
HAL Id: hal-01241086
https://inria.hal.science/hal-01241086

Submitted on 9 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Toward more localized local algorithms: removing
assumptions concerning global knowledge
Amos Korman, Jean-Sébastien Sereni, Laurent Viennot

To cite this version:
Amos Korman, Jean-Sébastien Sereni, Laurent Viennot. Toward more localized local algorithms:
removing assumptions concerning global knowledge. Distributed Computing, 2013, 26 (5-6),
�10.1007/s00446-012-0174-8�. �hal-01241086�

https://inria.hal.science/hal-01241086
https://hal.archives-ouvertes.fr


Distributed Computing manuscript No.
(will be inserted by the editor)

Toward More Localized Local Algorithms:
Removing Assumptions Concerning Global Knowledge
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Abstract Numerous sophisticated local algorithmwere
suggested in the literature for various fundamental prob-

lems. Notable examples are the MIS and (∆+1)-coloring

algorithms by Barenboim and Elkin [6], by Kuhn [22],

and by Panconesi and Srinivasan [34], as well as the

O(∆2)-coloring algorithm by Linial [28]. Unfortunately,
most known local algorithms (including, in particular,

the aforementioned algorithms) are non-uniform, that

is, local algorithms generally use good estimations of
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one or more global parameters of the network, e.g., the
maximum degree ∆ or the number of nodes n.

This paper provides a method for transforming a

non-uniform local algorithm into a uniform one. Fur-
thermore, the resulting algorithm enjoys the same asymp-

totic running time as the original non-uniform algo-

rithm. Our method applies to a wide family of both

deterministic and randomized algorithms. Specifically,
it applies to almost all state of the art non-uniform al-

gorithms for MIS and Maximal Matching, as well as

to many results concerning the coloring problem. (In

particular, it applies to all aforementioned algorithms.)

To obtain our transformations we introduce a new

distributed tool called pruning algorithms, which we be-

lieve may be of independent interest.

Keywords distributed algorithm · global knowledge ·
parameters · MIS · coloring · maximal matching

1 Introduction

1.1 Background and Motivation

Distributed computing concerns environments in which
many processors, located at different sites, must col-

laborate in order to achieve some global task. One of

the main themes in distributed network algorithms con-

cerns the question of how to cope with locality con-

strains, that is, the lack of knowledge about the global
structure of the network (cf., [35]). On the one hand,

information about the global structure may not always

be accessible to individual processors and the cost of

computing it from scratch may overshadow the cost of
the algorithm using it. On the other hand, global knowl-

edge is not always essential, and many seemingly global

tasks can be efficiently achieved by letting processors
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know more about their immediate neighborhoods and

less about the rest of the network.

A standard model for capturing the essence of lo-

cality is the LOCAL model (cf., [35]). In this model,

the network is modeled by a graph G, where the nodes
of G represent the processors and the edges represent

the communication links. To perform a task, nodes are

woken up simultaneously, and computation proceeds in

fault-free synchronous rounds during which every node
exchanges messages with its neighbors, and performs

arbitrary computations on its data. Since many tasks

cannot be solved distributively in an anonymous net-

work in a deterministic way, symmetry breaking must

be addressed. Arguably, there are two typical ways to
address this issue: the first one is to use randomized

algorithms, while the second one is to assume that each

node v in the network is initially provided a unique

identity Id(v). A local algorithm operating in such a
setting must return an output at each node such that

the collection of outputs satisfies the required task. For

example, a Maximal Independent Set (MIS) of a graph

G is a set S of nodes of G such that every node not in S

has a neighbor in S and no two nodes of S are adjacent.
In a local algorithm for the MIS problem, the output at

each node v is a bit b(v) indicating whether v belongs

to a selected set S of nodes, and it is required that S

forms a MIS of G. The running time of a local algo-
rithm is the number of rounds needed for the algorithm

to complete its operation at each node, taken in the

worst case scenario. This is typically evaluated with re-

spect to some parameters of the underlying graph. The

common parameters used are the number of nodes n in
the graph and the maximum degree ∆ of a node in the

graph.

To ease the computation, it is often assumed that

some kind of knowledge about the global network is
provided to each node a priori. A typical example of

such knowledge is the number of nodes n in the net-

work. It turns out that in some cases, this (common)

assumption can give a lot of power to the distributed

algorithm. This was observed by Fraigniaud et al. [16] in
the context of local decision: they introduced the com-

plexity class of decision problems NLD, which contains

all decision problems that can be verified in constant

time with the aid of a certificate. They proved that, al-
though there exist decision problems that do not belong

to NLD, every (computable) decision problem falls in

NLD if it is assumed that each node is given the value

of n as an input.

In general, the amount and type of such informa-
tion may have a profound effect on the design of the

distributed algorithm. Obviously, if the whole graph

is contained in the input of each node, then the dis-

tributed algorithm can be reduced to a central one. In

fact, the whole area of computation with advice [9,12–

15,20,21] is dedicated to studying the amount of infor-

mation contained in the inputs of the nodes and its

effect on the performances of the distributed algorithm.
For instance, Fraigniaud et al. [15] showed that if each

node is provided with only a constant number of bits

then one can locally construct a BFS-tree in constant

time, and can locally construct a MST in O(log n) time,
while both tasks require diameter time if no knowledge

is assumed. As another example, Cohen et al. [9] proved

that O(1) bits, judiciously chosen at each node, can al-

low a finite automaton to distributively explore every

graph. As a matter of fact, from a radical point of view,
for many questions (e.g., MIS and Maximal Matching),

additional information may push the question at hand

into absurdity: even a constant number of bits of ad-

ditional information per node is enough to compute a
solution—simply let the additional information encode

the solution!

When dealing with locality issues, it is desired that

the amount of information regarding the whole network

contained in the inputs of the nodes is minimized. A lo-
cal algorithm that assumes that each node is initially

given merely its own identity is often called uniform.

Unfortunately, there are only few local algorithms in

the literature that are uniform (e.g., [11,26,29,30,37]).
In contrast, most known local algorithms assume that

the inputs of all nodes contain upper bounds on the

values of some global parameters of the network. More-

over, it is often assumed that all inputs contain the

same upper bounds on the global parameters. Further-
more, typically, not only the correct operation of the

algorithm requires that upper bounds be contained in

the inputs of all nodes, but also the running time of the

algorithm is actually a function of the upper bound esti-
mations and not of the actual values of the parameters.

Hence, it is desired that the upper bounds contained

in the inputs are not significantly larger than the real

values of the parameters.

Some attempts to transform a non-uniform local al-
gorithm into a uniform one were made by examining

the details of the algorithm at hand and modifying it

appropriately. For example, Barenboim and Elkin [6]

first gave a non-uniform MIS algorithm for the family of

graphs with arboricity a = O(log1/2−δ n), for any con-
stant δ ∈ (0, 1/2), running in time O(log n/ log logn).

(The arboricity of a graph being the smallest number of

acyclic subgraphs that together contain all the edges of

the graph.) At the cost of increasing the running time
to O( logn

log log n log∗ n), the authors show how to modify

their algorithm so that the value of a need not be part

of the inputs of nodes. In addition to the MIS algo-
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rithms, the work of [6] also contains algorithms that do

not require the knowledge of the arboricity, but have the

same asymptotic running time as the ones that require

it. For example, this corresponds to algorithms comput-

ing forests-decomposition and O(a)-coloring. Neverthe-
less, all their algorithms still require the inputs of all

nodes to contain a common upper bound on n.

We present general methods for transforming a non-

uniform local algorithm into a uniform one without in-
creasing the asymptotic running time of the original al-

gorithm. Our method applies to a wide family of both

deterministic and randomized algorithms. In particular,

our method applies to all state of the art non-uniform

algorithms for MIS and Maximal Matching, as well as
to several of the best known results for (∆+1)-coloring.

Our transformations are obtained using a new type

of local algorithms termed pruning algorithms. Infor-

mally, the basic property of a pruning algorithm is that

it allows one to iteratively apply a sequence of local al-
gorithms (whose output may not form a correct global

solution) one after the other, in a way that “always

progresses” toward a solution. In a sense, a pruning al-

gorithm is a combination of a gluing mechanism and a
local checking algorithm (cf., [16,32]). A local checking

algorithm for a problem Π runs on graphs with an out-

put value at each node (and possibly an input too), and

can locally detect whether the output is “legal” with re-
spect to Π . That is, if the instance is not legal then at

least one node detects this, and raises an alarm. (For

example, a local checking algorithm for MIS is trivial:

each node in the set S, which is suspected to be a MIS,

checks that none of its neighbors belongs to S, and each
node not in S checks that at least one of its neighbors

belongs to S. If the check fails, then the node raises

an alarm.) A pruning algorithm needs to satisfy an ad-

ditional gluing property not required by local checking
algorithms. Specifically, if the instance is not legal, then

the pruning algorithm must carefully choose the nodes

raising the alarm (and possibly modify their input too),

so that a solution for the subgraph induced by those

alarming nodes can be well glued to the previous out-
put of the non-alarming nodes, in a way such that the

combined output is a solution to the problem for the

whole initial graph.

We believe that this new type of algorithms may be

of independent interest. Indeed, as we show, pruning
algorithms have several types of other applications in

the theory of local computation, besides the aforemen-

tioned issue of designing uniform algorithms. Specifi-

cally, they can be used also to transform a local Monte-
Carlo algorithm into a Las Vegas one, as well as to

obtain an algorithm that runs in the minimum running

time of a given (finite) set of uniform algorithms.

1.2 Previous Work

MIS and coloring: There is a long line of research con-

cerning the two related problems of (∆+1)-coloring and

MIS [3,10,17,18,23,24,28]. A k-coloring of a graph is
an assignment of an integer in {1, . . . , k} to each node

such that no two adjacent vertices are assigned the same

integer. Recently, Barenboim and Elkin [4] and indepen-

dently Kuhn [22] presented two elegant (∆+1)-coloring

and MIS algorithms running in O(∆ + log∗ n) time on
general graphs. This is the best currently-known bound

for these problems on low degree graphs. For graphs

with a large maximum degree ∆, the best bound is due

to Panconesi and Srinivasan [34], who devised an algo-
rithm running in 2O(

√
logn) time. The aforementioned

algorithms are not uniform. Specifically, all three algo-

rithms require that the inputs of all nodes contain a

common upper bound on n and the first two also re-

quire a common upper bound on ∆.

For bounded-independence graphs, Schneider and

Wattenhofer [37] designed uniform deterministic MIS

and (∆ + 1)-coloring algorithms running in O(log∗ n)
time. Barenboim and Elkin [6] devised a deterministic

algorithm for the MIS problem on graphs of bounded

arboricity that requires time O(log n/ log log n). More

specifically, for graphs with arboricity a = o(
√
logn),

they show that a MIS can be computed deterministi-

cally in o(logn) time, and whenever a = O(log1/2−δ n)

for some constant δ ∈ (0 , 1/2), the same algorithm runs

in time O(log n/ log logn). At the cost of increasing the

running time by a multiplicative factor of O(log∗ n), the
authors show how to modify their algorithm so that

the value of a need not be part of the inputs of nodes.

Nevertheless, all their algorithms require the inputs of

all nodes to contain a common upper bound on the
value of n. Another MIS algorithm which is efficient for

graphs with low arboricity was devised by Barenboim

and Elkin [5]; this algorithm runs in time O(a+aǫ logn)

for arbitrary constant ǫ > 0.

Concerning the problem of coloring with more than

∆ + 1 colors, Linial [27,28], and subsequently Szegedy

and Vishwanathan [38], described O(∆2)-coloring al-

gorithms with running time θ(log∗ n). Barenboim and
Elkin [4] and, independently, Kuhn [22] generalized this

by presenting a tradeoff between the running time and

the number of colors: they devised a λ(∆+ 1)-coloring

algorithm with running time O(∆/λ + log∗ n), for any
λ > 1. All these algorithms require the inputs of all

nodes to contain common upper bounds on both n and

∆.

