J. Amores, Multiple instance classification: Review, taxonomy and comparative study, Artificial Intelligence, vol.201, pp.81-105, 2013.
DOI : 10.1016/j.artint.2013.06.003

E. Antezana, M. Kuiper, and V. Mironov, Biological knowledge management: the emerging role of the Semantic Web technologies, Briefings in Bioinformatics, vol.10, issue.4, 2009.
DOI : 10.1093/bib/bbp024

V. Bicer, T. Tran, and A. Gossen, Relational Kernel Machines for Learning from Graph-Structured RDF Data, ESWC, pp.47-62, 2011.
DOI : 10.1007/978-3-642-04174-7_19

. Bio2rdf-project, PharmGKB endpoint, 2015.

C. Bizer, T. Heath, and T. Berners-lee, Linked Data - The Story So Far, International Journal on Semantic Web and Information Systems, vol.5, issue.3, pp.1-22, 2009.
DOI : 10.4018/jswis.2009081901

C. Y. Brenninkmeijer, I. Dunlop, C. A. Goble, A. J. Gray, S. Pettifer et al., Computing identity co-reference across drug discovery datasets, SWAT4LS, 2013.

A. Callahan, J. Cruz-toledo, P. Ansell, and M. Dumontier, Bio2RDF Release 2: Improved Coverage, Interoperability and Provenance of Life Science Linked Data, ESWC. 2013
DOI : 10.1007/978-3-642-38288-8_14

A. Coulet, M. Smail-tabbone, A. Napoli, and M. Devignes, Ontology-Based Knowledge Discovery in Pharmacogenomics, Adv Exp Med Biol, issue.2, 2011.
DOI : 10.1007/978-1-4419-7046-6_36

URL : https://hal.archives-ouvertes.fr/inria-00585072

A. Coulet, Integration and publication of heterogeneous text-mined relationships on the Semantic Web, Journal of Biomedical Semantics, vol.2, issue.Suppl 2, p.10, 2011.
DOI : 10.1186/gb-2005-6-5-r46

URL : https://hal.archives-ouvertes.fr/hal-00585215

K. Dalleau, biojp2rdf ? a tool to rdfize biodb.jp data, under MIT licence [visited Sept, 2015.

G. Vries, A Fast Approximation of the Weisfeiler-Lehman Graph Kernel for RDF Data, ECML-PKDD, pp.606-621, 2013.
DOI : 10.1007/978-3-642-40988-2_39

M. Dumontier and N. Villanueva-rosales, Towards pharmacogenomics knowledge discovery with the semantic web, Briefings in Bioinformatics, vol.10, issue.2, pp.153-163, 2009.
DOI : 10.1093/bib/bbn056

C. S. Funk, L. E. Hunter, and K. Cohen, COMBINING HETEROGENOUS DATA FOR PREDICTION OF DISEASE RELATED AND PHARMACOGENES, Biocomputing 2014, 2014.
DOI : 10.1142/9789814583220_0032

Y. Garten, A. Coulet, and R. B. Altman, Recent progress in automatically extracting information from the pharmacogenomic literature, Pharmacogenomics, vol.11, issue.10, p.11, 2010.
DOI : 10.2217/pgs.10.136

URL : https://hal.archives-ouvertes.fr/inria-00549699

Y. Garten, N. P. Tatonetti, and R. B. Altman, IMPROVING THE PREDICTION OF PHARMACOGENES USING TEXT-DERIVED DRUG-GENE RELATIONSHIPS, PSB, pp.305-314, 2010.
DOI : 10.1142/9789814295291_0033

M. Benjamin, M. D. Good, and . Wilkinson, The Life Sciences Semantic Web is Full of Creeps, Briefings in Bioinformatics, vol.7, issue.3, pp.275-286, 2006.

