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Figure 1: Our algorithm takes as input a 2D design of a mechanism (a) and produces a 3D model (c) by computing a layout
encouraging inclusion between parts, formulating the layout as a graph orientation problem (b). In the graph, edge orientation
indicates inclusion relationships. The 3D model can be printed (c,d) and is functional. The chassis is automatically synthesized.

Abstract
The success of physics sandbox applications and physics-based puzzle games is a strong indication that casual
users and hobbyists enjoy designing mechanisms, for educational or entertainment purposes. In these applications,
a variety of mechanisms are designed by assembling two-dimensional shapes, creating gears, cranks, cams, and
racks. The experience is made enjoyable by the fact that the user does not need to worry about the intricate
geometric details that would be necessary to produce a real mechanism.
In this paper, we propose to start from such casual designs of mechanisms and turn them into a 3D model that can
be printed onto widely available, inexpensive filament based 3D printers. Our intent is to empower the users of
such tools with the ability to physically realize their mechanisms and see them operate in the real world.
To achieve this goal we tackle several challenges. The input 2D mechanism allows for some parts to overlap during
simulation. These overlapping parts have to be resolved into non–intersecting 3D parts in the real mechanism.
We introduce a novel scheme based on the idea of including moving parts into one another whenever possible.
This reduces bending stresses on axles compared to previous methods. Our approach supports sliding parts and
arbitrarily shaped mechanical parts in the 2D input. The exact 3D shape of the parts is inferred from the 2D input
and the simulation of the mechanism, using boolean operations between shapes. The input mechanism is often
simply attached to the background. We automatically synthesize a chassis by formulating a topology optimization
problem, taking into account the stresses exerted by the mechanism on the chassis through time.

1. Introduction

Designing and modeling mechanisms is a difficult, highly
technical task. Therefore significant research effort is ded-
icated to automate their generation. For instance, the most
advanced techniques are capable of synthesizing complex
trains of gears and cams [ZXS∗12], produce mechanical
automatons from (virtual) animated characters [CTN∗13,
CLM∗13, TCG∗14], or generate functional designs with
hinges and slides from a high level specification [Koo14].
This is a very important trend of research in a professional

context, where efficiency and reliability of the created mech-
anisms is the top priority.

However, there are many indications that casual design-
ers and hobbyist actually enjoy designing mechanisms, from
the video games The Incredible Machine (Dynamix, 1993)
and Crayon Physics Delux (Hudson Soft) to physics sand-
box applications such as Garry’s mod (Facepunch Studios),
Phyzicle (by A. Shirinian) and Algodoo (Algoryx). Using the
later, thousands of users create and share intriguing mecha-
nisms modeled in two dimensions. These are used for educa-
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tional and entertainment purposes, but are accurate enough
for early prototyping of small mechanisms.

In this paper, we seek to fabricate real mechanisms that
can be 3D printed on inexpensive filament printers, starting
from an underspecified two-dimensional model of a mecha-
nism. Our goal is to empower casual mechanism designers
— kids, teachers, hobbyists — with a way to bring their de-
signs to reality, without having to go through the tedious and
difficult modeling process required for fabrication.

The input to our algorithm is the unmodified output of a
popular physics sandbox, in this case Algodoo (Algoryx). It
contains the 2D geometry of the mechanical parts, the spec-
ification of joints (hinge, fixed), and information regarding
which parts can interact during simulation and which are
allowed to move across each others. The output of our al-
gorithm is a mesh ready for fabrication on a fused filament
fabrication printer.

To achieve our goals, we have to tackle several challenges.
First, the mechanism functions in two-dimensions by allow-
ing some parts to overlap. We have to produce a 3D model
where these collisions do not occur, ensuring that the cor-
responding 3D parts are never in contact. Conversely, some
contacts are exploited by the mechanism, allowing parts to
interact to produce gears, cams, and sliding motions. These
interactions have to be preserved within the final mechanism.
Second, the two-dimensional specification of the parts is in-
complete: The final 3D shape of each part has to be deduced
from the simulation of the mechanism. This often involves
producing parts with a complex profile in depth allowing
other parts to slide within or along them. Finally, the mech-
anism has to be enclosed and supported by a chassis, which
acts as the ground body. This chassis is typically missing
from the specification and has to be automatically generated.