Barenboim and Elkin [5] devised a ∆1+o(1) color-

ing algorithm running in time O(f(∆) log∆ logn), for

an arbitrarily slow-growing function f = ω(1). They
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Problem Parameters Time Ref. This paper (uniform) Corollary 1

Det. MIS and (∆+1)-coloring n,∆ O(∆+ log∗ n) [4,22]
min

{

O(∆ + log∗ n), 2O(
√

log n)
} (i)

n 2O(
√

log n) [34] (ii)

Det. MIS (arboricity a = o(
√
log n)) n, a o(log n) [6] o(log n) (i)

Det. MIS (arboricity a = O(log1/2−δ n)) n, a O(log n/ log logn) [6] O(logn/ log log n) (i)

Det. λ(∆ + 1)-coloring n,∆ O(∆/λ+ log∗ n) [4,22] O(∆/λ + log∗ n) (iii)

Det. O(∆)-edge-coloring n,∆ O(∆ǫ + log∗ n) [7] O(∆ǫ + log∗ n) (v)

Det. O(∆1+ǫ)-edge-coloring n,∆ O(log∆+ log∗ n) [7] O(log∆ + log∗ n) (v)

Det. Maximal Matching n or ∆ O(log4 n) [19] O(log4 n) (vi)

Rand. (2, 2(c+ 1))-ruling set n O(2c log1/c n) [36] O(2c log1/c n) (vii)

Rand. MIS uniform O(logn) [1,30]

Table 1 Comparison of LOCAL algorithms with respect to the use of global parameters. “Det.” stands for deterministic, and
“Rand.” for randomized.

also produced an O(∆1+ǫ)-coloring algorithm running

in O(log∆ logn)-time, for an arbitrarily small constant
ǫ > 0, and anO(∆)-coloring algorithm running inO(∆ǫ logn)

time, for an arbitrarily small constant ǫ > 0. All these

coloring algorithms require the inputs of all nodes to

contain the values of both ∆ and n. Other determin-
istic non-uniform coloring algorithms with number of

colors and running time corresponding to the arboric-

ity parameter were given by Barenboim and Elkin [5,

6].

Efficient deterministic algorithms for the edge-coloring

problem can be found in several papers [5,7,33]. In
particular, Panconesi and Rizzi [33] designed a sim-

ple deterministic local algorithm that finds a (2∆− 1)-

edge-coloring of a graph in time O(∆ + log∗ n). Re-

cently, Barenboim and Elkin [7], designed an O(∆)-

edge-coloring algorithm running in time O(∆ǫ)+log∗ n,
for any ǫ > 0, and an O(∆1+ǫ)-edge-coloring algorithm

running in time O(log∆) + log∗ n, for any ǫ > 0. All

these algorithms require the inputs of all nodes to con-

tain common upper bounds on both n and ∆.

Randomized algorithms for MIS and (∆+1)-coloring

running in expected time O(log n) were initially given
by Luby [30] and, independently, by Alon et al. [1].

Recently, Schneider andWattenhofer [36] constructed
the best currently-known non-uniform (∆+1)-coloring

algorithm, which runs in time O(log∆+
√
log n). They

also provided random algorithms for coloring using more

colors. For every positive integer c, a randomized algo-

rithm for (2, 2(c+1))-ruling set running in time O(2c log1/c n)
is also presented. (A set S of nodes in a graph being

(α, β)-ruling if every node not in S is at distance at

most β of a node in S and no two nodes in S are at

distance less than α.) All these algorithms of Schneider
and Wattenhoffer [36] are not uniform and require the

inputs of all nodes to contain a common upper bound

on n.

Maximal Matching: A maximal matching of a graph G

is a set M of edges of G such that every edge not in
M is incident to an edge in M and no two edges in M

are incident. Schneider and Wattenhofer [37] designed

a uniform deterministic maximal matching algorithm

on bounded-independence graphs running in O(log∗ n)
time. For general graphs, however, the state of the art

maximal matching algorithm is not uniform: Hanck-

owiak et al. [19] presented a non-uniform determinis-

tic algorithm for maximal matching running in time

O(log4 n). This algorithm assumes that the inputs of
all nodes contain a common upper bound on n (this

assumption can be omitted for some parts of the algo-

rithm under the condition that the inputs of all nodes

contain the value of ∆).

1.3 Our Results

The main conceptual contribution of the paper is the

introduction of a new type of algorithms called prun-

ing algorithms. Informally, the fundamental property of
this type of algorithms is to allow one to iteratively run

a sequence of algorithms (whose output may not neces-

sarily be correct everywhere) so that the global output

does not deteriorate, and it always progresses toward a
solution.

Our main application for pruning algorithm con-

cerns the problem of locally computing a global solu-

tion while minimizing the necessary global information

contained in the inputs of the nodes. Addressing this,

we provide a method for transforming a non-uniform
local algorithm into a uniform one without increasing

the asymptotic running time of the original algorithm.

Our method applies to a wide family of both determinis-

tic and randomized algorithms; in particular, it applies
to many of the best known results concerning classical

problems such as MIS, Coloring, and Maximal Match-

ing. (See Table 1.2 for a summary of some of the uni-
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form algorithms we obtain and the corresponding state

of the art existing non-uniform algorithms.)

In another application, we show how to transform a

Monte-Carlo local algorithm into a Las Vegas one. Fi-

nally, given a constant number of uniform algorithms
for the same problem whose running times depend on

different parameters—which are unknown to nodes—

we show a method for constructing a uniform algorithm

solving the problem, that on every instance runs asymp-
totically as fast as the fastest algorithm among those

given algorithms.

Stating our main results requires a number of for-

mal definitions, so we defer the precise statements to

later parts of the paper. Rather, we provide here some
interesting corollaries of our results. References for the

corresponding non-uniform algorithms are provided in

Table 1.2. (The notion of “moderately-slow function”

used in item (iii) below is defined in Section 2.)

Corollary 1

(i) There exists a uniform deterministic algorithm solv-

ing MIS on general graphs in time

min {g(n), h(∆,n), f(a, n)} ,
where g(n) = 2O(

√
logn), h(∆,n) = O(∆ + log∗ n),

and f(a, n) is bounded as follows. f(a, n) = o(logn)

for graphs of arboricity a = o(
√
logn), f(a, n) =

O(log n/ log logn) for arboricity a = O(log1/2−δ n),

for some constant δ ∈ (0 , 1/2); and otherwise: f(a, n) =
O(a + aǫ logn), for arbitrary small constant ǫ > 0.

(ii) There exists a uniform deterministic algorithm solv-

ing the (∆ + 1)-coloring problem on general graphs
in time min{O(∆+ log∗ n), 2O(

√
logn)}.

(iii) There exists a uniform deterministic algorithm solv-

ing the λ(∆+1)-coloring problem on general graphs

and running in time O(∆/λ+log∗ n), for any λ > 1,
such that ∆/λ is a moderately-slow function. In par-

ticular, there exists a uniform deterministic algo-

rithm solving the O(∆2)-coloring problem in time

O(log∗ n).

(iv) The following uniform deterministic coloring algo-

rithms exist.

– A uniform ∆1+o(1)-coloring algorithm running
in time O(f(∆) log∆ logn log logn), for an ar-

bitrarily slow-growing function f = ω(1).

– A uniform O(∆1+ǫ)-coloring algorithm running
in O(log∆ logn log logn) time, for any constant

ǫ > 0.

– A uniform O(∆)-coloring algorithm running in

O(∆ǫ logn log logn) time, for any constant ǫ >

0.

(v) – There exists a uniform deterministic O(∆)-edge-
coloring algorithm for general graphs running in

time O(∆ǫ + log∗ n), for any constant ǫ > 0.

– There exists a uniform deterministic O(∆1+ǫ)-
edge-coloring algorithm for general graphs that

runs in time O(log∆+ log∗ n), for any constant

ǫ > 0.

(vi) There exists a uniform deterministic algorithm solv-
ing the maximal matching problem in time O(log4n).

(vii) For a constant integer c > 1, there exists a uniform

randomized algorithm solving the (2, 2(c+1))-ruling
set problem in time O(2c log1/c n).

2 Preliminaries

General definitions: For two integers a and b, we let

[a , b] = {a, a + 1, . . . , b}. A vector x ∈ Rℓ is said to

dominate a vector y ∈ Rℓ if x is coordinate-wise greater

than or equal to y, that is, xk > y
k
for each k ∈ [1 , ℓ].

For a graph G, we let V (G) and E(G) be the sets of

nodes and edges of G, respectively. (Unless mentioned

otherwise, we consider only undirected and unweighted

graphs.) The degree degG(v) of a node v ∈ V (G) is the
number of neighbors of v in G. The maximum degree of

G is ∆G = max {degG(v) : v ∈ V (G)} .
Let u and v be two nodes ofG. The distance distG(u, v)

between u and v is the number of edges on a shortest

path connecting them. Given an integer r > 0, the ball

of radius r around u is the subgraph BG(u, r) of G in-

duced by the collection of nodes at distance at most

r from u. The neighborhood NG(u) of u is the set of
neighbors of u, i.e., NG(u) = BG(u, 1) \ {u}. In what

follows, we may omit the subscript G from the previous

notations when there is no risk of confusion.

Functions: A function f : Rℓ → R is non-decreasing if

for every two vectors x and y such that x dominates y,

f(y) 6 f(x).

A function f : R+ → R+ is moderately-slow if it

is non-decreasing and there exists a positive integer α

such that

∀i ∈ N \ {1}, α · f(i) > f(2i).
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In other words, f(c · i) = O(f(i)) for every constant

c and every integer i, where the constant hidden in

the O notation depends only on c. An example of a

moderately-slow function is given by the logarithm.

A function f : R+ → R+ is moderately-increasing if
it is non-decreasing and there exists a positive integer

α such that

∀i ∈ N \ {1}, f(α · i) > 2f(i) and α · f(i) > f(2i).

Note that f(x) = xk1 logk2(x) is a moderately-increasing
function for every two reals k1 > 1 and k2 > 0. More-

over, every moderately-increasing function is moderately-

slow. On the other hand, some functions (such as the

constant functions or the logarithm) are moderately-
slow but not moderately-increasing.

A function f : R+ → R+ is moderately-fast if it is

moderately-increasing and there exists a polynomial P

such that

∀x ∈ R+, x < f(x) < P (x).

A function f : R+ → R+ tends to infinity if

lim sup
x→∞

f(x) = ∞,

and f is ascending if it is non-decreasing and it tends

to infinity. (Note that in this case limx→∞ f(x) = ∞.)

A function f : (R+)ℓ → R+ is additive if there exist
ℓ ascending functions f1, . . . , fℓ such that

f(x1, . . . , xℓ) =

ℓ
∑

i=1

fi(xi).

Problems and instances: Given a set V of nodes, a vec-

tor for V is an assignment x of a bit string x(v) to each

v ∈ V , i.e., x is a function x : V → {0, 1}∗. A problem

is defined by a collection of triplets: Π = {(G,x,y)},
where G is a (not necessarily connected) graph, and
x and y are input and output vectors for V , respec-

tively. We consider only problems that are closed un-

der disjoint union, i.e., if G1 and G2 are two vertex

disjoint graphs and (G1,x1,y1), (G2,x2,y2) ∈ Π then
(G,x,y) ∈ Π , where G = G1 ∪ G2, x = x1 ∪ x2 and

y = y1 ∪ y2.

An instance, with respect to a given problem Π , is

a pair (G,x) for which there exists an output vector y

satisfying (G,x,y) ∈ Π . In what follows, whenever we
consider a collection F of instances, we always assume

that F is closed under inclusion. That is, if (G,x) ∈ F
and (G′,x′) ⊆ (G,x) (i.e., G′ is a subgraph of G and x′

is the input vector x restricted to V (G′)) then (G′,x′) ∈
F . Informally, given a problem Π and a collection of

instances F , the goal is to design an efficient distributed

algorithm that takes an instance (G,x) ∈ F as input,

and produces an output vector y satisfying (G,x,y) ∈
Π . The reason to require problems to be closed under

disjoint union is that a distributed algorithm operating

on an instance (G,x) runs separately and independently

on each connected component of G. Let G be a family
of graphs closed under inclusion. We define F(G) to be

{G} × {0, 1}∗.
We assume that each node v ∈ V is provided with a

unique integer referred to as the identity of v, and de-

noted Id(v); by unique identities, we mean that Id(u) 6=
Id(v) for every two distinct nodes u and v. For ease of

exposition, we consider the identity of a node to be part
of its input.

We consider classical problems such as coloring, max-

imal matching (MM), Maximal Independent Set (MIS)
and the (α, β)-ruling set problem. Informally, viewing

the output of a node as a color, the requirement of col-

oring is that the colors of two neighboring nodes must

be different. In the (α, β)-ruling set problem, the out-

put at each node is Boolean, and indicates whether the
node belongs to a set S that must form an (α, β)-ruling

set. That is, the set S of selected nodes must satisfy:

(1) two nodes that belong to S must be at distance at

least α from each other, and (2) if a node does not be-
long to S, then there is a node in the set at distance

at most β from it. MIS is a special case of the ruling

set problem, specifically, MIS is precisely (2, 1)-ruling

set. Finally, given a triplet (G,x,y), two nodes u and

v are said to be matched if (u, v) ∈ E, y(u) = y(v) and
y(w) 6= y(u) for every w ∈ (NG(u) ∪ NG(v)) \ {u, v}.
Thus, the MM problem requires that each node u is either

matched to one of its neighbors or that every neighbor

v of u is matched to one of v’s neighbors.

