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Long-term Temporal Convolutions
for Action Recognition

G¤ul Varol, Ivan Laptev, and Cordelia Schmid, Fellow, IEEE

Abstract�Typical human actions last several seconds and exhibit characteristic spatio-temporal structure. Recent methods attempt to
capture this structure and learn action representations with convolutional neural networks. Such representations, however, are typically
learned at the level of a few video frames failing to model actions at their full temporal extent. In this work we learn video
representations using neural networks with long-term temporal convolutions (LTC). We demonstrate that LTC-CNN models with
increased temporal extents improve the accuracy of action recognition. We also study the impact of different low-level representations,
such as raw values of video pixels and optical �ow vector �elds and demonstrate the importance of high-quality optical �ow estimation
for learning accurate action models. We report state-of-the-art results on two challenging benchmarks for human action recognition
UCF101 (92.7%) and HMDB51 (67.2%).

Index Terms�Action recognition, video analysis, representation learning, spatio-temporal convolutions, neural networks.
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1 INTRODUCTION

HUMAN actions and events can be seen as spatio-
temporal objects. Such a view �nds support both in

psychology [1] and in computer vision approaches to action
recognition in video [2], [3], [4], [5]. Successful methods for
action recognition, indeed, share similar techniques with
object recognition and represent actions by statistical models
of local video descriptors. Differently to objects, however,
actions are characterized by the temporal evolution of ap-
pearance governed by motion. Consistent with this fact,
motion-based video descriptors such as HOF and MBH [2],
[5] as well as recent CNN-based motion representations [6]
have shown most gains for action recognition in practice.

The recent rise of convolutional neural networks (CNNs)
convincingly demonstrates the power of learning visual
representations [7]. Equipped with large-scale training
datasets [8], [9], CNNs have quickly taken over the majority
of still-image recognition tasks such as object, scene and
face recognition [9], [10], [11]. Extensions of CNNs to action
recognition in video have been proposed in several recent
works [6], [12], [13]. Such methods, however, currently show
only moderate improvements over earlier methods using
hand-crafted video features [5].

Current CNN methods for action recognition often ex-
tend CNN architectures for static images [7] and learn action
representations for short video intervals ranging from 1 to
16 frames [6], [12], [13]. Yet, typical human actions such as
hand-shaking and drinking, as well as cycles of repetitive
actions such as walking and swimming often last several
seconds and span tens or hundreds of video frames. As illus-
trated in Figure 1(a),(c), actions often contain characteristic
patterns with speci�c spatial as well as long-term temporal
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Fig. 1. Video patches for two classes of swimming actions. (a),(c):
Actions often contain characteristic, class-speci�c space-time patterns
that last for several seconds. (b),(d): Splitting videos into short temporal
intervals is likely to destroy such patterns making recognition more dif-
�cult. Our neural network with Long-term Temporal Convolutions (LTC)
learns video representations over extended periods of time.

structure. Breaking this structure into short clips (see Fig-
ure 1(b),(d)) and aggregating video-level information by the
simple average of clip scores [6], [13] or more sophisticated
schemes such as LSTMs [14] is likely to be suboptimal.

In this work, we investigate the learning of long-term
video representations. We consider space-time convolu-
tional neural networks [13], [15], [16] and study architec-
tures with Long-term Temporal Convolutions (LTC), see
Figure 2. To keep the complexity of networks tractable, we
increase the temporal extent of representations at the cost
of decreased spatial resolution. We also study the impact
of different low-level representations, such as raw values of
video pixels and optical �ow vector �elds. Our experiments
con�rm the advantage of motion-based representations and
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Fig. 2. Network architecture. Spatio-temporal convolutions with 3x3x3 �lters are applied in the �rst 5 layers of the network. Max pooling and ReLU are
applied in between all convolutional layers. Network input channels C1:::Ck are de�ned for different temporal resolutions t 2 f20; 40; 60; 80; 100g
and either two-channel motion (�ow-x, �ow-y) or three-channel appearance (R,G,B). The spatio-temporal resolution of convolution layers decreases
with the pooling operations.

highlight the importance of good quality motion estima-
tion for learning ef�cient representations for human action
recognition. We report state-of-the-art performance on two
recent and challenging human action benchmarks: UCF101
and HMDB51.

The contributions of this work are twofold. We demon-
strate (i) the advantages of long-term temporal convolu-
tions and (ii) the importance of high-quality optical �ow
estimation for learning accurate video representations for
human action recognition. In the remaining part of the paper
we discuss related work in Section 2, describe space-time
CNN architectures in Section 3 and present an extensive
experimental study of our method in Section 4. Our imple-
mentation and pre-trained CNN models (compatible with
Torch) are available on the project web page [17].

2 RELATED WORK

Action recognition in the last decade has been dominated
by local video features [2], [4], [5] aggregated with Bag-
of-Features histograms [18] or Fisher Vector representa-
tions [19]. While typical pipelines resemble earlier methods
for object recognition, the use of local motion features,
in particular Motion Boundary Histograms [5], has been
found important for action recognition in practice. Explicit
representations of the temporal structure of actions have
rarely beed used with some exceptions such as the recent
work [20].