3D printed mechanisms are very sensitive to bending
stresses, in particular orthogonally to the material deposition
direction. Consider the model of Figure 1, for which two
possible fabricated solutions are shown in Figure 2. If the
parts are layered next to each others the wheel tends to move
out of its plane (Figure 2, middle): the moving parts are at-
tached to one extremity of their axles and bending stresses
produce out-of-plane motions, an effect that cumulates on
all axles. This is worsen by the necessary tolerances between
moving parts and axles. To reduce this issue our mechanisms
exploit both layering and inclusion (Figure 2, right). When
parts include one another, the bending stresses are absorbed
on both extremities of the axles, reducing out-of-plane mo-
tions and avoiding to propagate bending stress to other axles.

Contributions

• We solve for the 3D layout of the mechanism by exploit-
ing inclusions whenever possible.
• We define the 3D shapes of the final parts by construc-

tive solid geometry (CSG), considering the positions of
the parts throughout the mechanical simulation.

Figure 2: Possible solutions for the example of Figure 1.
Left: Print out of our result using layering only. Middle:
Out-of-plane motion resulting from using layering. Right:
Print out of our result using inclusion. It produces less out-
of-plane motions as axles are connected on both extremities.

• We automatically synthesize a chassis for the mechanism
using topology optimization. Our approach takes into ac-
count the forces generated by the mechanism on the chas-
sis during the entire simulation.

Our approach makes no assumption regarding the shape
of the mechanical parts: gears, cranks and cams are not
tagged in the input. They function properly through the
preservation of the set of contacts and interactions from the
2D mechanism into the fabricated mechanism.

Limitations Our algorithm does not detect unrealistic
mechanisms (i.e. mechanisms that may generate excessive
stresses, that may exhibit singularities, or mechanisms where
parts can fall or detach). Some over-constrained 2D designs
cannot be resolved by layering or inclusion (Section 4.6).

2. Previous work

Modeling objects for 3D printing is a challenging and tech-
nical task, as many constraints from the physical world and
the printing process have to be considered. Thus, a recent
trend of research proposes novel algorithms to help design-
ers identify and fix problematic geometries, for instance
making objects stronger [SVB∗12] or ensuring that designs
are properly balanced [PWLSH13, BWBSH14]. Algorithms
have also been proposed to fabricate articulated [BBJP12,
CCA∗12] or deformable characters [STC∗13] from their vir-
tual counterparts. This typically involves optimizing the ge-
ometry and automatically modeling joints or internal struc-
tures to achieve the desired degrees of freedom.

Several approaches focus specifically on mechanisms.
The work of Zhu et al. [ZXS∗12] proposes to automati-
cally generate a mechanism producing a desired motion on
multiple rigid objects, typically an animated toy. The mecha-
nism is hidden in a box below the object. The work of Coros
et al. [CTN∗13] automatically generates a mechanism in-
side an already articulated model so as to reproduce an an-
imation sequence. Duygu et al. [CLM∗13] embed mecha-
nisms called oscillation modules inside an articulated char-
acter. The oscillation modules are optimized to reproduce a
target animation. Koo et al. [Koo14] automatically produce
articulations in a design, from a high level specification of



J. Hergel & S. Lefebvre / 3D Fabrication of 2D Mechanisms

n1

n2

n3

n4

n5

n6

n7

Figure 3: Left: Input 2D mechanism. Middle: Graph used
to construct the layout. Edge orientation indicates which
part include which other, while the red edges show which
parts have to be layered. Right: Two views of the gener-
ated mechanism. The synthesized chassis appears in pink.
The crankshaft configuration automatically results from the
inclusion and layering constraints.

the designers intent: e.g. folding or opening panels covering
certain areas. Thomaszewski et al. [TCG∗14] and Megaro et
al. [MTG∗14] propose to assist the user in creating elegant
linkage based animated figures. While the former focuses on
professional designers, the work of Megaro et al. targets ca-
sual users through an accessible, simple interface.

These approaches focus on the automatic synthesis of the
mechanism: the user does not directly model its inner work-
ings. While we fully agree on the importance of automatic
synthesis of mechanisms, our goal is to also promote the pos-
sibility for casual users to directly design mechanisms. Con-
trary to synthesis techniques, our approach never changes
the input mechanism and therefore cannot improve or cor-
rect it. We however impose no constraint on the parts and
their interactions: we support gears, cranks and cams of any
shapes as their functions arise from their 2D geometries and
interactions. In contrast synthesis techniques often rely on a
set of pre-determined mechanical parts – typically bars and
gears – to make the problem tractable.