Parameters: Fix a problem Π and let F be a collec-

tion of instances for Π . A parameter p is a positive

valued function p : F → N. The parameter p is non-
decreasing, if p(G′,x′) 6 p(G,x) whenever (G′,x′) ∈ F
and (G′,x′) ⊆ (G,x).

Let F be a collection of instances. A parameter p

for F is a graph-parameter if p is independent of the

input, that is, if p(G,x) = p(G,x′) for every two in-

stances (G,x), (G,x′) ∈ F such that the input assign-

ments x and x′ preserve the identities, i.e., the inputs

x(v) and x′(v) contain the same identity Id(v) for ev-
ery v ∈ V (G). In what follows, we will consider only

non-decreasing graph-parameters (note, not all graph-

parameters are non-decreasing, an example being the di-

ameter of a graph). More precisely, we will primarily fo-
cus on the following non-decreasing graph-parameters:

the number n of nodes of the graph G, i.e., |V (G)|, the
maximum degree∆ = ∆(G) ofG, i.e., max {degG(u) : u ∈ V (G)},
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and the arboricity a = a(G) of G, i.e., the least number

of acyclic subgraphs of G whose union is G.

Local algorithms: Consider a problem Π and a collec-
tion of instances F for Π . An algorithm for Π and F
takes as input an instance (G,x) ∈ F and must ter-

minate with an output vector y such that (G,x,y) ∈
Π . We consider the LOCAL model (cf., [35]). Dur-

ing the execution of a local algorithm A, all proces-
sors are woken up simultaneously and computation pro-

ceeds in fault-free synchronous rounds. In each round,

every node may send messages of unrestricted size to

its neighbors and may perform arbitrary computations
on its data. A message that is sent in a round r, arrives

at its destination before the next round r + 1 starts.

It must be guaranteed that after a finite number of

rounds, each node v terminates by writing some final

output value y(v) in its designated output variable (in-
formally, this means that we may assume that a node

“knows” that its output is indeed its final output.) The

algorithm A is correct if for every instance (G,x) ∈ F ,

the resulting output vector y satisfies (G,x,y) ∈ Π .

Let A be a local deterministic algorithm for Π and

F . The running time of A over a particular instance

(G,x) ∈ F , denoted TA(G,x), is the number of rounds
from the beginning of the execution of A until all nodes

terminate. The running time of A is typically evaluated

with respect to a collection Λ of parameters q1, . . . , qℓ.

Specifically, it is compared to a non-decreasing func-

tion f : Nℓ → R+; we say that f is an upper bound for
the running time of A with respect to Λ if TA(G,x) 6

f(q∗1, . . . , q
∗
ℓ ) for every instance (G,x) ∈ F with pa-

rameters q∗i = qi(G,x) for i ∈ [1 , ℓ]. Let us stress

that we assume throughout the paper that all the func-
tions bounding running times of algorithms are non-

decreasing.

For an integer i, the algorithm A restricted to i
rounds is the local algorithm B that consists of run-

ning A for precisely i rounds. The output y(u) of B at

a vertex u is defined as follows: if, during the i rounds,

A outputs a value y at u then y(u) = y; otherwise we

let y(u) be an arbitrary value, e.g., “0”.

A randomized local algorithm is a local algorithm

that allows each node to use random bits in its local
computation—the random bits used by different nodes

being independent. A randomized (local) algorithm A
is Las Vegas if its correctness is guaranteed with prob-

ability 1. The running time of a Las Vegas algorithm
ALV over a particular configuration (G,x) ∈ F , de-

noted TALV (G,x), is a random variable, which may be

unbounded. However, the expected value of TALV (G,x)

is bounded. A Monte-Carlo algorithm AMC with guar-

antee ρ ∈ (0 , 1] is a randomized algorithm that takes a

configuration (G,x) ∈ F as input and terminates before

a predetermined time TAMC (G,x) (called the running

time of AMC). It is certain that the output vector pro-
duced by AlgorithmAMC is a solution toΠ with proba-

bility at least ρ. Finally, a weak Monte-Carlo algorithm

AWMC with guarantee ρ ∈ (0 , 1] guarantees that with

probability at least ρ, the algorithm outputs a correct
solution by its running time TAWMC (G,x). (Observe

that it is not certain that any execution of the weak

Monte-Carlo algorithm will terminate by the prescribed

time TAWMC (G,x), or even terminate at all.) Note that

a Monte-Carlo algorithm is in particular a weak Monte-
Carlo algorithm, with the same running time and guar-

antee. Moreover, for any constant ρ ∈ (0 , 1], a Las Ve-

gas algorithm running in expected time T is a weak

Monte-Carlo algorithm with guarantee ρ running in
time T

1−ρ , by Markov’s inequality.

Synchronicity and time complexity: Many LOCAL al-

gorithms happen to have different termination times

at different nodes. On the other hand, most of the al-
gorithms rely on a simultaneous wake-up time for all

nodes. This becomes an issue when one wants to run

an algorithmA1 and subsequently an algorithmA2 tak-

ing the output of A1 as input. Indeed, this problem

amounts to running A2 with non-simultaneous wake-up
times: a node u starts A2 when it terminates A1.

As observed (e.g., by Kuhn [22]), the concept of syn-

chronizer [2], used in the context of local algorithms, al-
lows one to transform an asynchronous local algorithm

to a synchronous one that runs in the same asymptotic

time complexity. Hence, the synchronicity assumption

can actually be removed. Although the standard asyn-
chronous model introduced still assumes a simultaneous

wake-up time, it can be easily verified that the tech-

nique still applies with non-simultaneous wake-up times

if a node can buffer messages received before it wakes

up, which is the case when running an algorithm after
another.

However, we have to adapt the notion of running

time. The computation that a node performs in time
t depends on its interactions with nodes at distance at

most t in the network. More precisely, we say that a

node u terminates in time t if it terminates at most t

rounds after all nodes in BG(u, t) have woken up. The
termination time of u is the least t such that u termi-

nates in time t. We finally define the running time of

an algorithm as the maximum termination time over all

nodes and all wake-up patterns.

Given two local algorithmsA1 andA2, we letA1;A2

be the process of running A2 after A1. It turns out that
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the running time of A1;A2 is bounded from above by

the sum of the running times of A1 and A2. This can be

shown as follows. Let t1 and t2 be the running times of

A1 and A2 respectively. Consider a node u and let t0 be

the last wake-up time of a node in the ball BG(u, t1+t2).
At t0 + t1, all nodes in BG(u, t2) have terminated A1

and are thus considered as woken up for the execution

of A2. Node u thus terminates before (t0 + t1) + t2. As

this is true for any node u independently of the wake-up
pattern, A1;A2 has running time at most t1 + t2. This

establishes the following observation.

Observation 2.1 For any two local algorithms A1 and

A2, the running time of A1;A2 is bounded by the sum

of the running times of A1 and A2.

Another useful remark is that a simultaneous wake-

up algorithm running in time t can be emulated in a

non-simultaneous wake-up environment with running
time at most t using the simple α synchronizer. Indeed,

consider a node u and let t0 be the last wake-up time

of a node in the ball BG(u, t). At time t0, all nodes in

BG(u, t) perform (or have performed) round 0. Using

the α synchronizer a node can perform round i when
all its neighbors have performed round i − 1. We can

thus show by induction on i that all nodes in BG(u, t−i)

perform (or have performed) round i at time t0+ i. The

node u thus terminates in time t. This implies that the
running time of the emulation of the algorithm with the

α synchronizer is at most t. Therefore, in the remaining

of the paper we may assume without loss of generality

that all nodes wake up simultaneously at time 0.

Local algorithms requiring parameters: Fix a problem
Π and let F be a collection of instances for Π . Let

Γ be a collection of parameters p1, . . . , pr and let A
be a local algorithm. We say that A requires Γ if the

code of A, which is executed by each node of the input
configuration, uses a value p̃ for each parameter p ∈ Γ .

(Note that this value is thus the same for all nodes.)

The value p̃ is a guess for p. A collection of guesses for

the parameters in Γ is denoted by Γ̃ and an algorithm

A that requires Γ is denoted by AΓ . An algorithm that
does not require any parameter is called uniform.

Consider an instance (G,x) ∈ F , a collection Γ of
parameters and a parameter p ∈ Γ . A guess p̃ for p is

termed good if p̃ > p(G,x), and the guess p̃ is called

correct if p̃ = p(G,x). We typically write correct guesses

and collection of correct guesses with a star superscript,
as in p∗ and Γ ∗(G,x), respectively. When (G,x) is clear

from the context, we may use the notation Γ ∗ instead

of Γ ∗(G,x).

An algorithm AΓ depends on Γ if for every instance

(G,x) ∈ F , the correctness of AΓ over (G,x) is guaran-

teed only when AΓ uses a collection Γ̃ of good guesses.

Consider an algorithm AΓ that depends on a col-

lection Γ of parameters p1, . . . , pr and fix an instance
(G,x). Observe that the running time of AΓ over (G,x)

may be different for different collections of guesses Γ̃ , in

other words, the running time over (G,x) may be a func-

tion of Γ̃ . Recall that when we consider an algorithm
that does not require parameters, we still typically eval-

uate its running time with respect to a collection of pa-

rameters Λ. We generalize this to the case where the

algorithm depends on Γ as follows.

Consider two collections Γ and Λ of parameters
p1, . . . , pr and q1, . . . , qℓ, respectively. Some parameters

may belong to both Γ and Λ. Without loss of gen-

erality, we shall always assume that {pr′+1, . . . , pr} ∩
{qr′+1, . . . , qℓ} = ∅ for some r′ ∈ [0 ,min{r, ℓ}] and
pi = qi for every i ∈ [1 , r′]. Notice that Γ \ Λ =

{pr′+1, pr′+2, . . . , pr}. A function f : (R+)ℓ → R+ up-

per bounds the running time of AΓ with respect to Γ

and Λ if the running time TAΓ (G,x) of AΓ for (G,x) ∈
F using a collection of good guesses Γ̃ = {p̃1, . . . , p̃r}
is at most f(p̃1, . . . , p̃r′ , . . . , q

∗
ℓ ), where q∗i = qi(G,x)

for i ∈ [r′ + 1 , ℓ]. Note that we do not put any restric-

tion on the running time of AΓ over (G,x) if some of

the guesses in Γ̃ are not good. In fact, in such a case,
the algorithm may not even terminate and it may also

produce wrong results.

For simplicity of notation, when Γ and Λ are clear

from the context, we say that f upper bounds the run-

ning time of AΓ , without writing that it is with respect
to Γ and Λ.

The set Γ is weakly-dominated by Λ if for each

j ∈ [r′+1 , r], there exists an index ij ∈ [1 , ℓ] and an as-

cending function gj such that gj(pj(G,x)) 6 qij (G,x)
for every instance (G,x) ∈ F . (For example, Γ = {∆} is
weakly-dominated by Λ = {n}, since ∆(G,x) 6 n(G,x)

for any (G,x).)

3 Pruning Algorithms

3.1 Overview

Consider a problem Π in the centralized setting and an

efficient randomized Monte-Carlo algorithm A for Π . A
known method for transforming A into a Las Vegas al-

gorithm is based on repeatedly doing the following. Ex-

ecute A and, subsequently, execute an algorithm that

checks the validity of the output. If the checking fails
then continue, and otherwise, terminate, i.e., break the

loop. This transformation can yield a Las Vegas algo-

rithm whose expected running time is similar to the
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running time of the Monte-Carlo algorithm provided

that the checking mechanism used is efficient.

If we wish to come up with a similar transforma-

tion in the context of locality, a first idea would be

to consider a local algorithm that checks the validity
of a tentative output vector. This concept has been

studied from various perspectives (cf., e.g., [16,21,32]).

However, such fast local checking procedures can only

guarantee that faults are detected by at least one node,
whereas to restart the Monte-Carlo algorithm, all nodes

should be aware of a fault. This notification can take di-

ameter time and will thus violate the locality constraint

(i.e. running in a bounded number of rounds).

Instead of using local checking procedures, we in-
troduce the notion of pruning algorithms. Informally,

this is a mechanism that identifies “valid areas” where

the tentative output vector ŷ is valid and prunes these

areas, i.e., takes them out of further consideration. A
pruning algorithm P must satisfy two properties, specif-

ically, (1) gluing: P must make sure that the current

solution on these “pruned areas” can be extended to a

valid solution for the remainder of the graph, and (2)

solution detection: if ŷ is a valid global solution to begin
with then P should prune all nodes. Observe that since

the empty output vector is a solution for the empty in-

put graph then (1) implies the converse of (2), that is,

if P prunes all nodes, then ŷ is a valid global solution.
Now, given a Monte-Carlo algorithm A and a prun-

ing algorithm P for the problem, we can transform A
into a Las Vegas algorithm by executing the pair of algo-

rithms (A;P) in iterations, where each iteration i is ex-

ecuted on the graph Gi induced by the set of nodes that
were not pruned in previous iterations (G1 is the initial

graph G). If, in some iteration i, Algorithm A solves

the problem on the graph Gi, then the solution detec-

tion property guarantees that the subsequent pruning
algorithm will prune all nodes in Gi and hence at that

time all nodes are pruned and the execution terminates.

