
�>���G �A�/�, �?���H�@�y�R�k�j�N�k�N�N

�?�i�i�T�b�,�f�f�?���H�X�B�M�`�B���X�7�`�f�?���H�@�y�R�k�j�N�k�N�N

�a�m�#�K�B�i�i�2�/ �Q�M �d �.�2�+ �k�y�R�8

�>���G �B�b �� �K�m�H�i�B�@�/�B�b�+�B�T�H�B�M���`�v �Q�T�2�M ���+�+�2�b�b
���`�+�?�B�p�2 �7�Q�` �i�?�2 �/�2�T�Q�b�B�i ���M�/ �/�B�b�b�2�K�B�M���i�B�Q�M �Q�7 �b�+�B�@
�2�M�i�B�}�+ �`�2�b�2���`�+�? �/�Q�+�m�K�2�M�i�b�- �r�?�2�i�?�2�` �i�?�2�v ���`�2 �T�m�#�@
�H�B�b�?�2�/ �Q�` �M�Q�i�X �h�?�2 �/�Q�+�m�K�2�M�i�b �K���v �+�Q�K�2 �7�`�Q�K
�i�2���+�?�B�M�; ���M�/ �`�2�b�2���`�+�? �B�M�b�i�B�i�m�i�B�Q�M�b �B�M �6�`���M�+�2 �Q�`
���#�`�Q���/�- �Q�` �7�`�Q�K �T�m�#�H�B�+ �Q�` �T�`�B�p���i�2 �`�2�b�2���`�+�? �+�2�M�i�2�`�b�X

�G�ö���`�+�?�B�p�2 �Q�m�p�2�`�i�2 �T�H�m�`�B�/�B�b�+�B�T�H�B�M���B�`�2�>���G�- �2�b�i
�/�2�b�i�B�M�û�2 ���m �/�û�T�¬�i �2�i �¨ �H�� �/�B�z�m�b�B�Q�M �/�2 �/�Q�+�m�K�2�M�i�b
�b�+�B�2�M�i�B�}�[�m�2�b �/�2 �M�B�p�2���m �`�2�+�?�2�`�+�?�2�- �T�m�#�H�B�û�b �Q�m �M�Q�M�-
�û�K���M���M�i �/�2�b �û�i���#�H�B�b�b�2�K�2�M�i�b �/�ö�2�M�b�2�B�;�M�2�K�2�M�i �2�i �/�2
�`�2�+�?�2�`�+�?�2 �7�`���M�Ï���B�b �Q�m �û�i�`���M�;�2�`�b�- �/�2�b �H���#�Q�`���i�Q�B�`�2�b
�T�m�#�H�B�+�b �Q�m �T�`�B�p�û�b�X

�.�B�b�i�`�B�#�m�i�2�/ �m�M�/�2�` �� �*�`�2���i�B�p�2 �*�Q�K�K�Q�M�b���i�i�`�B�#�m�i�B�Q�M �@ �L�Q�M�*�Q�K�K�2�`�+�B���H �@ �a�?���`�2���H�B�F�2�% �9�X�y
�A�M�i�2�`�M���i�B�Q�M���H �G�B�+�2�M�b�2

�>�v�#�`�B�/�J�_�, �� �L�2�r ���T�T�`�Q���+�? �7�Q�` �>�v�#�`�B�/ �J���T�_�2�/�m�+�2
�*�Q�K�#�B�M�B�M�; �.�2�b�F�i�Q�T �:�`�B�/ ���M�/ �*�H�Q�m�/ �A�M�7�`���b�i�`�m�+�i�m�`�2�b

�"�B�M�; �h���M�;�- �>���B�r�m �>�2�- �:�B�H�H�2�b �6�2�/���F

�h�Q �+�B�i�2 �i�?�B�b �p�2�`�b�B�Q�M�,

�"�B�M�; �h���M�;�- �>���B�r�m �>�2�- �:�B�H�H�2�b �6�2�/���F�X �>�v�#�`�B�/�J�_�, �� �L�2�r ���T�T�`�Q���+�? �7�Q�` �>�v�#�`�B�/ �J���T�_�2�/�m�+�2 �*�Q�K�#�B�M�B�M�;
�.�2�b�F�i�Q�T �:�`�B�/ ���M�/ �*�H�Q�m�/ �A�M�7�`���b�i�`�m�+�i�m�`�2�b�X �*�Q�M�+�m�`�`�2�M�+�v ���M�/ �*�Q�K�T�m�i���i�B�Q�M�, �S�`���+�i�B�+�2 ���M�/ �1�t�T�2�`�B�2�M�+�2�-
�q�B�H�2�v�- �k�y�R�8�- �k�d �U�R�e�V�- �T�T�X�R�e�X �I�R�y�X�R�y�y�k�f�+�T�2�X�j�8�R�8�=�X �I�?���H�@�y�R�k�j�N�k�N�N�=



CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper.(2015)
Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/cpe.3515

SPECIAL ISSUE PAPER

HybridMR: a new approach for hybrid MapReduce combining
desktop grid and cloud infrastructures

Bing Tang1,* ,†, Haiwu He2 and Gilles Fedak3

1School of Computer Science and Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
2Computer Network Information Center, Chinese Academy of Sciences, Beijing, 100864, China

3LIP Laboratory, University of Lyon, Lyon, 69364, France

SUMMARY

This paper introduces HybridMR, a novel model for the execution of MapReduce (MR) computation on
hybrid computing environment. Using this model, high performance cloud resources and heterogeneous
desktop personal computers (PCs) in Internet or Intranet can be integrated to form a hybrid computing
environment. Thanks to HybridMR, the computation and storage capability of large scale desktop PCs can
be fully utilized to process large scale datasets. HybridMR relies on two innovative solutions to enable
such large scale data-intensive computation. The �rst one is HybridDFS, which is a hybrid distributed �le
system. HybridDFS features reliable distributed storage that alleviates the volatility of desktop PCs, thanks
to fault tolerance and �le replication mechanism. The second innovation is a new node priority-based fair
scheduling (NPBFS) algorithm has been developed in HybridMR to achieve both data storage balance and
job assignment balance by assigning each node a priority through quantifying CPU speed, memory size, and
input and output capacity. In this paper, we describe the HybridMR, HybridDFS, and NPBFS. We report
on performance evaluation results, which show that the proposed HybridMR not only achieves reliable
MR computation, reduces task response time, and improves the performance of MR, but also reduces the
computation cost and achieves a greener computing mode. Copyright © 2015 John Wiley & Sons, Ltd.

Received 1 November 2014; Revised 8 January 2015; Accepted 16 January 2015

KEY WORDS: hybrid computing environment; volunteer computing; MapReduce; distributed �le system;
fault tolerance

1. INTRODUCTION

In the past decade, desktop grid and volunteer computing systems (DGVCSs) have been proved
an effective solution to provide scientists with tens of tera�ops from hundreds of thousands of
resources. DGVCSs utilize free computing, network, and storage resources of idle desktop per-
sonal computers (PCs) distributed over Intranet or Internet environments for supporting large scale
computation and storage. DGVCSs have been one of the largest and most powerful distributed
computing systems in the world, offering a high return on investment for applications from a wide
range of scienti�c domains, including computational biology, climate prediction, and high-energy
physics [1–3].

On the other hand, cloud computing is emerging as a promising paradigm delivering informa-
tion technology services as computing utilities, which are capable of providing a �exible, dynamic,
resilient, and cost-effective infrastructure. A cloud instance (such as Amazon elastic compute cloud

*Correspondence to: Bing Tang, School of Computer Science and Engineering, Hunan University of Science and
Technology, Xiangtan, 411201, China.

†E-mail: btang@hnust.edu.cn

Copyright © 2015 John Wiley & Sons, Ltd.



B. TANG, H. HE AND G. FEDAK

(EC2) instance) is a virtual server node, which can be used to run various applications. MapReduce
(MR) is a programming model for data intensive application that was �rst introduced by Google in
2004 [4] and has attracted a lot of attentions recently. Hadoop is an open-source implementation of
MR, which is widely used in Yahoo, Facebook, and Amazon. MR borrows ideas from functional
programming, in order to simplify the parallel programming to process massive datasets, where
programmers only de�ne map and reduce tasks and do not need to care about complex processes.
Now, many providers offer MR computing services using cloud infrastructure in the pay-as-you-go
manner such as Amazon, Google, Rackspace, Aliyun, and so on.

Recently, there are some other MR implementations that are designed for large scale parallel data
processing specialized on desktop grid or volunteer resources in Intranet or Internet such as BitDew-
MapReduce [5], MOON [6], P2P-MapReduce [7], GiGi-MR [8], VMR [9], and so on. However,
because there exists the correlation of volunteer or desktop failures, in order to achieve long-
term and sustained high throughput, MR implementations adapted to volatile desktop environments
cannot lack the support of high reliable cluster nodes.

To this end, this paper presents a hybrid computing environment, in which the cluster nodes and
the volunteer computing nodes are integrated. For this hybrid computing environment, we propose
and implement a MR parallel computation model that takes advantages of the computing capability
of these two kinds of resource to execute reliable MR tasks.

The main challenges include three aspects: the �rst is how to deal with task failures caused
by unreliable volunteer-computing node failures, the second is how to store the input data, the
intermediate data, and the �nal results for MR applications, and the third is how to achieve MR
task scheduling.