Several of the aforementioned techniques [CTN∗13,
CLM∗13, TCG∗14, MTG∗14] synthesize a 2D mechanism
which is then turned into a fabricable 3D model. This is
solved by a layering approach: the potential collisions are
identified and the parts are assigned different layers to avoid
collisions. This can be formulated as a constrained satisfac-
tion problem (CSP). This is a natural solution, but it tends
to place parts side by side on a same axle, sometimes with
significant space in between, resulting in out-of-plane mo-
tions and bending stresses on the axles (Section 1, Figure 2).
In contrast, our technique favors inclusion of parts within
each others. Our system is able to locally switch to layering
whenever inclusion cannot be used.

3. Overview

The input to our algorithm is a set of N parts P = {Pi|i =
0..N−1}, each described by a 2D polygon. The polygon of

a part may have holes, but has to form a single component.
The parts may be connected through hinges and fixed joints.
We denote the set of joints:

H = {(Pi,Pj)|Pi,Pj connected by an hinge or a fixed joint}

Our approach involves three steps: layout (Section 4),
geometry synthesis (Section 5) and chassis synthesis (Sec-
tion 6). These three steps are illustrated in Figure 3.

The layout step determines the relative positions of parts
and assigns them with a depth interval. We denote I(Pi) =
[li,hi] the interval assigned to part Pi, with li ≤ hi two in-
tegers. The inclusions between parts are determined by ori-
enting edges in a graph capturing contact and collision con-
straints. The geometry synthesis step determines the exact
3D geometry of each part, using the layout and the motions
resulting from the simulated mechanism. The last step syn-
thesizes a chassis for the mechanism: a geometry for the
main body holding everything together.

4. Mechanical layout

Our approach produces mechanisms favoring inclusion be-
tween parts. This is used in particular to resolve cases where
the parts overlap in the 2D specification without interacting.
The main advantage of this approach is to reduce mechani-
cal jitter: the hinge axles are much stronger when supported
on both their extremities. Inclusion alone cannot work on
all mechanisms due to additional geometric constraints and
interactions between parts. For these cases our approach re-
sorts to layering, but only locally.

The layout process starts by analyzing the simulated
mechanism, tracking overlaps and interactions between parts
(Section 4.1). This information provides us with a set of
observations that are used to make hypotheses regarding
which parts can include which others (Section 4.3). Our al-
gorithm greedily add inclusions, until contradictions are de-
tected (such as having both A ⊃ B and B ⊃ A). These con-
tradictions are transformed into layering rules. The final op-
timization assigns depth values to the intervals by solving a
constrained satisfaction problem (Section 4.4).

4.1. Analysis

Our approach starts by simulating the mechanism to con-
struct the set of observations. It keeps track of overlaps –
parts that overlap without colliding – and interactions – parts
that are allowed to be in contact during the simulation. This
is done by simulating the input 2D mechanism using the
Box2D library.

We assume mechanisms to have a periodic motion, and
run the simulation until a prior configuration is encountered,
or a user selected maximum time is reached. The result is a
set of T time frames. We denote by Mt

i the position matrix
of part Pi at time t ∈ [0,T [, and denote by Mt

i Pi the polygon
of part Pi at time t.
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We record all overlaps between parts in a set:

O = {(Pi,Pj)|∃ t such that Pi,Pj overlap at time t}

We keep track of all interactions between parts during simu-
lation. We denote the set of interacting parts as:

C = {(Pi,Pj)|∃ t such that Pi,Pj are in contact at time t}

Note that for any two parts Pi,Pj we have (Pi,Pj) ∈ O ⇒
(Pi,Pj) /∈ C and (Pi,Pj) ∈ C ⇒ (Pi,Pj) /∈ O. We also have
H⊂O since all parts sharing a joint also overlap.

From these sets we define the mechanism graph as G =
(P,H∪O∪C). The set of edges is the union of the joint set
H, the overlap set and the contact set. Each edge in the graph
is tagged to track which set it belongs to (edges in both H
and O are tagged as belonging toH).

Additional observations are made about the mechanism.
The first are erasing cases. A part Pj is said to erase a part Pi
if the temporal sweep of its polygon covers Pi entirely and
they are not connected by a joint. More formally:

Pj erases Pi if Pi\∪t∈[0,T [ ((M
t
i )
−1Mt

jPj)= ∅ and (Pi,Pj) /∈H

In such cases, the part Pi cannot include the part Pj as it
would have to be split in two independent parts to fit Pj
within its depth. If Pi,Pj are connected by a joint, then Pi
remains connected through the axle and is not erased by Pj.