Furthermore, using induction, it can be shown that the

gluing property guarantees that the correct solution to

Gi combined with the outputs of the previously pruned
nodes forms a solution to G.

3.2 Pruning Algorithms: Definition and Examples.

We now formally define pruning algorithms. Fix a prob-
lem Π and a family of instances F for Π . A pruning

algorithm P for Π and F is a uniform algorithm that

takes as input a triplet (G,x, ŷ), where (G,x) ∈ F and

ŷ is some tentative output vector (i.e. an output vec-
tor that may be incorrect), and returns a configuration

(G′,x′) such that G′ is an induced subgraph of G and

(G′,x′) ∈ F . Thus, at each node v of G, the pruning

algorithm P returns a bit b(v) that indicates whether v

belongs to some selected subset W of nodes of G to be

pruned. (Recall that the idea is to assume that nodes

in W have a satisfying tentative output value and that

they can be excluded from further computations.) Note
that x′ may be different than x restricted to the nodes

outside W .

Consider now an output vector y′ for the nodes in
V (G′). The combined output vector y of the vectors ŷ

and y′ is the output vector that is a combination of

ŷ restricted to the nodes in W and y′ restricted to the

nodes in G′, i.e., y(v) = ŷ(v) if v ∈ W and y(v) = y′(v)
otherwise. A pruning algorithm P for a problemΠ must

satisfy the following properties.

– Solution detection: if (G,x, ŷ) ∈ Π , then W =

V (G), that is, P(G,x, ŷ) = (∅, ∅).

– Gluing: if P(G,x, ŷ) = (G′,x′) and y′ is a solu-

tion for (G′,x′), i.e., (G′,x′,y′) ∈ Π , then the com-

bined output vector y is a solution for (G,x), i.e,

(G,x,y) ∈ Π .

As mentioned earlier, it follows from the gluing prop-
erty that if the pruning algorithm P returns (∅, ∅) (i.e.,
all nodes are pruned) then (G,x, ŷ) ∈ Π .

The pruning algorithm P is monotone with respect
to a parameter p if p(G,x) > p(P(G,x, ŷ)) for every

(G,x) ∈ F and every tentative output vector ŷ. The

pruning algorithm P is monotone with respect to a col-

lection of parameters Γ if P is monotone with respect to

every parameter p ∈ Γ . In such a case, we may also say
that P is Γ -monotone. The following assertions follow

from the definitions.

Observation 3.1 Let P be a pruning algorithm.

1. Algorithm P is monotone with respect to any non-

decreasing graph-parameter.

2. If the configuration (G′,x′) returned by P satisfies

x′(v) = x(v) for every v ∈ V (G)\W and every con-
figuration (G,x), then P is monotone with respect

to any non-decreasing parameter.

For simplicity, we impose that the running time of

a pruning algorithm P be constant. We shall elaborate

on general pruning algorithms at the end of the paper.

We now give examples of pruning algorithms for sev-

eral problems, namely, (2, β)-Ruling set for a constant

integer β (recall that MIS is precisely (2, 1)-Ruling set),

and maximal matching. These pruning algorithms ig-
nore the input of the nodes. Thus, by Observation 3.1,

they are monotone with respect to any non-decreasing

parameter.
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The (2, β)-ruling set pruning algorithm: Let β be a con-

stant integer. We define a pruning algorithm P(2,β) for

the (2, β)-ruling set problem as follows. Given a triplet

(G,x, ŷ), let W be the set of nodes u satisfying one of

the following two conditions.

– ŷ(u) = 1 and ŷ(v) = 0 for all v ∈ N(u), or

– ŷ(u) = 0 and ∃v ∈ BG(u, β) such that ŷ(v) = 1 and
ŷ(w) = 0 for all w ∈ N(v).

The question of whether a node u belongs to W can
be determined by inspecting BG(u, 1 + β), the ball of

radius 1 + β around u. Hence, we obtain the following.

Observation 3.2 Algorithm P(2,β) is a pruning algo-

rithm for the (2, β)-ruling set problem, running in time

1 + β. (In particular, P(2,1) is a pruning algorithm for

the MIS problem running in time 2.) Furthermore, P(2,β)

is monotone with respect to any non-decreasing param-

eter.

The maximal matching problem: We define a pruning
algorithm PMM as follows. Given a tentative output vec-

tor ŷ, recall that u and v are matched when u and v

are neighbors, ŷ(u) = ŷ(v) and ŷ(w) 6= ŷ(u) for every

w ∈ (NG(u) ∪ NG(v)) \ {u, v}. Set W to be the set of
nodes u satisfying one of the following conditions.

– ∃v ∈ N(u) such that u and v are matched, or
– ∀v ∈ N(u), ∃w 6= u such that v and w are matched.

Observation 3.3 Algorithm PMM is a pruning algorithm
for MM whose running time is 3. Furthermore, PMM is

monotone with respect to any parameter.

We exhibit several applications of pruning algorithms.

The main application appears in the next section, where

we show how pruning algorithms can be used to trans-

form non-uniform algorithms into uniform ones. Before

we continue, we need the concept of alternating algo-
rithms.

3.3 Alternating Algorithms

A pruning algorithm can be used in conjunction with a
sequence of algorithms as follows. Let F be a collection

of instances for some problem Π . For each i ∈ N, let

Ai be an algorithm defined on F . Algorithm Ai does

not necessarily solve Π , it is only assumed to produce

some output.

Let P be a pruning algorithm for Π and F , and

for i ∈ N, let Bi = (Ai;P), that is, given an instance

(G,x), Algorithm Bi first executes Ai, which returns an

output vector y for the nodes of G and, subsequently,

Algorithm P is executed over the triplet (G,x,y). We

define the alternating algorithm π for (Ai)i∈N and P as

follows. The alternating algorithm π = π((Ai)i∈N,P)
executes the algorithms Bi for i = 1, 2, 3, . . . one af-

ter the other: let (G1,x1) = (G,x) be the initial in-

stance given to π; for i ∈ N, Algorithm Ai is exe-

cuted on the instance (Gi,xi) and returns the output
vector yi. The subsequent pruning algorithm P takes

the triplet (Gi,xi,yi) as input and produces the in-

stance (Gi+1,xi+1). See Figure 1 for a schematic view

of an alternating algorithm. The definition extends to

a finite sequence (Ai)
k
i=1 of algorithms in a natural

way; the alternating algorithm for (A)ki=1 and P being

A1;P ;A2;P ; · · · ;Ak;P .

The alternating algorithm π terminates on an in-

stance (G,x) ∈ F if there exists k such that V (Gk) = ∅.
Observe that in such a case, the tail Bk;Bk+1; · · · of

π is trivial. The output vector y of a terminating al-

ternating algorithm π is defined as the combination of

the output vectors y1,y2,y3, . . .. Specifically, for s ∈
[1 , k−1], let Ws = V (Gs)\V (Gs+1). (Observe that Ws

is precisely the set of nodes pruned by the execution of

the pruning algorithm P in Bs.) Then, the collection

{Ws : 1 6 s 6 k − 1} forms a partition of V (G), i.e.,

Ws ∩Ws′ = ∅ if s 6= s′, and ∪k−1
s=1Ws = V (G). Observe

that the final output y of π satisfies y(u) = ys(u) for

every node u, where s is such that u ∈ Ws. In other

words, the output of π restricted to the nodes in Ws

is precisely the corresponding output of Algorithm As.

The next observation readily follows from the definition
of pruning algorithms.

Observation 3.4 Consider a problem Π, a collection

of instances F , a sequence of algorithms (Ai)i∈N de-

fined on F and a pruning algorithm P for Π and F .
Consider the alternating algorithm π = π((Ai)i∈N,P)

for (Ai)i∈N and P. If π terminates on an instance

(G,x) ∈ F then it produces a correct output y, that

is, (G,x,y) ∈ Π.

In what follows, we often produce a sequence of al-

gorithms (Ai)i∈N from an algorithm AΓ requiring a

collection Γ of non-decreasing parameters. The general

idea is to design a sequence of guesses Γ̃i and let Ai be
algorithm AΓ provided with guesses Γ̃i. Given a prun-

ing algorithm P , we obtain a uniform alternating algo-

rithm π = π((Ai)i∈N,P). The sequence of guesses is

designed such that for any configuration (G,x) ∈ F ,
there exists some i for which Γ̃i is a collection of good

guesses for (G,x). The crux is to obtain an execution

time for A1;P ; · · · ;Ai;P of the same order as the exe-
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(G1,x1)
B1 = A1;P

(G1,x1,y1)

(G2,x2)
B2 = A2;P

(G2,x2,y2)

(G3,x3) (Gi,xi)
Bi = Ai;P

(Gi,xi,yi)

(Gi+1,xi+1)

A
1 P

A
2 P

A
i P

Fig. 1 Schematic view of an alternating algorithm for (Ai)i∈N and P.

cution time of AΓ provided with the collection Γ ∗(G,x)

of correct guesses.

4 The General Method

We now turn to the main application of pruning algo-

rithms discussed in this paper, that is, the construction

of a transformer taking a non-uniform algorithm AΓ as
a black box and producing a uniform one that enjoys

the same (asymptotic) time complexity as the original

non-uniform algorithm.

We begin with a few illustrative examples of our

method in Subsection 4.1. Then, the general framework

of our transformer is given in Subsection 4.2. This sub-

section introduces a concept of “sequence-number func-
tions” as well as the a fundamental construction used

in our forthcoming algorithms.

Then, in Subsection 4.3, we consider the determin-

istic setting: a somewhat restrictive, yet useful, trans-

former is given in Theorem 1. This transformer consid-

ers a single set Γ of non-decreasing parameters p1, . . . , pℓ,
and assumes that (1) the given non-uniform algorithm

AΓ depends on Γ and (2) the running time of AΓ is

evaluated with respect to the parameters in Γ . Such a

situation is customary, and occurs for instance for the

best currently known MIS Algorithms [4,22,34] as well
as for the maximal matching algorithm of Hanckowiak

et al. [19]. As a result, the transformer given by Theo-

rem 1 can be used to transform each of these algorithms

into a uniform one with asymptotically the same time
complexity.

The transformer of Theorem 1 is extended to the

randomized setting in Subsection 4.4. In Subsection 4.5,
we establish Theorem 3, which generalizes both Theo-

rem 1 and Theorem 2. Finally, we conclude the section

with Theorem 4 in Subsection 4.6, which shows how to

manipulate several uniform algorithms that run in un-
known times to obtain a uniform algorithm that runs

as fast as the fastest algorithm among those given algo-

rithms.

4.1 Some Illustrative Examples

The basic idea is very simple. Consider a problem for

which we have a pruning algorithm P , and a non uni-

form algorithm A that requires the upper bounds on

some parameters to be part of the input. To obtain a
uniform algorithm, we execute the pair of algorithms

(A;P) in iterations, where each iteration executes A
using a specific set of guesses for the parameters. Typi-

cally, as iterations proceed, the guesses for the parame-

ters grow larger and larger until we reach an iteration i
where all the guesses are larger than the actual value of

the corresponding parameters. In this iteration, the op-

eration of A on Gi using such guesses guarantees a cor-

rect solution on Gi (Gi is the graph induced by the set
of nodes that were not pruned in previous iterations).

The solution detection property of the pruning algo-

rithm then guarantees that the execution terminates

in this iteration and hence, Observation 3.4 guarantees

that the output of all nodes combines to a global solu-
tion on G. To bound the running time, we shall make

sure that the total running time is dominated by the

running time of the last iteration, and that this last

iteration is relatively fast.

There are various delicate points when using this

general strategy. For example, in iterations where in-
correct guesses are used, we have no control over the

behavior of the non-uniform algorithm A and, in par-

ticular, it may run for too many rounds, perhaps even

indefinitely. To overcome this obstacle, we allocate a
prescribed number of rounds for each iteration; if Al-

gorithm A reaches this time bound without outputting

at some node u, then we force it to terminate with an

arbitrary output. Subsequently, we run the pruning al-

gorithm and proceed to the next iteration.

