J. Champarnaud and T. Paranthoën, Random generation of DFAs, Theoretical Computer Science, vol.330, issue.2, pp.221-235, 2005.
DOI : 10.1016/j.tcs.2004.03.072

F. Bassino and C. Nicaud, Enumeration and random generation of accessible automata, Theoretical Computer Science, vol.381, issue.1-3, pp.86-104, 2007.
DOI : 10.1016/j.tcs.2007.04.001

URL : https://hal.archives-ouvertes.fr/hal-00459712

M. Almeida, N. Moreira, and R. Reis, Enumeration and generation with a string automata representation, Theoretical Computer Science, vol.387, issue.2, pp.93-102, 2007.
DOI : 10.1016/j.tcs.2007.07.029

A. Carayol and C. Nicaud, Distribution of the number of accessible states in a random deterministic automaton, STACS 2012, pp.194-205, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00678213

C. Nicaud, Random Deterministic Automata, MFCS'14, pp.5-23, 2014.
DOI : 10.1007/978-3-662-44522-8_2

URL : https://hal.archives-ouvertes.fr/hal-01226599

D. Tabakov and M. Y. Vardi, Experimental Evaluation of Classical Automata Constructions, LPAR'05, pp.396-411, 2005.
DOI : 10.1007/11591191_28

J. Champarnaud, G. Hansel, T. Paranthoën, and D. Ziadi, Nfas bitstreambased random generation, Fourth International Workshop on Descriptional Complexity of Formal Systems -DCFS 2002, pp.81-94, 2002.

C. Nicaud, On the Average Size of Glushkov???s Automata, Third International Conference, pp.626-637, 2009.
DOI : 10.1016/0304-3975(90)90078-V

C. Nicaud, C. Pivoteau, and B. Razet, Average analysis of glushkov automata under a bst-like model, IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, pp.388-399, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00620382

V. Carnino and S. D. Felice, Random Generation of Deterministic Acyclic Automata Using Markov Chains, CIAA 2011, pp.65-75, 2011.
DOI : 10.1016/0304-3975(92)90142-3

URL : https://hal.archives-ouvertes.fr/hal-00841862

V. Carnino and S. D. Felice, Sampling different kinds of acyclic automata using Markov chains, Theoretical Computer Science, vol.450, pp.31-42, 2012.
DOI : 10.1016/j.tcs.2012.04.025

URL : https://hal.archives-ouvertes.fr/hal-00841870

J. Hopcroft and J. Ullman, Introduction to Automata Theory, Languages and Computation, 1979.

K. S. Booth, Isomorphism Testing for Graphs, Semigroups, and Finite Automata are Polynomially Equivalent Problems, SIAM Journal on Computing, vol.7, issue.3, pp.273-279, 1978.
DOI : 10.1137/0207023

E. M. Luks, Isomorphism of graphs of bounded valence can be tested in polynomial time, Journal of Computer and System Sciences, vol.25, issue.1, pp.42-65, 1982.
DOI : 10.1016/0022-0000(82)90009-5

Y. P. Levin and E. L. Wilmer, Markov Chain and Mixing Times, 2008.
DOI : 10.1090/mbk/058

S. Chib and E. Greenberg, Understanding the metropolis-hastings algorithm, American Statistician, vol.49, pp.327-335, 1995.

R. Mathon, A note on the graph isomorphism counting problem, Information Processing Letters, vol.8, issue.3, pp.131-132, 1979.
DOI : 10.1016/0020-0190(79)90004-8

J. A. Gallian, A dynamic survey of graph labeling, The Electronic Journal of Combinatorics, vol.17

P. Foggia, G. Percannella, C. Sansone, and M. Vento, Benchmarking graph-based clustering algorithms, Image and Vision Computing, vol.27, issue.7, pp.979-988, 2009.
DOI : 10.1016/j.imavis.2008.05.002