The second are detachment cases. A part Pj is said to de-
tach Pi,Pk(k 6= j) if the temporal sweep of Pj overlaps with
the joint between Pi,Pk. Note that the overlap test is consid-
ering the diameter of the joint axle (5 mm in practice). If Pj
detaches Pi,Pk then we request that Pj includes both Pi and
Pk to avoid having Pj cross the axle between Pi,Pk.

These cases are illustrated Figure 4.

Figure 4: Left: The bar A sweeps across the (fixed) bar B,
covering it entirely during the simulation. A is said to erase
B. In this case, B cannot possibly include A within its depth
or it would be disconnected in two independent parts. Right:
During simulation, the bar A sweeps across the hinge be-
tween B and C. A is said to detach B and C. In this case
we request A to include B and C so that their axle is not cut
by A. Note that these constraints will be combined and may
conflict, in which case layering will be locally performed.

4.2. Mechanical configurations

The mechanisms we generate can produce three types of me-
chanical configurations between two parts A and B. Each
results in a rule regarding their intervals:

1. A includes B (denoted by A⊃ B)

⇒ I(A)⊃ I(B)

2. A interacts with B

⇒ (I(A)\∪∀P⊂A I(P))∩
(
I(B)\∪∀Q⊂B I(Q)

)
6= ∅

3. A layered with B

⇒ I(A)∩ I(B) = ∅

These configurations are depicted in Figure 5. They are
mutually exclusive: if A is layered with B they cannot inter-
act as they share no interval in depth. If A is layered with B,
then B cannot be included within A (and vice-versa) as they
also share no interval. If A includes B, then the volume of
B is carved out from A (see Figure 5 top-left) and therefore
they cannot interact.

Whenever possible our algorithm favors inclusion over
the other two configurations.

4.3. Generating inclusions

The goal of this step of the algorithm is to generate as
many inclusion configurations as possible. To this end, we
exploit the observations made during analysis and greedily
attempt to include parts into one another. Whenever inclu-
sion cannot be used we fallback to layering. At this stage we
only determine relationships between the parts intervals (e.g.
I(A)⊃ I(B)). The exact values of the depth intervals will be
computed at the next stage (Section 4.4).

Inclusion relationships are determined by orienting theH
and O edges of the mechanism graph G (Section 4.1). An
edge (Pi → Pj) implies that I(Pi) ⊃ I(Pj). The goal is to
find an acyclic orientation: an inclusion cycle would pro-
duce an unsolvable case of circular inclusion, e.g. I(Pi) ⊃
I(Pj)⊃ I(Pi). When orienting the edges we take care not to
contradict the interaction rules (recall that A includes B is in-
compatible with A interacts with B, see Section 4.2). This is
done by verifying that no inclusion path is formed between
two parts A and B if they interact in the input mechanism.

Figure 5: Two parts in the three possible configurations,
as seen from above. Inclusion (top-left), interaction (bottom
left), layering (right). The configurations can be mixed, i.e. a
part can include others that are in a layering configuration.
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The orientation of some of the edges is constrained by the
erasing and detachment cases:

Pj erases Pi ⇒ I(Pj)⊃ I(Pi)
Pj detaches (Pi,Pk) ⇒ I(Pj)⊃ I(Pi) and I(Pj)⊃ I(Pk)

As a result of these constraints, contradictions may appear
during the orientation process, where both I(Pi) ⊃ I(Pj)
and I(Pi) ⊂ I(Pj) are required. Such cases are resolved by
switching to a layering configuration for Pi and Pj.

We orient the edges of G considering edges inH first and
then edges in O. In each subset, we start by the edges with
a constraint. This order is important: we prefer to avoid lay-
ering on joints (set H) since this is the case where fragile
axles are generated. We therefore orient the edges inH first,
so that contradictions are more likely to appear on the edges
of O which are later considered.

For each edge in sequence, we first determine which ori-
entations are possible. This involves checking for an exist-
ing constraint, verifying whether an orientation violates any
interaction rule, and then checking whether an orientation
would produce an inclusion cycle. If two orientations are
possible we use a heuristic to select the orientation of low-
est cost (see below). If no orientation is possible, we have
encountered a contradiction.