Obviously, this simple approach of running in iter-

ations and increasing the guesses from iteration to it-
eration is hardly new. It was used, for example, in the

context of wireless networks to compute estimates of pa-

rameters (cf., e.g., [8,31]), or to estimate the number of

faults [25]. It was also used by Barenboim and Elkin [6]
to avoid the necessity of having an upper bound on the

arboricity a in one of their MIS algorithms, although

their approach increases the running time by log∗ n.
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One of the main contributions of the current paper is

the formalization and generalization of this technique,

allowing it to be used for a wide varieties of problems

and applications. Interestingly, note that we are only

concerned with getting rid of the use of some global pa-
rameters in the code of local algorithms, and not with

obtaining estimates for them (in particular, when our

algorithms terminate, a node has no guarantee to have

upper bounds on these global parameters).

To illustrate the method, let us consider the non-

uniformMIS algorithm of Panconesi and Srinivasan [34].

The code of Algorithm A uses an upper bound ñ on the

number of nodes n, and runs in time at most f(ñ) =

2O(
√
log ñ). Consider a pruning algorithm PMIS for MIS

(such an algorithm is given by Observation 3.2). The fol-

lowing sketches our technique for obtaining a uniform

MIS algorithm. For each integer i, set ni = max
{

a ∈ N : f(a) 6 2i
}

.

In Iteration i, for i = 1, 2, . . ., we first execute Algo-
rithm A using the guess ni (as an input serving as

an upper bound for the number of nodes) for precisely

2i rounds. Subsequently, we run the pruning algorithm

PMIS. When the pruning algorithm terminates, we exe-

cute the next iteration on the non-pruned nodes. Let s
be the integer such that 2s−1 < f(n) 6 2s, where n is

the number of nodes of the input graph. By the defini-

tion, n 6 ns. Therefore, the application of A in Itera-

tion s uses a guess ns that is indeed good, i.e., larger
than the number of nodes. Moreover, this execution

of A is completed before the prescribed deadline of

2s rounds expires because its running time is at most

f(ns) 6 2s. Hence, we are guaranteed to have a correct

solution by the end of Iteration s. The running time is
thus at most

∑s
i=1 2

i = O(f(n)).

This method can sometimes be extended to simul-

taneously remove the use of several parameters in the

code of a local algorithm. For example, consider the

MIS algorithm of Barenboim and Elkin [4] (or that of
Kuhn [22]), which uses upper bounds ñ and ∆̃ on n

and ∆, respectively, and runs in time f(ñ, ∆̃) = f1(ñ)+

f2(∆̃), where f1(∆̃) = O(∆̃) and f2(ñ) = O(log∗ ñ).
The following sketches our method for obtaining a cor-
responding uniform MIS algorithm that runs in time

O(f(n,∆)). For each integer i, set ni = max
{

a ∈ N : f1(a) 6 2i
}

and ∆i = max
{

a ∈ N : f2(a) 6 2i
}

. In Iteration i, for

i = 1, 2, . . ., we first execute Algorithm A using the

guesses ni and ∆i, but this time the execution lasts for
precisely 2 ·2i rounds. (The factor 2 in the running time

of an iteration follows from the fact that the running

time is the sum of two non-negative ascending functions

of two different parameters, namely f1(n) and f2(∆).)
Subsequently, we run the pruning algorithm PMIS, and

as before, when the pruning algorithm terminates, we

execute the next iteration on the non-pruned nodes.

Now, let s be the integer such that 2s−1 < f(n,∆) 6 2s.

By the definition, n 6 ns and ∆ 6 ∆s. Hence, the ap-

plication of A in Iteration s uses guesses that are in-

deed good. This execution of A is completed before the

prescribed deadline of 2s+1 rounds expires because its
running time is at most f1(ns) + f2(∆s) 6 2s+1. Thus,

the algorithm consists of at most s iterations. Since the

running time of the whole execution is dominated by

the running time of the last iteration, the total running
time is O(2s+1) = O(f(n,∆)).

The above discussion shall be formalized in Theo-

rem 1. Before stating and proving it, though, we need

one more concept, called “sequence-number function”,

which gives a certain measure for the “separation” be-
tween the variables in a function defined over Nℓ.

4.2 The General Framework

Consider a function f : Nℓ → R+. A set-sequence for f

is a sequence (Sf (i))i∈N such that for every i ∈ N,

(i) Sf (i) is a finite subset (possibly empty) of Nℓ; and
(ii) if y ∈ Nℓ and f(y) 6 i, then y is dominated by a

vector x that belongs to Sf (i).

The set-sequence (Sf (i))i∈N is bounded if there exists

a positive number c such that

∀i ∈ N, ∀x ∈ Sf (i), f(x) 6 c · i.
The constant c is referred to as the bounding constant
of (Sf (i))i∈N. Note that a set-sequence may contain

empty sets.

A function sf : N → N is a sequence-number func-

tion for f if

(1) sf is moderately-slow; and
(2) there exists a bounded set-sequence (Sf (i))i∈N for

f such that

∀i ∈ N, |Sf (i)| 6 sf (i).

For example, consider the case where f : Nℓ → R

is additive, i.e., f(x1, . . . , xℓ) =
∑ℓ

k=1 fk(xk), where
f1, . . . , fℓ are non-negative ascending functions. Here,

the constant function 1 is a sequence-number function

for f . Indeed, for i ∈ N, let Sf (i) = {x}, where the

k-th coordinate of x is defined to be the largest integer

y such that fk(y) 6 i (if such an integer y exists, other-
wise, Sf (i) is empty). Hence, if f(y) 6 i then we deduce

that fk(yk) 6 i as each of the functions f1, . . . , fℓ is

non-negative. Therefore, x dominates y. Consequently,

(Sf (i))i∈N is a set-sequence for f , which is bounded
since

f(x) 6
ℓ
∑

k=1

fk(xk) 6 ℓ · i,
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and ℓ does not depend on i (the bounding constant c is

equal to ℓ in this case).

As another example, consider the case where f : N2 →
R is given by f(x1, x2) = f1(x1)·f2(x2), where f1 and f2
are ascending functions taking values at least 1. Then,
the function sf (i) = ⌈log i⌉+1 is a sequence-number for

f . Indeed, for i ∈ N let Sf (i) =
{

(xj
1, x

j
2) : j ∈ [0 , ⌈log i⌉]

}

where xj
1 is the largest integer y1 such that f1(y1) 6 2j

and xj
2 is the largest integer y2 such that f2(y2) 6

2log i−j+1 for each j ∈ [0 , ⌈log i⌉] (if such integers y1 and

y2 exist, otherwise we do not define the pair (xj
1, x

j
2)).

Again, a straightforward check ensures that (Sf (i))i∈N

is a bounded set-sequence for f with bounding constant

2. On the other hand, it is interesting to note that not

all functions have a bounded sequence-number function,

as one can see by considering the min function over N2.

The following observation summarizes to two aforemen-
tioned examples.

Observation 4.1

– The constant function 1 is a sequence-number func-
tion for any additive function.

– Let f : N2 → R be a function given by f(x1, x2) =

f1(x1) · f2(x2), where f1 > 1 and f2 > 1 are ascend-
ing functions. Then, the function sf (i) = ⌈log i⌉+ 1

is a sequence-number function for f .

We now give an explicit construction of a local algo-
rithm π, which will be used to prove the forthcoming

theorems.

Consider a problem Π and a family of instances F .

Assume that P is a pruning algorithm for Π . Let AΓ

be a deterministic algorithm for Π and F depending
on a set Γ of parameters p1, . . . , pℓ. In addition, fix an

integer c and let (Si)i∈N be a family of (possibly empty)

subsets of Nℓ.

The algorithm π runs in iterations, each of which

can be seen as a uniform alternating algorithm that
operates on the configurations in F .

Fix i ∈ N and let us write Si = {x1, . . . , xJi}. For
every j ∈ [1 , Ji], consider the uniform algorithm Aj,i

that consists of running AΓ with the vector of guesses
xj of Si. More precisely, the k-th coordinate of xj is

used as a guess for pk for k ∈ {1, . . . , ℓ}. Now, we define
A′

j,i to be the algorithm Aj,i restricted to c · 2i rounds.
An iteration of π consists of running the uniform

alternating algorithm for the sequence of uniform algo-
rithms {A′

j,i}j∈[1,Ji] and the pruning algorithm P . A

pseudocode description of Algorithm π is given by Al-

gorithm 1.

begin
(Sf (i))i∈N ←− bounded set-sequence for f
corresponding to sf ;
c←− bounding constant of (Sf (i))i∈N;
(G1,x1)←− (G,x);
for i from 1 to ∞ do

Si ←− Sf (2i);
Ji ←− |Si|;
(G1,i,x1,i)←− (Gi,xi);
for j from 1 to Ji do

A′
j,i ←− AΓ restricted to c · 2i rounds run

with vector guesses xj of Si;
yj,i ←− A′

j,i(Gj,i,xj,i);

(Gj+1,i,xj+1,i)←− P(Gj,i,xj,i,yj,i);

end

(Gi+1,xi+1)←− (GJi+1,i,xJi+1,i);

end

end

Algorithm 1: The algorithm π.

We are now ready to state and prove Theorem 1,

which deals with deterministic local algorithms.

4.3 The Deterministic Case

Theorem 1 considers a single set Γ of non-decreasing

parameters p1, . . . , pℓ, and assumes that (1) the given

non-uniform algorithm AΓ depends on Γ and (2) the
running time ofAΓ is evaluated according to the param-

eters in Γ . Recall that in such a case, we say that a func-

tion f : Nℓ → R+ upper bounds the running time of AΓ

with respect to Γ if the running time TAΓ (G,x) of AΓ

for every (G,x) ∈ F using a collection of good guesses
Γ̃ = {p̃1, . . . , p̃ℓ} for (G,x) is at most f(p̃1, . . . , p̃ℓ).

Theorem 1 Consider a problem Π and a family of in-
stances F . Let AΓ be a deterministic algorithm for Π

and F depending on a set Γ of non-decreasing param-

eters. Suppose that the running time of AΓ is bounded

from above by some function f : Nℓ → R+ where ℓ =

|Γ |. Assume that there exists a sequence-number func-
tion sf for f , and a Γ -monotone pruning algorithm

P for Π and F . Then there exists a uniform deter-

ministic algorithm for Π and F whose running time is

O(f∗ · sf (f∗)), where f∗ = f(Γ ∗).

Proof Let p1, . . . , pℓ be the parameters in Γ . Fix a bounded

set-sequence (Sf (i))i∈N for f corresponding to sf and

let c be the bounding constant of (Sf (i))i∈N. Set Si =
Sf (2

i) and Ji = |Si|, hence Ji 6 sf (2
i).

The desired uniform algorithm is the algorithm π

(Algorithm 1). We shall prove that π is correct and runs

in time O(sf (2
m) · 2m) over every configuration in F ,

where m = ⌈log f∗⌉.
Fix i ∈ N and let us write Si = {x1, . . . , xJi}. Each

iteration of the inner loop of π is called Sub-iteration,
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while Iteration is reserved for iterations of the outer

loop. As written in the pseudocode description of π

given by Algorithm 1, (Gj,i,xj,i) is the configuration

over which π operates during Sub-iteration j of Itera-

tion s, for j ∈ [1 , Ji].
Let us prove that Algorithm π is correct. Fix a con-

figuration (G,x) and set p∗r = pr(G,x) for r ∈ [1 , ℓ].

We consider the operation of π on (G,x). Setting f∗ =

f(p∗1, . . . , p
∗
ℓ ), we know that f∗ is an upper bound on

the running time of AΓ over (G,x), assuming that AΓ

uses the vector Γ ∗ of correct guesses p∗1, . . . , p
∗
ℓ . Let s

be the least integer such that f∗ 6 2s. By the defini-

tion, there exists j∗ ∈ [1 , Js], such that xj∗ dominates

(p∗1, . . . , p
∗
ℓ ).

The monotonicity property of P implies that

pr(Gj−1,i,xj−1,i) > pr(Gj,i,xj,i) for every r ∈ [1 , ℓ].

Thus, we infer by induction on k that p∗r = pr(G,x) >

pr(Gj,i,xj,i) for every i ∈ N, j ∈ [1 , Ji] and r ∈ [1 , ℓ].
Now, let us consider Iteration s of π. Assume that

some nodes are still active during Iteration s of π, that

is, V (Gs) is not empty. Iteration s of π is composed of

Js sub-iterations. During Sub-iteration j, the algorithm

A′
j,s;P is executed over (Gj

s,x
j
s). We know that p∗r >

pr(Gj,s,xj,s) for every j ∈ [1, Js], and every r ∈ [1 , ℓ].

So, in Sub-iteration j∗ of Iteration s, we have xj∗,r >

p∗r > pr(Gj∗,s,xj∗,s) for every r ∈ [1 , ℓ].

