we then compare with a baseline
setup where all nodes are considered on-premise and form a
single group that does not use a proxy or suffer the effects
of a weak link. We decided for a single strategy to split the
nodes into the on-premise and off-premise groups: half of the
nodes are in one group and the rest in the other group. This
decision was motivated by the need to minimize the bisection
bandwidth of the nodes in such way that it coincides with the
configurable capacity of the weak link. Using this strategy,
the all-to-all communication pattern during the shuffle phase
will potentially suffer the most negative impact due to the
weak link, which emphasizes a worst case scenario. Thus,
for the rest of this paper, we refer to a hybrid setup only
by the total number of nodes, implicitly assuming that the
on-premise and off-premise groups are of equal size.

We use a total of nine hybrid configurations, obtained
as a variation of the number of nodes (6, 10, 20) and the
capacity of the weak link (1 Gbps, 50 Mbps, 30 Mbps). In
addition, three baseline configurations without a weak link
corresponding 6, 10, 20 nodes are used. The experiments
target weak scalability, with a fixed size of the input data
of 25 GB per node. To prepare the input for WordCount,
we downloaded the Wikipedia archive and uploaded it into
a fresh HDF'S deployment before running the corresponding
WordCount Spark job. In this regard, the wiki input was
replicated to reach the corresponding data size needed for
a configuration. The default task parallelism is set to 1000,
which is within the recommended values (i.e. at least double
the total number of available cores to avoid starvation of
short tasks).

4.3 Results

The completion time of the WordCount job for each of
the configurations is depicted in Figure 2. As it can be
observed, the WordCount application scales well with in-
creasing number of workers in the baseline case, which is
an expected behavior in the single-cluster scenario. What is
interesting to observe is the relatively low impact of limiting
the bandwidth to 1 Gbps: there is hardly any visible slow-
down despite an order of magnitude less capacity compared
to the baseline (i.e., 10 Gbps). However, further decreases
in the capacity of the weak link begin to have a visible im-
pact: for 6 workers a limitation of 50 Gbps increases the
runtime by 50%, while a limitation of 30 Gbps increases the
runtime more than double. This trend is observable for 20
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Figure 2: Completion time for Spark WordCount
under variable cluster size and weak link capacity

workers too: this time, due to the fact that a larger amount
of nodes share the weak link, the runtime increases by more
than double and, respectively, four-fold.

To explain this behavior, we depict in Figure 3 the system
level CPU, disk and network utilization during the runtime
of WordCount for each configuration, grouped by number
of workers. Note that the results are aggregated from all
nodes. For CPU and disk, this aggregated value is given in
percentage as the average utilization of all workers. For the
network, the aggregated value corresponds to the sum of the
traffic reported by all nodes and is given in MB/s.

As can be observed, there is a high disk utilization in the
first phase of the computation, which corresponds to reading
the input data from HDFS and constructing an in-memory
RDD out of it. Once this is done however, disk utilization
remains negligible. This trend remains stable regardless of
number of nodes or capacity of the weak link. With respect
to the CPU utilization during this first phase, it can be ob-
served that it remains at around 50%, which is surprisingly
high given the fact that this phase is dominated by disk
activity. This however is explained by the fact that Spark
initiates a lazy computation that interleaves the disk activ-
ity to build the input RDD with the subsequent “foreach”
transformations. Since the reduce operation needs all fore-
ach operations to finish before starting, there is no network
activity visible during this phase, which also hints at the
fact that data locality is well leveraged, i.e. remote HDFS
transfers are avoided.

More interesting behavior is observable in the second phase,
when the data shuffling is performed. This time, disk activ-
ity is negligible and CPU activity correlates well with net-
work activity, which means that an increasing limit on the
weak link introduces delays in the transfers of intermediate
shuffle blocks, whose impact cause the CPU to wait for data.
While this effect is not visible when comparing the baseline
with the 1 Gpbs case, the effect becomes clear for 50 Mbps
and 30 Mbps: the CPU and the network utilization stay at a
lower level for longer, which explains the increase in overall
runtime. Also interesting to note is that there is an initial
burst of all-to-all network communications right at the be-
ginning of the data shuffling, after which the network traffic
stabilizes as the aggregation computation overlaps with the
subsequent network transfers. Thus, a limit on the weak
link not only affects the ability to overlap the CPU with
the network I/O, but it also delays the moment when the
aggregation can start.
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Figure 3: Aggregated system level resource utilization for Spark WordCount under variable cluster size and

weak link capacity

5. CONCLUSIONS AND FUTURE WORK

In this work, we presented a preliminary study of the im-
pact of using heterogeneous network links in hybrid setups
that involve the use of resources from multiple clusters (i.e.
augment on-premise resources with external, off-premise re-
sources) when running large scale big data analytics based
on Spark.

Unlike previous work that emphasized the relatively low
impact of network and disk performance on the completion
time for Spark workloads on a single cluster (meaning the
CPU tends to be the bottleneck), we have discovered that
the network can become a bottleneck in a hybrid setup, if the
weak link between the on-premise and off-premise resources
is sufficiently small (i.e. in the order of tens of Mbps). This
impact can become dramatic when an increasing number
of nodes need to communicate over a slow weak link, with
observed completion time several times higher. While many
geographically separated sites can communicate well beyond
1 Gbps and there is a tendency to increase the bandwidth
of the weak link, we believe the observed bottlenecks will
remain relevant for two reasons: (1) the number of nodes
involved in a hybrid Spark deployment will be much larger,
thus more nodes will share the weak link; (2) multiple other
(Spark or completely different) applications and users will
share the weak link concurrently, which makes it hard to
dedicate a predefined bandwidth for a particular application.

As future work, we plan to explore the interleaving be-
tween CPU utilization and network transfers during the

Spark reduce phase in greater detail, in order to better un-
derstand the behavior observed in our experiments, both
with respect to the initial spike and the subsequent stabi-
lized pattern. In particular, we plan to instrument Spark
to understand what network traffic is generated by what
worker. Based on this information it may be possible to
better understand when delays are caused by the weak link
and whether there is any skew in the transfers of the in-
termediate shuffle data. This in turn can help designing
better scheduling algorithms specifically for a hybrid setup
(e.g., assign the tasks to the workers such that most traf-
fic happens within the same group and the traffic between
on-premise and off-premise workers is minimized). Also, an-
other interesting direction is related to the irregularity of the
weak link: based on the assumption that it is shared with
other applications and users, we plan to simulate a fluctu-
ating capacity of the weak link in order to understand its
impact.
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