Contradictions. We deal with contradictions by removing
the problematic edge from the graph and by adding a layer-
ing configuration rule between the parts: I(Pi)∩ I(Pj) = ∅.
This forces Pi and Pj to be in different depth intervals in-
stead of being included into one another. However, this in-
troduces an additional requirement on the graph orientation:
the parts Pi and Pj should not have any common descen-
dant in the oriented graph. Let us assume such a descendant
Pk exists. We would have I(Pi) ⊃ I(Pk) and I(Pj) ⊃ I(Pk)
which gives (I(Pi)∩ I(Pj))⊃ I(Pk). This directly contradicts
I(Pi)∩ I(Pj) = ∅. To account for this, every time a contradic-
tion is detected we add the additional constraint that Pi,Pj
should not have a common descendant. The set of descen-
dants is easily maintained during the graph orientation al-
gorithm, and we reject any edge orientation that would vi-
olate such a requirement. When checking for common de-
scendants we also follow interaction edges (edges in C) to
prevent the layered parts to include parts that have to inter-
act, i.e. Pu ⊂ Pi,Pv ⊂ Pj where Pv,Pu interact : this would
result in a similar contradiction.

Resolving a contradiction by layering removes all detach-
ment constraints between Pi,Pj: as both parts will be placed
in non-intersecting depth intervals, they can no longer cross
their respective axles.

Since the set of constraints is updated, and because some
earlier choices may violate the new constraints, we restart
the graph orientation every time a contradiction is resolved.
When the process restarts edges are traversed the same order,
skipping the edges removed due to contradictions.

Chassis. The chassis appears as a part in the graph. To guar-
antee that it includes all other parts, we orient the chassis
edges prior to considering any other edge in the graph.

Figure 2 illustrates a case where the chassis is involved in
a detachment constraint. In such cases, we request the de-
taching primitive to be the most included. That is, Pj de-
taches (Pi,C) implies I(Pj)⊂ I(Pi) and I(Pj)⊂ I(C), where
C is the chassis. The axle between C and Pi will exist around
Pj – even though Pj cuts it, it will exist in two parts attaching
C and Pi on both sides. E.g. in Figure 2 the main wheel axle
is cut by the inner arms. Nevertheless the wheel is properly
connected on both sides to the chassis, and remains a single
part through the axle with the arm. This is possible as long
as Pj does not erase Pi, in which case layering would auto-
matically be used between Pj and Pi. Indeed a contradiction
would then appear when orienting the edge (Pi,Pj).

Orientation cost heuristic. Whenever we can freely
choose the orientation of an edge, we apply the following
cost heuristic. In absence of constraints our goal is to avoid
thickening the parts too much. In other words, we want to
keep the size of the depth intervals |I(Pi)| small. The inter-
vals are optimized at the next step (Section 4.4) and there-
fore we do not know their exact size during graph orienta-
tion. However, we can easily determine a lower bound. Con-
sider a path in the oriented graph from part Pi to part Pk:
Pi→ ...→ Pk and denote L the length of this path. Since we
have Pi ⊃ ... ⊃ Pk, it follows that |I(Pi)| ≥ L. We therefore
seek to minimize the length of the longest path from every
node. When orienting an edge (Pi,Pj) we select the orienta-
tion minimizing L(Go,Pi)+L(Go,Pj) where L(Go,P) com-
putes the longest path from P to any other node in the ori-
ented graph Go (the graph with only the previously oriented
edges, and the edge being tested).

4.4. Depth intervals

The previous step produces a number of rules relating the
depth intervals of the parts. The goal of this section is to
compute the depth values assigned to the lower and upper
bounds of each interval I(Pi) = [li,hi]. We assign integer
depth values to the intervals, which are later mapped to phys-
ical thicknesses in the final object (see Section 5). Intervals
where li = hi correspond to parts having the minimal thick-
ness (2 mm in practice).

After the analysis we obtain three types of interval rules:
inclusion (e.g. I(Pi) ⊃ I(Pj)), layering (e.g. I(Pi)∩ I(Pj) =
∅) and interactions.

Inclusion. Inclusions are captured by the oriented edges in
G. They result in the following inequalities:

I(Pi)⊃ I(Pj)⇒ li < l j and hi > h j

Note the use of strict inequalities, which guarantees that the
including part (Pi) has one layer on each side of the included
part (Pj). This ensures that axles are supported on both sides.
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Layering. Layering rules are produced when resolving con-
tradictions on edge orientations. We distinguish layering due
to the removal of an overlapping edge (∈O) from the layer-
ing due to the removal of an hinge edge (∈H).

On overlapping edges:

Pi layered by overlap with Pj⇒ li > h j +1 or l j > hi +1

These inequalities guarantee that Pi, Pj will have a spacing
of at least one between them, ensuring an including parent
piece will support their axles on both sides.

On hinge edges:

Pi layered by hinge with Pj⇒ li = h j +1 or l j = hi +1

This constrains both parts to appear next to each others
through depth, ensuring that the axle between them is as
short as possible.