Sub-iteration j∗ consists of first running Algorithm
A′

j∗,s, which amounts to running AΓ for c ·2s rounds us-
ing the vector of guesses xj∗ By the definition of Sf (2

s),

it follows that f(xj∗) 6 c · 2s. Hence, this execution

of Algorithm AΓ is actually completed by time c · 2s.
Furthermore, since xj∗ dominates (p1(Gj∗,s,xj∗,s), . . . ,

pℓ(Gj∗ ,s,xj∗,s)), the vector of guesses used by Algo-

rithm AΓ is good, and hence the algorithm outputs

a vector yj∗

s satisfying (Gj∗,s,xj∗,s,yj∗,s) ∈ Π . By the

solution detection property, the subsequent pruning al-
gorithm (still in Sub-iteration j∗ of Iteration s) selects

Wj∗,s = V (Gj∗,s). By Observation 3.4, it follows that

π is correct.

It remains to prove that the running time isO(sf (f
∗)·

f∗). Let T0 be the running time of P . Observe that

Iteration i of π takes at most Ji(c · 2i + T0) rounds,

which is O(sf (2
i) · 2i) rounds. Since π consists of at

most s iterations, the running time of π is bounded by
∑s

i=1 sf (2
i) · 2i, which is O(sf (2

s) · 2s) because sf is
non-decreasing. Moreover,

O(sf (2
s) · 2s) = O(sf (2 · f∗) · 2s) = O(sf (f

∗) · f∗)

since 2s−1 < f∗ 6 2s and sf is moderately-slow (hence,
in particular, non-decreasing). Therefore, the running

time of π is bounded by O(sf (f
∗) · f∗). ⊓⊔

By Observation 4.1, the constant function sf = 1

is a sequence number function for any additive func-

tion f . Hence, Corollary 1(vi) follows directly by apply-

ing Theorem 1 to the maximal matching algorithm of

Hanckowiak et al. [19], and using Observation 3.3.

In addition, using Observation 3.2, Theorem 1 al-

lows us to transform each of the MIS algorithms in [4,
22,34] into a uniform one with asymptotically the same

time complexity. We thus obtain the following corollary.

Corollary 2 Consider the family F of all graphs.

– There exists a uniform deterministic MIS algorithm

for F running in time O(∆ + log∗n).

– There exists a uniform deterministic MIS algorithm
for F running in time 2O(

√
logn).

Recall that Barenboim and Elkin [5] devised, for ev-

ery δ > 0, a (non-uniform) deterministic MIS algorithm

for the family of all graphs running in time f(a, n) =
O(a + aδ logn). Fix ǫ ∈ (0, 1) and consider the family

Flarge of graphs with arboricity a > log1+ǫ/2 n. It fol-

lows from [5] (applied with, e.g., δ = ǫ/3), that there

exists a (non-uniform) deterministic MIS algorithm for
Flarge running in time O(a). Hence, using Observation 3.2

and Theorem 1, we obtain a uniform deterministic MIS

algorithm for Flarge running in O(a) time.

Next, let Fmed be the family of graphs with arboric-
ity a such that log1/3 n < a 6 log1+ǫ/2 n. Since a 6

log1+ǫ/2 n, it follows that a1−ǫ/2 < logn, and hence,

a < aǫ/2 logn. By [5], applied with δ = ǫ/2, there

exists a deterministic MIS algorithm for Fmed running

in time fmed = O(aǫ/2 logn). Note that by Observa-
tion 4.1, the sequence number for fmed is sfmed

(fmed) =

O(log fmed) = O(log logn). Hence, by combining Obser-

vation 3.2 and Theorem 1, we obtain a uniform MIS algo-

rithm for Fmed running in time O(aǫ/2 logn log logn) =
O(aǫ logn). (This last equality follows from the fact

that log1/3 n < a.)1 Summarizing the above discussion,

we obtain the following.

Corollary 3 For every ǫ > 0, there exists the following
uniform deterministic MIS algorithm:

– For the family Flarge, running in O(a) time,

– For the family Fmed, running in O(aǫ logn) time.

4.4 The Randomized Case

We now show how to extend Theorem 1 to the rando-
mized setting. More specifically, we replace the given

1 In fact, we could have used in the definition of Fmed any
small constant instead of 1/3, but 1/3 is sufficiently good for
our purposes as, anyway, this result will be combined with
better results for a = o(

√
logn), which shall be established

later on, in Corollary 4.
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non-uniform deterministic algorithm of Theorem 1 by a

non-uniform weak Monte-Carlo algorithm AΓ and pro-

duce a uniform Las Vegas one. This transformer is more

sophisticated than the one given in Theorem 1, and

requires the use of sub-iterations for bounding the ex-
pected running time and probability of success of the

resulting Las-Vegas algorithm.

Theorem 2 Consider a problem Π and a family of in-

stances F . Let AΓ be a weak Monte-Carlo algorithm
for Π and F depending on a set Γ of non-decreasing

parameters. Suppose that the running time of AΓ is

bounded from above by some function f : Nℓ → R+,

where ℓ = |Γ |. Assume that there exists a sequence-
number function sf for f , and a Γ -monotone pruning

algorithm P for Π and F . Then there exists a uniform

Las Vegas algorithm for Π and F whose expected run-

ning time is O(f∗ · sf (f∗)), where f∗ = f(Γ ∗).

Proof Let p1, . . . , pℓ be the parameters in Γ . Let T0 be

the running time of the pruning algorithm P , and let

AΓ be the given weak Monte-Carlo algorithm. To sim-

plify the notations, we assume that the success guaran-

tee ρ of AΓ is 1/2.

begin
(Sf (i))i∈N ←− bounded set-sequence for f
corresponding to sf ;
c←− bounding constant of (Sf (i))i∈N;
(G1,x1)←− (G,x);
for i from 1 to ∞ do

for j from 1 to i do
Sj ←− Sf (2j);
Jj ←− |Sj |;
(G1,j ,x1,j)←− (Gi,xi);
for k from 1 to Jj do

A′
k,j ←− AΓ restricted to c · 2j rounds

run with vector guesses xk of Sj;
yk,j ←− A′

k,j(Gk,j ,xk,j);

(Gk+1,j ,xk+1,j)←−
P(Gk,j ,xk,j ,yk,j);

end

(Gj+1,xj+1)←− (GJj+1,j,xJj+1,j);

end

end

end

Algorithm 2: The algorithm τ in the proof of Theo-

rem 2.

The desired uniform algorithm τ runs in iterations,
where Iteration i consists of running the first i itera-

tions of the algorithm π defined in Subsection 4.2. A

pseudocode description of Algorithm τ is given by Al-

gorithm 2. Similarly as in the proof of Theorem 1, the
word “Iteration” is reserved for the iterations of the

outer loop of τ , while “Sub-iteration” is used for the

iterations of the middle loop of τ .

For each positive integer i, let βi be the number

of rounds used in Iteration i of τ . Analogously to the

proof of Theorem 1, we infer that βi = O(sf (2
i) · 2i).

Let αi be the number of rounds used during the first i

iterations of τ . We thus have αi =
∑i

k=1 βk, which is
O(sf (2

i) · 2i).
It follows using similar arguments to the ones given

in the proof of Theorem 1, that if τ outputs, then the

output vector y is a solution, i.e. (G,x,y) ∈ Π .
It remains to bound the running time of τ . We con-

sider the random variable Tτ (G, x) that stands for “the

running time of τ on (G,x)”. For every integer i, let ρi
be the probability that V (Gi) 6= ∅ and V (Gi+1) = ∅,
that is, ρi is the probability that the last active node
becomes inactive precisely during Iteration i of τ . In

other words,

ρi = Pr (Tτ (G, x) ∈ [αi−1 + 1 , αi]) .

Setting f∗ = f(p∗1, . . . , p
∗
ℓ ), we know that f∗ is an

upper bound on the running time of AΓ over (G,x), as-

suming thatAΓ uses the collection Γ ∗ of correct guesses
p∗1, . . . , p

∗
ℓ . Consider the smallest integer s such that

f∗ 6 2s.

Since sf is moderately-slow, there is a constant K

such that αi+1 6 K · αi for every positive integer i. In

particular, αs+i 6 Ki · αs, and hence

E(Tτ (G, x)) 6 αs ·Pr (Tτ (G,x) 6 αs) +

∞
∑

i=1

αs+i · ρs+i

6 αs + αs

∞
∑

i=1

Ki · ρs+i.

Our next goal is to bound ρs+i from above. For a pos-
itive integer r, let χr be the event that V (Gr+1) 6= ∅,
that is, none of C1, . . . , Cr output the empty configura-

tion and thus, there is still an active node at the begin-

ning Iteration r + 1 of τ . Thus, ρs+i 6 Pr(χs+i−1).
Recall that we assume that the success guarantee of

AΓ is 1/2. Therefore, using similar analysis as in the

proof of Theorem 1, it follows that for every positive

integer k, the probability that an application of Bs+k−1

(in particular, during iteration s+i−1) does not output
the empty configuration is at most 1/2. As a result,

ρs+i 6 Pr(χs+i−1) 6

i
∏

j=1

2−j = 2−(i2+i)/2.

Therefore,

E(Tτ (G, x)) 6 αs

(

1 +
∞
∑

i=1

Ki · 2−(i2+i)/2

)

= O(αs) = O(f∗ · sf (f∗)).

⊓⊔
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Corollary 1(vii) follows by applying Theorem 2 to

the ruling set algorithm of Schneider andWattenhofer [36],

and using the pruning algorithm given by Observation 3.2.

4.5 The General Theorem

Some complications arise when the correctness of the
given non-uniform algorithm relies on the use of a set of

parameters Γ while its running time is evaluated with

respect to another set of parameters Λ. For example,

it may be the case that an upper bound on a param-
eter p is required for the correct operation of an algo-

rithm, yet the running time of the algorithm does not

depend on p. In this case, it may not be clear how to

choose the guesses for p. (This occurs, for example, in

the MIS algorithms of Barenboim and Elkin [6], where
the knowledge of n and the arboricity a are required,

yet the running time f is a function of n only.) Such

complications can be solved when there is some relation

between the parameters in Γ and those in Λ; specifically,
when Γ is weakly-dominated by Λ. (The definition of

weakly-dominated is given in Section 2.) This issue is

handled in the following theorem, which extends both

Theorem 1 and Theorem 2.

Theorem 3 Consider a problem Π, a family of in-

stances F and two sets of non-decreasing parameters

Γ and Λ, where Γ is weakly-dominated by Λ. Let AΓ

be a deterministic (respectively, weak Monte-Carlo) al-
gorithm depending on Γ whose running time is upper

bounded by some function f : Nℓ → R+, where ℓ = |Λ|.
Assume that there exists a sequence-number function sf
for f , and a Λ∪Γ -monotone pruning algorithm P for Π

and F . Then there exists a uniform deterministic (resp.,
Las Vegas) algorithm for Π and F whose running time

on every configuration (G,x) ∈ F is O(f∗ · sf (f∗)),
where f∗ = f(Λ∗(G,x)).

Proof First, we consider the case where Γ ⊆ Λ and next

the general case.

Assume that Λ = {p1, . . . , pℓ} and Γ = {p1, . . . , pr},
where r 6 ℓ. Then, let us simply impose that AΓ also

requires estimates for the parameters pr+1, . . . , pℓ, that
is, the operation of AΓ requires such estimates but ac-

tually ignores them after obtaining them. This way, we

obtain an algorithm AΛ depending on Λ. Since f is non-

decreasing, f(p∗1, . . . , p
∗
ℓ ) 6 f(p∗1, . . . , p

∗
r , p̃r+1, . . . , p̃ℓ),

where p̃i is a good guess for every i ∈ [r + 1 , ℓ]. Hence,

the running time of Algorithm AΛ is also bounded by f ,

so the conclusion follows by applying Theorems 1 and 2.

Now, let p1, . . . , pr and q1, . . . , qℓ be the parameters

in Γ and Λ, respectively. Recall that r′ ∈ [0 ,min{r, ℓ}]
is such that {pr′+1, pr′+2, . . . , pr}∩{qr′+1, qr′+2, . . . , qℓ} =

∅ and pi = qi for every i ∈ [1 , r′]. Set t = r − r′. As
Γ is weakly-dominated by Λ, there exists a function

h : [1 , t] → [1 , ℓ] and, for each j ∈ [1 , t], an ascending

function gj such that gj(pr′+j(G,x)) 6 qh(j)(G,x) for

every configuration (G,x) ∈ F . For every real number
x, we set g−1

j (x) = min g−1
j ({x}). Since gj is ascending,

g−1
j (x) > g−1

j (y) whenever x > y.

Let Λ′ = Λ ∪ Γ = {q1, . . . , qℓ, pr′+1, . . . , pr}, and
recall that f : Nℓ → R+ is the (non-decreasing) func-
tion bounding the running time of AΓ . We define a new

function f ′ : Nℓ+t → R by setting

f ′(x1, . . . , xℓ, y1, . . . , yt) = f(z1, . . . , zℓ),

where for each i ∈ [1 , ℓ],

zi = max
(

{xi} ∪
{

gk(yk) : k ∈ h−1({i})
})

.

