J. Zhu, P. He, Q. Fu, H. Zhang, M. R. Lyu et al., Learning to Log: Helping Developers Make Informed Logging Decisions, 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering, pp.415-425, 2015.
DOI : 10.1109/ICSE.2015.60

S. Kotsiantis, Supervised machine learning: A review of classification techniques, Informatica, vol.31, pp.249-268, 2007.

Y. Padioleau, J. L. Lawall, R. R. Hansen, and G. Muller, Documenting and automating collateral evolutions in Linux device drivers, EuroSys, pp.247-260, 2008.
URL : https://hal.archives-ouvertes.fr/inria-00123142

M. A. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann et al., The WEKA data mining software, ACM SIGKDD Explorations Newsletter, vol.11, issue.1, pp.10-18, 2009.
DOI : 10.1145/1656274.1656278

D. Yuan, S. Park, P. Huang, Y. Liu, M. M. Lee et al., Be conservative: Enhancing failure diagnosis with proactive logging, OSDI, pp.293-306, 2012.

D. Yuan, S. Park, and Y. Zhou, Characterizing logging practices in open-source software, 2012 34th International Conference on Software Engineering (ICSE), pp.102-112, 2012.
DOI : 10.1109/ICSE.2012.6227202

D. Yuan, J. Zheng, S. Park, Y. Zhou, and S. Savage, Improving software diagnosability via log enhancement, ASPLOS, pp.3-14, 2011.

D. Yuan, H. Mai, W. Xiong, L. Tan, Y. Zhou et al., SherLog: error diagnosis by connecting clues from run-time logs, ASPLOS, pp.143-154, 2010.

D. R. Engler, D. Y. Chen, and A. Chou, Bugs as inconsistent behavior: A general approach to inferring errors in systems code, SOSP, pp.57-72, 2001.

Z. Li and Y. Zhou, PR-Miner: automatically extracting implicit programming rules and detecting violations in large software code, ESEC/FSE, pp.306-315, 2005.