Interactions. These rules are necessary to enforce that con-
tacts exploited by the mechanisms (gears, racks) are prop-
erly captured by the 3D model. They result in the following
equalities:

(Pi,Pj) ∈ C ⇒ li = l j or li = h j or hi = l j or hi = h j

This ensures that the parts will properly interact through
their top or bottom layers. This rule is more restrictive than
it could be, since in principle the parts interact as long as
they share an interval where no included part exists (see Sec-
tion 4.2). However, we found it sufficient in practice while
reducing the combinatorial complexity for the CSP solver.

4.5. Solver

We directly translate these rules into an integer constraint
problem that we solve using Minion [GJM06]. We restrict
the space of integer to [0,2 ·N], with N the number of parts.

Minion returns the solution minimizing the sum of part
thicknesses, that is ∑

N
i=0 |I(Pi)|. As Minion performs an ex-

haustive search within the solution space, we configure it to
return the best solution found after at most 90 seconds.

Once the intervals are determined for each part, we are
ready to generate the final geometry of the 3D parts.

4.6. Discussion, failure cases

At worse our algorithm eliminates all edges between the
parts in the graph and includes everything in the chassis. The
parts will then be layered within the chassis, which becomes
a crankshaft hosting the layered mechanism.

However, this does not guarantee success as some mecha-
nisms cannot be layered. Such a case is shown Figure 6. The
only solution involves modifying the shape of the fixed joint
between the two bars. This is not considered by our system
nor, to the best of our knowledge, by any of the existing tech-
niques. In such cases, the CSP solving for the intervals will
admit no solution.

Figure 6: Left: Four bars seen from the top. Black segments
indicate a fixed joint, while orange indicates a hinge joint.
C,D can rotate around A,B but will cut the fixed axle between
A,B. This system cannot be resolved by assigning different
layers to A,B,C,D. Right: The only solution is to change the
shape of the axle, making room for C,D.

5. Part geometry synthesis

This step of the process takes as input the set of parts Pi, i =
0...N and their corresponding depth intervals I(Pi) = [li,hi].
The output is the 3D geometry of each part.

In order to produce the 3D geometry we take into account
the following:

• Parts have to be carved to allow for passage of other, in-
cluded parts.

• Parts that come in contact have to be modified to take a
spacing tolerance into account (0.4 mm in practice).

• Parts that slide along others without being attached to the
chassis have to be maintained at their selected depth.

• The geometry of hinge joints has to be produced, enabling
the mechanism to print pre-assembled.

The base shape of a part is formed by the linear extrusion
along the z axis (depth) of its 2D shape. We denote by Bi
the base volume of part Pi. The position of the part in depth
is computed such that pieces allotted in consecutive layers
are separated by a small space. For an interval [li,hi], the
extrusion takes places between zl

i = (t + s)li and zh
i = (t +

s)(hi +1)− s where t is the minimal thickness (2 mm) and s
the spacing tolerance between consecutive parts (0.4 mm).

The final shape Si is obtained from Bi by subtracting from
the initial volume the time sweep of the pieces included in
Pi, as well as the time sweep of the pieces in contact with
Pi. All subtracted pieces are dilated by the contact tolerance
spacing. The volume Si is precisely defined as:

Si = Bi\
(
∪ j∈N (i)∪t∈[0,T [ ((M

t
i )
−1Mt

jB j)⊕Bz
0.4

)
where N (i) = { j|(Pi,Pj) ∈ O∪C}, ⊕ is the dilation oper-
ator and Bz

0.4 is a cylinder of axis z, of height and diameter
0.4 mm. We compute the shape by a combination of 2D oper-
ations using the Clipper library [Joh10], and a few 3D CSG
operations.

Free assemblies. The mechanism might include parts, or
sub–assemblies of parts that are not connected to the back-
ground by any hinge: they are only sliding along other parts.
We call these free assemblies. They are detected as discon-
nected components in the graph with onlyH edges.

Free assemblies require special care: in 3D nothing pre-
vents them from falling out of their assigned depth interval –
recall however that we assume that they are properly locked
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Figure 7: Left: The part in pink slides along the L-shaped
part. Our approach generates fins around the sliding part
so that it is locked in depth inside surrounding parts. Mid-
dle: Printed result, note how the gear is also carved by the
fin. Right: Interlocking shape of the axles allowing for pre-
assembled printing on filament based printers.

inside the 2D mechanism, see Section 1. We address this is-
sue by creating fins (protrusions) along the sliding parts, see
Figure 7. These fins are added to the base shapes Bi of the
parts, and are thus subtracted from the other parts that are in
contact (with a spacing tolerance). They physically constrain
the parts to remain aligned in depth.