Let sf be a sequence-number function for f and let

(Sf (i))i∈N be a corresponding bounded set-sequence
with bounding constant c.

We assert that sf is also a sequence-number func-

tion of f ′ and admits a corresponding bounded set-

sequence with bounding constant c. To see this, we first
define for i ∈ N a set Sf ′(i) with |Sf ′(i)| = |Sf (i)| as
follows. For each (x1, . . . , xℓ) ∈ Sf (i), let Sf ′(i) con-

tain (x1, . . . , xℓ, y1, . . . , yt), where yj = g−1
j (xh(j)) for

j ∈ [1 , t]. Observe that gj(yj) = xh(j) for every j ∈
[1 , t]. Hence, f ′(x1, . . . , xℓ, y1, . . . , yt) = f(x1, . . . , xℓ) if
(x1, . . . , xℓ, y1, . . . , yt) ∈ Sf ′(i).

This observation directly implies that f ′(x′) 6 c ·i if
x′ ∈ Sf ′(i), since f(x) 6 c · i if x ∈ Sf (i). Now, assume

that f ′(x) 6 i for some x = (x1, . . . , xℓ, y1, . . . , yℓ) ∈
Nℓ+t. Then, f(z1, . . . , zℓ) 6 i, where zi is given by the

definition of f ′. Consequently, there exists a vector z̃ ∈
Sf (i) that dominates (z1, . . . , zℓ). Moreover,

z̃′ = (z̃1, . . . , z̃ℓ, g
−1
1 (z̃h(1)), . . . , g

−1
t (z̃h(t))) ∈ Sf ′(i).

Therefore, if j ∈ [1 , ℓ] then (z′)j = z̃j > zj > xj , and

if j ∈ [1 , t] then gj((z
′)ℓ+j) = z̃h(j) > zh(j) > gj(yj), so

(z′)ℓ+j > yj , as gj is ascending. This finishes the proof

of the assertion.
Since Γ ⊆ Λ′, we know that there exists a uniform

local deterministic (respectively, randomized Las Vegas)

algorithm A for Π and F such that the (respectively,

expected) running time of A over any configuration

(G,x) ∈ F is O(f ′∗ · sf ′(f ′∗)) = O(f ′∗ · sf (f ′∗)), where
f ′∗ = f(q∗1, . . . , q

∗
ℓ , p

∗
r′+1, . . . , p

∗
r}). The fact that f ′ is

non-decreasing implies that

f ′∗
6 f ′(q∗1, . . . , q

∗
ℓ , g

−1
1 (q∗h(1)), . . . , g

−1
t (q∗h(t))) = f∗.

As sf is non-decreasing, the (respectively, expected)

running time of A is bounded by O(f∗ · sf (f∗)), as

desired. ⊓⊔
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Applying Theorem 3 to the work of Barenboim and

Elkin [6] (see Theorem 6.3 therein) with Γ = {a, n} and
Λ = {n} yields the following result, since a 6 n.

Corollary 4 The following uniform deterministic al-

gorithms solving MIS exist :

– For the family of graphs with arboricity a = o(
√
logn),

running in time o(logn),

– For any constant δ ∈ (0 , 1/2), for the family of

graphs with arboricity a = O(log1/2−δ n), running

in time O(log n/ log logn).

4.6 Running as Fast as the Fastest Algorithm

To illustrate the topic of the next theorem, consider

the non-uniform algorithms for MIS for general graphs,

namely, the algorithms of Barenboim and Elkin [4] and
that of Kuhn [22], which run in time O(∆ + log∗ n)
and use the knowledge of n and ∆, and the algorithm

of Panconesi and Srinivasan [34], which runs in time

2O(
√
logn) and requires the knowledge of n. Furthermore,

consider the MIS algorithms of Barenboim and Elkin in

[5,6], which are very efficient for graphs with a small

arboricity a. If n, ∆ and a are contained in the inputs

of all nodes, then one can compare the running times

of these algorithms and use the fastest one. That is,
there exists a non-uniform algorithmA{n,∆,a} that runs
in time T (n,∆, a) = min{g(n), h(∆,n), f(a, n)}, where
g(n) = 2O(

√
logn), h(∆,n) = O(∆+ log∗ n), and f(a, n)

is defined as follows: f(a, n) = o(log n) for graphs of
arboricity a = o(

√
log n), f(a, n) = O(log n/ log logn)

for arboricity a = O(log1/2−δ n), for some constant δ ∈
(0 , 1/2); and otherwise: f(a, n) = O(a + aǫ logn), for

arbitrary small constant ǫ > 0.

Unfortunately, the theorems established so far do
not allow us to transformA{n,∆,a} into a uniform algorithm—

the reason being that the function T (n,∆, a) bounding

the running time does not have a sequence number. On

the other hand, as mentioned in Corollary 2, Theorem 1
does allow us to transform each of the algorithms in [4,

22,34] into a uniform MIS algorithm, with time com-

plexity O(∆+log∗ n) and 2O(
√
logn), respectively. More-

over, Corollaries 3 and 4 show that Theorems 1 and 3

allow us to transform the algorithms in [5,6] to uni-
form algorithms that (over the appropriate graph fami-

lies), run as fast as the corresponding non-uniform algo-

rithms . Nevertheless, unless n, ∆ and a are provided as

inputs to the nodes, it is not clear how to obtain from
these transformed algorithms a uniform algorithm run-

ning in time T (n,∆, a). The following theorem solves

this problem.

Theorem 4 Consider a problem Π and a family of in-

stances F . Let k be a positive integer and let Λ1, . . . , Λk

be k sets of non-decreasing parameters. Let P be a (Λ1∪
· · · ∪ Λk)-monotone pruning algorithm for Π and F .

For i ∈ {1, 2, · · · , k}, consider a uniform algorithm Ui

whose running time is bounded with respect to Λi by a

function fi. Then there is a uniform algorithm with run-

ning time O(fmin), where fmin = min{f1(Λ∗
1), . . . , fk(Λ

∗
k)}.

Proof Clearly, it is sufficient to prove the theorem for

the case k = 2. The basic idea behind the proof of the-

orem above is to run in iterations, such that each itera-

tion i consists of running the quadruple (U1;P ;U2;P),

where U1 and U2 are executed for precisely 2i rounds
each. Hence, a correct solution will be produced in It-

eration s = ⌈log fmin⌉ or before. Since each iteration

i takes at most O(2i) rounds (recall that the running

time of P is constant), the running time is O(fmin).
Formally, we define a sequence of uniform algorithms

(Ai)i∈N as follows. For i ∈ N, set A2i+1 = Û1 and

A2i+2 = Û2, where Ûj is Uj restricted to 2i rounds

for j ∈ {1, 2}. Let π be the uniform alternating al-

gorithm with respect to (Ai)i∈N and P , that is π =
B1;B2;B3; · · · where B2i+j = Ûj ;P for every i ∈ N and

every j ∈ {1, 2}. Letting T0 be the running time of P ,

the running time of Bi is at most 2i + T0, for every

i ∈ N.
Consider an instance (G,x) ∈ F . For each (p, q) ∈

Λ1 × Λ2, let p
∗ = p(G,x) and q∗ = q(G,x). Algorithm

Bi operates on the configuration (Gi,xi). Let p ∈ Λ1 ∪
Λ2. Because P is monotone with respect to Λ1 ∪ Λ2, it

follows by induction on i that p∗ > p(Gi,xi). Hence, the
running time of Uj over (Gi,xi) is bounded from above

by fj(Λ
∗
j ) for every i ∈ N and each j ∈ {1, 2}. Thus,

V (G2s+2) = ∅ for the smallest s such that 2s > fmin.

In other words, π = B1;B2; · · · ;B2s+1. Consequently,
by Observation 3.4, Algorithm π correctly solves Π on

F and, since Bi runs in at most 2⌈i/2⌉ + T0 rounds, the

running time of π is O(2s) = O(fmin), as asserted. ⊓⊔
Now, we can combine Theorem 4 with Corollaries 3

and 4, and establish a uniform algorithm for MIS that

runs in time f(a, n). Combining this algorithm with

Corollary 2, and applying once more Theorem 4 yields

Corollary 1(i).

5 Uniform Coloring Algorithms

In general, we could not find a way to directly apply

our transformers (e.g., the one given by Theorem 3)

for the coloring problem. The main reason is that we
could not find an efficient pruning algorithm for the col-

oring problem. Indeed, consider for example the O(∆)-

coloring problem. The checking property of a pruning
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algorithm requires that, in particular, the nodes can

locally decide whether they belong to a legal configu-

ration. While locally checking that neighboring nodes

have distinct colors is easy, knowing whether a color

is in the required range, namely, [1 , O(∆)], seems diffi-
cult as the nodes do not know ∆. Moreover, the gluing

property seems difficult to tackle also: after pruning a

node with color c, none of its unpruned neighbors can

be colored in color c. In other words, a correct solution
on the non-pruned subgraph may not glue well with the

pruned subgraph.

Nevertheless, we show in this section that several
relatively general transformers can be used to obtain

uniform coloring algorithms from non-uniform one. We

focus on standard coloring problems in which the re-

quired number of colors is given as a function of ∆.

5.1 Uniform (∆+ 1)-coloring Algorithms

A standard trick (cf., [28,30]) allows us to transform

an efficient (with respect to n and ∆) MIS algorithm
for general graphs into one for (∆ + 1)-coloring (and,

actually, to the more general maximal coloring problem

defined by Luby [30]). The general idea is based on the

observation that (∆ + 1)-colorings of G and maximal
independent sets of G′ = G ×K∆+1 are in one-to-one

correspondence. More precisely, and avoiding the use of

∆, the graph G′ is constructed from G as follows. For

each node u ∈ V (G), take a clique Cu of size degG(u)+1

with nodes u1, . . . , udegG(u)+1. Now, for each (u, v) ∈
E(G) and each i ∈ [1 , 1 + min{degG(u), degG(v)}], let
(ui, vi) ∈ E(G′). The graph G′ can be constructed by

a local algorithm without using any global parameter.

It remains to observe the existence of a natural one-to-
one correspondence between the maximal independent

sets of G′ and the (degG +1)-colorings of G, that is, the

colorings of G such that each node u is assigned a color

in [1 , degG(u) + 1].

To see this, first consider a (degG +1)-coloring c of

G. Set

X = {ui ∈ V (G′) : c(u) = i} .

Then, no two nodes in X are adjacent in G′. Moreover,

a node that does not belong to X has a neighbor in

X since X contains a vertex from each clique Cu for

u ∈ V (G). Therefore, X is a MIS of G′.
Conversely, let X be a MIS of G′. We assert that

X contains a node from every clique Cu for u ∈ V (G).

Indeed, suppose on the contrary that X ∩ V (Cu) = ∅
for a node u ∈ V (G). By the definition of a MIS, every

vertex ui ∈ V (Cu) has a neighbor v(ui) that belongs to

X . Since a clique can contain at most one node in X

and v(ui) 6= v(uj) whenever i 6= j, we deduce that at

least |Cu| cliques Cv with v 6= u contain a node that

has a neighbor in Cu. This contradicts the definition of

G′, since |Cu| = degG(u) + 1. Thus, setting c(u) to be

the index i ∈ {1, . . . , degG(u) + 1} such that ui ∈ X
yields a (degG +1)-coloring of G.

Therefore, we obtain Corollary 1(ii) as a direct con-

sequence of Corollary 1(i).

5.2 Uniform Coloring with More than ∆+ 1 Colors

We now aim to provide a transformer taking as input

an efficient non-uniform coloring algorithm that uses

g(∆) colors (where g(∆) > ∆) and produces an efficient
uniform coloring algorithm that uses O(g(∆)) colors.

We begin with the following definitions.

An instance for the coloring problem is a pair (G,x)

where G is a graph and x(v) contains a color c(v) such
that the collection {c(v) : v ∈ V (G)} forms a coloring

of G. (The color c(v) can be the identity Id(v).) For

a given family G of graphs, we define F(G) to be the

collection of instances (G,x) for the coloring problem,

where G ∈ G.
Many coloring algorithms consider the identities as

colors, and relax the assumption that the identities are

unique by replacing it with the weaker requirement that

the set of initial colors forms a coloring. Given an in-
stance (G,x), let m = m(G,x) be the maximal identity.

Note that m is a graph-parameter.

Recall the λ(∆̃+1)-coloring algorithms designed by

Barenboim and Elkin [4] and Kuhn [22] (which gener-

alize the O(∆̃2)-coloring algorithm of Linial [28]). We
would like to point out that, in fact, everything works

similarly in these algorithms if one replaces n with m.