To solve the aforementioned problems, we proposed HybridMR, a new MR implementa-
tion for hybrid computing environment. Similar to the design of Hadoop, HybridMR is also
decomposed into two layers, namely, data storage layer and MR task scheduling and execu-
tion layer. First, a hybrid storage system called HybridDFS composed of cluster nodes and
volunteer nodes is implemented; then, MR task scheduling is implemented. In order to solve
the volatility of volunteer nodes, we designed and implemented a node fault-tolerance mecha-
nism based on the ’heartbeat’ and time-out method. Furthermore, an optimized scheduler taking
into account performance differences between cluster nodes and volunteer desktop nodes is
also implemented.

The rest of the paper is organized as follows. Section 2 surveys research background and
related work including MR model and MR on non-dedicated computing resources. Section 3
introduces the system architecture of HybridMR. Section 4 presents the performance evaluation
of the prototype system and also the analysis of experimental results. The �nal section offers
concluding remarks.

2. BACKGROUND AND RELATED WORK

2.1. MapReduce

MapReduce model borrows some ideas from functional programming. MR applications are based
on a master–slave model. A MR system includes two basic computing units, map and reduce. The
MR programming model allows the user to de�ne a map function and a reduce function to realize
large-scale data processing and analyzing. In the �rst step, input data are divided into chunks and
distributed in a Distributed File System (DFS), such as Hadoop DFS (HDFS) and Google File
System (GFS) [10]. In the second step, Mapper nodes apply the map function on each �le chunk.
Then, the partition phase achieves splitting the keys space on a mapper node, so that each reducer
node gets a part of the key space. This is typically performed by applying a hash function to the keys
although programmers can de�ne their own partition function. The new data produced are called the
intermediate results. In short, the map function processes a< key, value> pair, and returns a list of
intermediate< key, value> pairs:

map.k1; v1/ ! l ist .k2; v2/: (1)

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.(2015)
DOI: 10.1002/cpe



HYBRID MAPREDUCE COMBINING DESKTOP GRID AND CLOUD INFRASTRUCTURES

During the shuf�e phase, intermediate results are sent to their corresponding reducer. In the reduce
phase, reducer nodes apply the reduce function to merge all intermediate values having the same
intermediate key:

reduce.k2; list.v2// ! list.k3; v3/: (2)

At the end, all the results can be assembled and sent back to the master node, and this is the
combine phase.

Currently, many studies have focused on optimizing the performance of MR. Because the com-
mon �rst-in-�rst-out (FIFO) scheduler in Hadoop MR implementation has some drawbacks and it
only considers the homogeneous cluster environments, there are some improved schedulers with
higher performance proposed such as fair scheduler, capability scheduler [11], longest approximate
time to end (LATE) scheduler [12] deadline Scheduler [13], and constraint-based scheduler [14].

Zahariaet al. [12] observed that Hadoop’s homogeneity assumptions lead to large number of
backup tasks performed and also lead to incorrect and often excessive speculative execution in het-
erogeneous environments, and can even degrade performance below that obtained with speculation
disabled. In some experiments, as many as 80% of tasks were speculatively executed. Therefore,
LATE scheduler is designed for heterogeneous Hadoop clusters, which consider the heterogeneity
of resources. It starts the backup task for the task that has the longest approximate time to end to
improve MR performance in heterogeneous environments.

Xie et al.[15] proposed a solution to improve MR performance through data placement in hetero-
geneous Hadoop clusters. The proposed strategy is placing data across nodes in a way that each node
has a balanced data processing load. Xieet al. [15] also presented measuring heterogeneity through
’computing ratio’ to measure each node’s processing speed in a heterogeneous cluster. However, the
input and output (I/O) capacity of nodes has not been considered in heterogeneity measurement.

Now, the MR programming model has been successfully applied in many �elds such as
web data mining, large scale documents analytics, query processing, bioinformatics, �nancial
prediction, social network analytics, recommendation algorithm [16], clustering algorithm [17],
privacy-preserving algorithm [18], and so on.

2.2. MapReduce on non-dedicated computing resources

Besides the original MR implementation by Google [4], several other MR implementations have
been realized within other systems or environments. Some focused on providing more ef�cient
implementations of MR components such as the scheduler [12] and the I/O system, while others
focused on adapting the MR model to speci�c computing environments like shared-memory sys-
tems, graphics processors [19], multi-core systems [20], volunteer computing environments, and
desktop grids [5].