M. Griffith, DGIdb: mining the druggable genome, Nature Methods, vol.486, issue.12, pp.1209-1219, 2013.
DOI : 10.1038/msb.2009.98

N. T. Hansen, S. Brunak, and R. B. Altman, Generating Genome-Scale Candidate Gene Lists for Pharmacogenomics, Clinical Pharmacology & Therapeutics, vol.36, issue.2, pp.183-192, 2009.
DOI : 10.1093/nar/gki022

P. Heim, S. Lohmann, and T. Stegemann, Interactive Relationship Discovery via the Semantic Web, ESWC, pp.303-317, 2010.
DOI : 10.1007/978-3-642-13486-9_21

R. Hoehndorf, M. Dumontier, and G. V. Gkoutos, Identifying aberrant pathways through integrated analysis of knowledge in pharmacogenomics, Bioinformatics, vol.28, issue.16, pp.28-2012
DOI : 10.1093/bioinformatics/bts350

Y. Huang, V. Tresp, M. Bundschus, A. Rettinger, and H. Kriegel, Multivariate Prediction for Learning on the Semantic Web, ILP, pp.92-104, 2010.
DOI : 10.1007/978-3-642-21295-6_13

T. Imanishi, Hyperlink Management System and ID Converter System: enabling maintenance-free hyperlinks among major biological databases, Nucleic Acids Research, vol.37, issue.Web Server, pp.17-22, 2009.
DOI : 10.1093/nar/gkp355

P. A. John and . Ioannidis, To replicate or not to replicate: The case of pharmacogenetic studies, Circulation: Cardiovascular Genetics, vol.6, pp.413-421, 2013.

R. Akira and . Kinjo, Protein Data Bank Japan (PDBj): maintaining a structural data archive and resource description framework format, Nucleic Acids Research, 2012.

C. Leistner, A. Saffari, and H. Bischof, MIForests: Multiple-Instance Learning with Randomized Trees, ECCV, pp.29-42, 2010.
DOI : 10.1007/978-3-642-15567-3_3

U. Lösch, S. Bloehdorn, and A. Rettinger, Graph Kernels for RDF Data, ESWC, pp.134-148, 2012.
DOI : 10.1007/978-3-642-30284-8_16

M. and S. Marshall, Emerging practices for mapping and linking life sciences data using rdf -a case series, Journal of Web Semantics, vol.14, pp.2-13, 2012.

B. Percha, Y. Garten, and R. B. Altman, DISCOVERY AND EXPLANATION OF DRUG-DRUG INTERACTIONS VIA TEXT MINING, Biocomputing 2012, pp.410-421, 2012.
DOI : 10.1142/9789814366496_0040

. Pharmgkb, Levels of evidence of annotations, 2015.

M. Samwald, Linked open drug data for pharmaceutical research and development, Journal of Cheminformatics, vol.3, issue.1, p.19, 2011.
DOI : 10.1186/1758-2946-2-7

M. Samwald, Semantically enabling pharmacogenomic data for the realization of personalized medicine, Pharmacogenomics, vol.13, issue.2, pp.201-213, 2012.
DOI : 10.2217/pgs.11.179

URL : https://hal.archives-ouvertes.fr/hal-00752095

A. Thor, Link Prediction for Annotation Graphs Using Graph Summarization, ISWC, pp.714-729, 2011.
DOI : 10.1007/978-3-642-12683-3_30

J. Volz, C. Bizer, M. Gaedke, and G. Kobilarov, Discovering and Maintaining Links on the Web of Data, ISWC, pp.650-665, 2009.
DOI : 10.1007/978-3-642-04930-9_41

M. Whirl-carrillo, Pharmacogenomics Knowledge for Personalized Medicine, Clinical Pharmacology & Therapeutics, vol.92, issue.4, pp.414-431, 2012.
DOI : 10.1038/clpt.2010.279

H. Xie, W. Felix, and . Frueh, Pharmacogenomics steps toward personalized medicine, Personalized Medicine, vol.2, issue.4, pp.325-362, 2005.
DOI : 10.2217/17410541.2.4.325

I. Zineh, M. Pacanowski, and J. Woodcock, Pharmacogenetics and Coumarin Dosing ??? Recalibrating Expectations, New England Journal of Medicine, vol.369, issue.24, pp.2273-2278, 2013.
DOI : 10.1056/NEJMp1314529