This approach in currently limited to the case of free as-
semblies sliding against non-free assemblies: we do not sup-
port several free assemblies sliding against each others.

Hinges. The geometry of the hinges is designed to allow
for pre-assembled printing (see Figure 7, right). We add the
hinges by CSG, carving the parts to let the axles through.
If the part is too narrow the axle geometry will introduce a
local bulge to ensure the axle fits properly – in some cases
this can prevent the mechanism to function, e.g. if a surface
along which two parts interact is modified. We do not cur-
rently address this issue.

After this stage the mechanism is almost ready to print,
but still lacks a chassis.

6. Chassis synthesis

When designing mechanisms in 2D the user attaches primi-
tives to the background ’wall’. When creating the 3D coun-
terpart of the mechanism we have to synthesize a chassis
acting as the background. We produce a 2D geometry that is
used to sandwich the 3D mechanism in between two walls,
as illustrated Figure 2. Alternatively the chassis could be ex-
truded to the full mechanism depth and carved like any other
part, see Section 5. This is unnecessary unless the chassis
is a crankshaft, so to reduce material use and print time we
prefer the sandwiching approach in practice.

The trade-offs in synthesizing the chassis are that we want
it to be strong enough to support the efforts generated by the
mechanism, but at the same time we would like to keep it
small to reduce material use, print time and for aesthetics
reasons (a thick chassis would hide the mechanism entirely).

This problem is elegantly answered by topology optimiza-
tion techniques [Ben89].

6.1. Background on topology optimization

We cast chassis synthesis as a case of 2D topology optimiza-
tion for minimizing the compliance energy [Ben89, Sig01].
The optimization domain is a grid of square elastic elements
where each element i, j takes a density ρi, j ∈ [ρmin,1]. We
denote by ρ the vector of all element densities. Given a
choice of densities and a set of fixed elements where the
structure is anchored, the finite element method can be used
to compute the planar deformation due to a set of forces
f = f1, ..., fn located at the grid nodes (element corners). The
displacement vector for all grid nodes u is obtained by solv-
ing K(ρ) · u = f where K(ρ) is the global stiffness matrix
assembled from the elements. The stiffness matrix of an el-
ement ρi, j is given by ρ

3
i, jKe where Ke is the 8× 8 stiffness

matrix of a square element in the target material.

The compliance energy is defined as E(ρ) = f · u. Mini-
mizing the compliance maximizes the rigidity of the system
under the given forces. This energy is minimized by gradient
descent under the constraint that ∑i, j ρi, j = A, where A is the
target area of the produced structure. Thanks to the cubic ex-
ponent in the per-element stiffness, the system tends to use
only 0 or 1 for ρi, j .

6.2. Chassis optimization

The chassis has to resist to the forces exerted by the mech-
anism at all times. We therefore record the forces at the
joints attached to the background for the entire simulation.
This gives us a set of T force configurations, where T is
the number of time frames. We optimize the chassis by
maximizing the compliance over all time frames, that is
E(ρ) = ∑t∈T ft ·ut where K(ρ)ut = ft . This is made efficient
by pre-factoring the stiffness matrix K and then solving for
ut for all time frames.

We select a resolution of 2 mm per pixel, a Poisson ra-
tio of 0.35 and an elastic modulus of 2.3 GPa (ABS plastic
material). The target area A is set to 10% and then reduced
until the structure is disconnected. We select the last value
generating a fully connected structure. The final outline of
the shape is extracted by smoothing out the result with a box
filter of size 3×3 and then contouring the isovalue 0.25. The
process is summarized Figure 8.

7. Results

We modeled all our results using Algodoo, with the only con-
straint that the mechanisms have to function properly in 2D
and be in a valid position (interacting parts such as gears
should not overlap). By default the models are rescaled so
that their bounding box fits a 150×150 mm square.

All the 3D mechanisms are generated automatically from
the scenes created in Algodoo, without any user intervention.
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Figure 8: Chassis synthesis by topology optimization. Left:
four forces resulting from hinges at a given time frame (pink)
and attachment point (gray). Middle: Optimized densities
for these forces. Right: Final shape after smoothing and con-
tour extraction.

Figure 9: Left: Model after printing, with weak infill sup-
port. Right: Cleaned model. The gears have rotated, note
the small leftover from the infill pattern on top of the gears.