That is, these λ(∆̃+1)-coloring algorithms can be viewed

as requiringm and∆ and running in time O(∆̃/λ+ log∗ m̃).
The same is true for the edge-coloring algorithms of

Barenboim and Elkin [7].

The following theorem implies that these algorithms

can be transformed into uniform ones. In the theorem,

we consider two sets Γ and Λ of non-decreasing graph-
parameters such that

(1) Γ is weakly-dominated by Λ; and
(2) Γ ⊆ {∆,m}.
Two such sets of parameters are said to be related. The
notion of moderately-fast function (defined in Section 2)

will be used to govern the number of colors used by the

coloring algorithms.

Theorem 5 Let Γ and Λ be two related sets of non-
decreasing graph-parameters and let AΓ be a g(∆̃)-coloring

algorithm with running time bounded with respect to Λ

by some function f . If
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1. there exists a sequence-number function sf for f ;

2. g is moderately-fast;

3. the dependence of f on m is bounded by a polylog;

and

4. the dependence of f on ∆ is moderately-slow;

then there exists a uniform O(g(∆))-coloring algorithm
running in time O(f(Λ∗) · sf (f(Λ∗))).

Proof Our first goal is to obtain a coloring algorithm

that does not require m (and thus requires only ∆). For
this purpose we first define the following problem.

The strong list-coloring (SLC) problem: a configuration

for the SLC problem is a pair (G,x) ∈ F(G) such that

(1) there exists an integer ∆̂ in ∩v∈V (G)x(v) such that

∆̂ > ∆; and
(2) the input x(v) of every vertex v ∈ V (G) contains a

list L(v) of colors contained in [1 , g(∆̂)]× [1 , ∆̂+1]

such that

∀k ∈ [1 , g(∆̂)], |{j : (k, j) ∈ L(v)}| > degG(v)+ 1.

Given a configuration (G,x) ∈ F(G), an output vector
y is a solution to SLC if it forms a coloring and if y(v) ∈
L(v) for every node v ∈ V (G). Condition (1) above

implies that a local algorithm for SLC can use an upper

bound on ∆, which is the same for all nodes. Informally,

Condition (2) above implies that the list L(v) of colors
available for each node v contains degG(v)+1 copies of

each color in the range [1 , g(∆̂)].

We now design a pruning algorithm P for SLC. Con-

sider a triplet (G,x, ŷ), where (G,x) is a configuration

for SLC and ŷ is some tentative assignment of colors.
The set W of nodes to be pruned is composed of all

nodes u satisfying ŷ(u) ∈ L(u) and ŷ(u) 6= ŷ(v) for all

v ∈ NG(u). For each node u ∈ V \W , set

L′(u) = L(u) \ {ŷ(v) : v ∈ NG(u) ∩W} .

In other words, L′(u) contains all the colors in L(u)
that are not assigned to a neighbor of u belonging to W .

Algorithm P returns the configuration (G′,x′), where
G′ is the subgraph of G obtained by removing the nodes

in W and

x′(u) = (x(u) \ L(u)) ∪ L′(u), for u ∈ V \W .

Observe that if we start with a configuration (G,x)
for SLC, then the output (G′,x′) of the pruning algo-

rithm P is also a configuration for SLC. Indeed, for ev-

ery node v and every integer k, at most degW (v) pairs

(k, j) are removed from the list L(v) of v, where degW (v)
is the number of neighbors of v that belong to W . On

the other hand, the degree of v in G′ is reduced by

degW (v). Note also that the input vector of all nodes

still contain ∆̂, which is an upper bound for the maxi-

mum degree of G′.

Starting with AΓ , it is straightforward to design a

local algorithm BΓ ′
for SLC that depends on Γ ′ =

Γ \ {∆}. Specifically, BΓ ′
executes AΓ using the good

guess ∆̃ = ∆̂ for the parameter ∆. Furthermore, if AΓ

outputs at v a color c, then BΓ ′
outputs the color (c, j)

where j = min {s : (c, s) ∈ L(v)}.
Given an instance for SLC, we view ∆̂ as a non-

decreasing parameter, and convert Λ to a new set of

non-decreasing parameters Λ′ by replacing ∆ with ∆′.
Formally, if ∆ ∈ Λ then set Λ′ = (Λ \ ∆) ∪ ∆̂, and

otherwise, set Λ′ = Λ. Since Γ and Λ contain only non-
decreasing graph-parameters—and since ∆̂ is contained

in all the inputs—we deduce that the pruning algorithm

P is (Γ ′ ∪ Λ′)-monotone.

Now, we apply Theorem 3 to Algorithm BΓ ′
, the

sets Γ ′ and Λ′ of non-decreasing parameters and the

aforementioned pruning algorithm P for SLC. We ob-

tain a uniform algorithm B for SLC and F(G), whose
running time is O(f(Λ′∗) · sf (f(Λ′∗))).

We are ready to specify the desired uniformO(g(∆))-

coloring algorithm. We define inductively a sequence

(Di)i∈N by setting D1 = 1 and

Di+1 = min {ℓ : g(ℓ) > 2g(Di)}

for i > 1. As g is moderately-increasing, there is a con-

stant α such that for each integer i > 1,

1. Di+1 > αDi and

2. g(Di+1) 6 αlogαg(Di).

Given an initial configuration (G,x), we partition
it according to the node degrees. For i ∈ N, let Gi be

the subgraph of G induced by the set of nodes v of G

with degG(v) ∈ [Di , Di+1−1]. Let xi be the input x re-

stricted to the nodes in Gi. The configuration (Gi,xi),
which belongs to F(G), is referred to as layer i. Note

that nodes can figure out locally which layer they be-

long to. Observe also that Di+1 − 1 is an upper bound

on node degrees in layer i.

The algorithm proceeds in two phases. In the first
phase, each node in layer i is assigned the list of col-

ors L′′
i = [1 , g(Di+1)] × [1 , Di+1 + 1], and the degree

estimation ∆̂i = Di+1. Each layer is now an instance

of SLC and we execute Algorithm B in parallel on all
layers. If Algorithm B assigns a color (c, j) to a node v

in layer i then we change this color to (g(Di+1) + c, j).

Hence, for each i, layer i is colored with colors taken

from L′
i = [g(Di+1) + 1 , 2g(Di+1)]× [1 , Di+1 + 1].

Note that nodes in different layers have disjoint color

lists, and hence we obtain a coloring of the whole graph

G. The number of colors in L′
i is at most 2Di+1g(Di+1).



20 Amos Korman et al.

Let imax is the maximal integer i such that layer i is non-

empty. The total number of colors used in the first phase

is at most 2Dimax+1g(Dimax+1), which is O(∆g(∆)) by

Properties 1 and 2 above.

Furthermore, the running time of the first phase of
the algorithm is dominated by the running time of the

algorithm on layer imax. That is, the running time is

at most O(f(Λ′∗) · sf (f(Λ′∗))), where Λ′∗ is the collec-

tion of correct parameters in Λ′ for layer imax. Since
Dimax+1 = O(∆) and the dependence of f on ∆ is

moderately-slow, we infer that f(Λ′∗) = O(f(Λ∗)). As
sf is moderately-slow too (by the definition), we deduce

that the running time is O(f(Λ∗) · sf(f(Λ∗))).
The second phase consists of running a second al-

gorithm to change the set of possible colors of nodes

in layer i from L′
i to Li = [g(Di+1) + 1 , 2g(Di+1)].

Specifically, on layer i, we execute AΓ using the guess

∆̃ = Di+1 for the parameter ∆ and the guess m̃ =
2Di+1g(Di+1) for the parameter m (recall that Γ ⊆
{∆,m}). This procedure colors each layer with colors

taken from the range [1 , g(Di+1)]. Let v be in layer

i and let c(v) be the color assigned to v by AΓ . The

final color of v given by our desired algorithm A is
g(Di+1) + c(v). Thus, the colors assigned to the nodes

in layer i belong to [g(Di+1) + 1 , 2g(Di+1)]. Therefore,

nodes in different layers are assigned distinct colors.

The algorithm is executed on each layer independently,
all in parallel. Hence, we obtain a coloring of G. More-

over, since g is moderately-increasing, the total number

of colors used is O(g(∆)).

Recall that Di+1 = O(∆) and g(Di+1) = O(g(∆))

for all i such that Gi is not empty. Hence, we deduce
that the running time of the second phase of the algo-

rithm is bounded from above by the running time of

AΓ on (G,x) using the guesses ∆̃ = O(∆) and m̃ =

O(∆g(∆)). Moreover, the fact that g(x) is bounded by
a polynomial in x implies that m̃ is at most polynomial

in ∆, and hence in m.

Now, as the dependence of f on ∆ is moderately-

slow and the dependence of f on m is polylogarithmic,

the running time of the second phase of A is O(f(Λ)).
Combining this with the running time of the first phase

concludes the proof. ⊓⊔
By Observation 4.1, the constant function sf = 1

is a sequence-number function for every additive func-

tion f . Hence, Corollary 1(iii) directly follows from The-
orem 5. Regarding edge-coloring, observe that Baren-

boim and Elkin [7] obtain their algorithm for general

graphs by running a vertex-coloring algorithm A on the

line-graph of the given graph. This algorithm A uses m
and ∆ in and the number of colors and time complexity

of the resulting edge-coloring algorithm are that of A.

Using Theorem 5, one can transform the algorithm A

designed for the family of line graphs into a uniform

one, having asymptotically the same number of colors

and running time. Hence, Theorem 1(v) follows.

Let f : N2 → R be given by f(x1, x2) = f1(x1) ·
f2(x2), where f1 and f2 are ascending functions. By

Observation 4.1, the function sf (i) = ⌈log i⌉ + 1 is
a sequence-number function for f . Therefore, Corol-

lary 1(iv) now follows by applying Theorem 5 to the

coloring algorithms of Barenboim and Elkin [5].

6 Conclusion and Further Research

6.1 Pruning Algorithms

This paper focuses on removing assumptions concern-

ing global knowledge in the context of local algorithms.

We provide transformers taking a non-uniform local al-
gorithm as a black box and producing a uniform algo-

rithm running in asymptotically the same number of

rounds. This is established via the notion of pruning

algorithms. We believe that this novel notion is of in-

dependent interest and can be used for other purposes
too, e.g., in the context of fault tolerance or dynamic

settings.

We remind the reader that we restricted the run-

ning time of a pruning algorithm to be constant. This

is because in all our applications we use constant time

pruning algorithms. In fact, our transformers extend to
the case where the given uniform pruning algorithm P

– has running time bounded with respect to a set S
of non-decreasing parameters by a (non-decreasing)

function h; and
– is S-monotone.

However, the transformer may incur an additive over-

head in the running time of the obtained uniform algo-
rithms, as these repeatedly use P . Specifically, the over-

head will be h(S∗) times the number of iterations used

by the transformer, which is typically logarithmic in the

running time of the non-uniform algorithm. It would be

interesting to have an example of a problem that admits
a fast non-trivial uniform pruning algorithm but does

not admit a constant time one.

6.2 Bounded Message Size

This paper focuses on the LOCAL model, which does

not restrict the number of bits used in messages. Ideally,
messages should be short, i.e., using O(log n) bits. We

found it difficult to obtain a general transformer that

takes an arbitrary non-uniform algorithm using short
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messages and produces a uniform one having asymp-

totically the same running time and message size. The

reason is that techniques similar to those used in this

paper, require guesses that fit for both the function

bounding the running time and the function bounding
the message size. Nevertheless, maintaining the same

message size may still be possible given particular non-

uniform algorithms that use messages whose content

does not depend on the guessed upper bounds, such as
algorithms that encode in the messages only identifiers,

colors, or degrees.

6.3 Coloring

Recall that one of the difficulties in obtaining a prun-

ing algorithm for coloring problems lies in the fact that
the gluing property may not hold, that is, a pruned

node v with color c may have a non-pruned neighbor

u which is also colored c in some correct coloring of

the non-pruned subgraph. In the context of running in
iterations, in which one invokes a pruning algorithm

and subsequently, an algorithm A on the non-pruned

subgraph (similarly to Theorem 3), the aforementioned

undesired phenomenon could be prevented if the algo-

rithm A would avoid coloring node u with color c. With
this respect, we believe that it would be interesting

to investigate connections between g-coloring problems

and strong g-coloring problems, in which each node v

is given as an input a list of (forbidden) colors F (v). In
a correct solution, each node v must color itself with a

color not in L(v) such that the final configuration is a

coloring using at most g colors.

Finally, recall that our transformer for coloring ap-
plies to deterministic algorithms only. It would be in-

teresting to design a general transformer that takes

non-uniform randomized coloring algorithms (e.g., the

ones by Schneider and Wattenhofer [36]) and trans-
forms them into uniform ones with asymptotically the

same running time.
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