BitDew-MapReduce proposed by Tanget al. [5] is speci�cally designed to support MR appli-
cations in desktop grids and exploits the BitDew middleware [21], which is a programmable
environment for automatic and transparent data management on desktop grid, grid, and cloud.
BitDew relies on a speci�c set of metadata to drive key data management operations, namely,
life cycle, distribution, placement, replication, and fault tolerance with a high level of abstraction.
Lu et al. [22] compared the BitDew-MapReduce implementation with Hadoop, which proved that
BitDew-MapReduce outperforms Hadoop in desktop grid environment with node crash. Concerning
the results checking, BitDew-MapReduce employs a distributed results checking mechanism that is
similar to Berkeley open infrastructure for network computing (BOINC) [23].

Marozzoet al. [7] proposed P2P-MapReduce that exploits a peer-to-peer model to manage node
churn, master failures, and job recovery in a decentralized but effective way, so as to provide a more
reliable MR middleware that can be effectively exploited in dynamic cloud infrastructures.

Another similar work is VMR [9], a volunteer computing system able to run MR applications on
top of volunteer resources, spread throughout the Internet. VMR leverages users’ bandwidth through
the use of inter-client communication and uses a lightweight task validation mechanism. GiGi-MR
[8] is another framework that allows nonexpert users to run CPU-intensive jobs on top of volunteer
resources over the Internet. Bag-of-tasks are executed in parallel as a set of MR applications.

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.(2015)
DOI: 10.1002/cpe



B. TANG, H. HE AND G. FEDAK

Another system that shares some of the key ideas with HybridMR is MOON [6]. It is
a system designed to support MR jobs on opportunistic environments. It extends Hadoop
with adaptive task and data scheduling algorithms to offer reliable MR services on a hybrid
resource architecture.

The problems and challenges of MR on non-dedicated resources are mainly caused by resource
volatile. There are also some work focusing on using node availability prediction method to enable
Hadoop running on unreliable desktop grid or non-dedicated computing resources [24, 25].

Concerning about the hybrid computing environment, Antoniuet al. [26] �rst proposed over-
coming the limitations of current MR frameworks (such as Hadoop) and enable ultra-scalable
MR-based data processing on various physical platforms such as clouds, desktop grids, or on hybrid
infrastructures built by combining these two types of infrastructures. It is the initiative of hybrid
MR that combines BlobSeer-based [27] cloud and BitDew-based desktop solution, but it did not
present complete prototype implementation. Dos Anjoset al. [28] implemented a toolkit called
BIGhybrid for simulating MR in this kind of hybrid infrastructure. In [29], information dispersal
algorithm is adopted to ensure privacy for MR in a hybrid computing environment that is con-
sist of untrusted infrastructures (such as public clouds and desktop grid) and trusted infrastructures
(such as private cloud).

3. SYSTEM ARCHITECTURE

In this section, we describe the architecture of HybridMR. First, we present an overview of the sys-
tem; then, we focus on the implementation of the main components of HybridMR, and we highlight
the main scheduling algorithms.

3.1. General overview

HybridMR is composed of reliable cluster nodes and volatile desktop PCs, which are simple but
effective. MR applications can be run in this hybrid environment to analyze and process large
amounts of datasets. The architecture of HybridMR is shown in Figure 1.

In this �gure, the system is designed with a hierarchical architecture. The top layer is the user
layer, the middle layer is the service layer, and the bottom layer is the resource layer. Four differ-
ent service components are implemented in service layer, namely, data storage service, metadata
service, data scheduler service, and MR task scheduler service. Resource layer contains two types
of resource: the �rst is reliable cluster nodes (cluster workers) and the second is large number of
unreliable volunteer nodes (desktop workers), which join the system in a voluntary way. These two
types of resources are both computing and storage resources.

Similar to existing MR systems, data storage layer and MR task-scheduling layer are also sep-
arated in our proposed model. The proposed model relies on a hybrid DFS, called HybridDFS,
which can also be run independently as a sub-component. HybridDFS has similar characteristics
with HDFS and GFS that data are stored in block. The difference is that HybridDFS de�nes two
different types of data storage nodes, the reliable cluster nodes and unreliable volunteer nodes. To
sum up, in our proposed model, we implemented

� ClientNode, provides interface to access data and submit jobs.
� NameNode, provides metadata services.
� DataNode, provides data storage services.
� WorkerNode, provides MR task computing services.
� TrackerNode, provides MR task monitoring services.

Among them, DataNode and WorkerNode can be deployed in cluster nodes or volunteer nodes,
while NameNode and TrackerNode can only be con�gured in server. The main working principle
of the system is shown as follows:

� Step 1: ClientNode uploads input data that will be analyzed and processed to HybridDFS.
� Step 2: ClientNode submits task, specifying the data stored in HybridDFS that will be

processed.

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.(2015)
DOI: 10.1002/cpe


























	HybridMR: a new approach for hybrid MapReduce combining desktop grid and cloud infrastructures