Figure 10 shows a number of printed results. From top-left
to bottom right: the Gear Puppet model is made of six gears
with custom shapes. The small brown box indicates the base
for the chassis. The EG flag model is a case of sliding part.
The model has automatically generated fins along the slid-
ing part that are carved from both the L-shaped part and the
gear. This model broke during clean up and we used screws
to repair it (see also Section 7.1). The Scissor model is a case
where no chassis is needed. It is actioned by a hidden mech-
anism which is ignored by our system after simulation. This
shows how our algorithm alternates inclusions as a result of
the edge orientation cost heuristic. The Wheel model illus-
trates how part geometry is automatically created to allow
for passage of included objects. The green box at the bot-
tom of the design indicates the base of the chassis. The Gear
Train model is case of cyclic interaction between gears, cre-
ating a layering between the two central gears. The Three
Leg model is a case that results automatically in a crankshaft.
It is also shown Figure 3.

The complexity of our printed results is limited by the ca-
pability of our printers. We show in Figure 11 and Figure 12
outputs of our algorithm on more complex designs. Our sys-
tem is capable of keeping the overall design thickness small,
while exploiting inclusions wherever possible.

Performance. Most results are computed in a few seconds.
For instance, for the small model Figure 1 graph orientation
takes 154 ms, Minion returns the CSP solution in 7 ms. For
the larger model Figure 12 graph orientation takes 489 ms,
Minion returns the CSP solution after 90 seconds as it ex-
plores for the best possible solution until the timeout. Run-
ning for longer does not return a better solution, but Minion
has to finish exploring the space to guarantee the optimal is
found. Chassis optimization takes 2.34 seconds.

7.1. 3D printing

We print all our objects on inexpensive filament printers in
ABS and PLA plastic: a Replicator 1 from Makerbot, and
Ultimakers 1 and 2 from Ultimaker.

All objects are printed in one piece, using support. We
experimented both with dissoluble plastic and a weak filling
pattern for support. We had better results using a weak infill
pattern. See Figure 9 for an example of a print before and
after cleanup.

Our mechanisms exploit the fact that 3D printers can pro-
duce pre-assembled articulated objects, so that we do not
have to consider the assembly stage. However, this is not
necessarily the best option of filament printers. In particular
after printing some force has to be exerted to free the mech-
anism from inaccessible support. One issue we encountered
is breaking of the plastic axles when applying force. The EG
flag design, for instance, broke when we freed the sliding
part and we had to use screws to reassemble it manually. An
interesting direction of future work is to split the mechanism
into pieces that are easy to assemble [LBRM12, VGB∗14].

8. Conclusion

A major advantage of our algorithm is that it avoids search-
ing for explicit kinematic configurations. The algorithm has
no notion of what a gear or rack is, their function is solely
given by their shape and the simulation. All the mechanical
configurations, for instance the crankshafts, automatically
emerge from the set of constraints. Inclusion produces parts
holding axles on both sides, which is generally less sensitive
to mechanical jitter and stress.

The are limitations in our current implementation. First,
joints can only be defined between two parts. Second, we
do not detect the case where a part is erased (Section 4.1)
by the cumulative effect of two or more other parts. Both of
these cases lead to a large number of possibilities for includ-
ing parts into one another. One possibility is to fallback to
layering in such situations.

There can be aesthetics considerations to using inclusion
or layering, and to which part should include which other.
User control can be achieved by directly editing the con-
straint graph, allowing to explore several possibilities.

Our approach makes designing mechanisms less difficult
by automatically dealing with many of the intricate techni-
cal details required to generate a valid 3D geometry for a
pre-assembled mechanism. We hope it will help hobbyists,
teachers, educators and 3D printing enthusiasts to fully ex-
ploit the potential of their printers.
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Figure 10: A variety of results automatically generated from the input 2D design. Please also refer to the accompanying video
clips to see them in motion. All these results are 3D printed on filament printers.
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Figure 11: Eagle model. The mechanism shown in transparency (bottom) is generated from the design (top). The mechanism
graph (top left) shows inclusions and contact edges (bold blue). No contradictions were encountered: there is no layering. Note
the double gears including the bars, as well as the space carved for the inner bars in the bars actioning the wings.
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Figure 12: Frogger model. The mechanism shown in transparency (top right) is generated from the design (top left). This model
contains two crankshafts for steering the arms and legs. These were created by layering constraints (red bold edges in the
graph). Inclusions are used in most places. Note the lightweight synthesized chassis. One of the large wheel is doubled to avoid
the bottom bar of the neighboring crankshaft which overlaps during motion (edge between n15 and n16 in the graph).