Learning visual representations with CNNs [7], [21] has
shown clear advantages over �hand-crafted� features for
many recognition tasks in static images [9], [10], [11]. Exten-
sions of CNN representations to action recognition in video
have been proposed in several recent works [6], [12], [13],
[14], [15], [16], [22], [23], [24], [25]. Some of these methods
encode single video frames with static CNN features [6],
[12], [14]. Extensions to short video clips where video frames
are treated as multi-channel inputs to 2D CNNs have also
been investigated in [6], [12], [23], [25].

Learning CNN representations for action recognition
has been addressed for raw pixel inputs and for pre-
computed optical �ow features. Consistent with previous
results obtained with hand-crafted representations, motion-
based CNNs typically outperform CNN representations
learned for RGB inputs [6], [23]. In this work we investigate
multi-resolution representations of motion and appearance
where for motion-based CNNs we demonstrate the im-
portance of high-quality optical �ow estimation. Similar
�ndings have been recently con�rmed by [26], where the

authors transfer knowledge from high quality optical �ow
algorithms to motion vector encoding representation.

Most of the current CNN methods use architectures with
2D convolutions, enabling shift-invariant representations in
the image plane. Meanwhile, the invariance to translations
in time is also important for action recognition since the
beginning and the end of actions is unknown in general.
CNNs with 3D spatio-temporal convolutions address this
issue and provide a natural extension of 2D CNNs to video.
3D CNNs have been investigated for action recognition
in [12], [13], [15], [16]. All of these methods, however,
learn video representations for RGB input. Moreover, they
typically consider very short video intervals, for example,
16-frame video clips are used in [13] and 2, 7, 15 frames
in [16], [15], [12] respectively. In this work we extend 3D
CNNs to signi�cantly longer temporal convolutions that
enable action representation at their full temporal scale.
We also explore the impact of optical �ow input. Both of
these extensions show clear advantages in our experimental
comparison to previous methods.

3 LONG-TERM TEMPORAL CONVOLUTIONS

In this section we �rst present the network architecture. We
then specify the different inputs to networks used in this
work. We �nally provide details on learning and testing
procedures.

3.1 Network architecture
Our network architecture with long-term temporal convolu-
tions is illustrated in Figure 2. The network has 5 space-time
convolutional layers with 64, 128, 256, 256 and 256 �lter
response maps, followed by 3 fully connected layers of sizes
2048, 2048 and the number of classes. Following [13] we use
3� 3� 3 space-time �lters for all convolutional layers. Each
convolutional layer is followed by a recti�ed linear unit
(ReLU) and a space-time max pooling layer. Max pooling
�lters are of size 2� 2� 2 except in the �rst layer, where it
is 2� 2� 1. The size of convolution output is kept constant
by padding 1 pixel in all three dimensions. Filter stride
for all dimensions is 1 for convolution and 2 for pooling
operations. We use dropout for the �rst two fully connected
layers. Fully connected layers are followed by ReLU layers.
Softmax layer at the end of the network outputs class scores.

3.2 Network input
To investigate the impact of long-term temporal convolu-
tions, we here study network inputs with different temporal
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RGB MPEG �ow [27] Farneback [28] Brox [29]

Input Clip Video

RGB 57.0 59.9
MPEG �ow 58.5 63.8
Farneback 66.3 71.3
Brox 74.8 79.6

Fig. 3. Illustration of the three optical �ow methods and comparison of corresponding recognition performance. From left to right: original image,
MPEG, Farneback and Brox optical �ow. The color coding indicates the orientation of the �ow. The table on the right presents accuracy of action
recognition in UCF101 (split 1) for different inputs. Results are obtained with 60f networks and training from scratch (see text for more details).

extents. We depart from the recent C3D work [13] and �rst
compare inputs of 16 frames (16f) and 60 frames (60f). We
then systematically analyze implications of the increased
temporal and spatial resolutions for input signals in terms
of motion and appearance. For the 16-frame network we
crop input patches of size 112 � 112 � 16 from videos
with spatial resolution 171 � 128 pixels. We choose this
baseline architecture to enable direct comparison with [13].
For the 60-frames networks we decrease spatial resolution
to preserve network complexity and use input patches of
size 58� 58� 60 randomly cropped from videos rescaled to
89� 67 spatial resolution.

As illustrated in Figure 2, the temporal resolution in our
60f network corresponds to 60, 30, 15, 7 and 3 frames for
each of the �ve convolutional layers. In comparison, the
temporal resolution of the 16f network is reduced more
drastically to 16, 8, 4, 2 and 1 frame at each convolutional
layer. We believe that preserving the temporal resolution
at higher convolutional layers should enable learning more
complex temporal patterns. The space-time resolution for
the outputs of the �fth convolutional layers is 3 � 3 � 1
and 1� 1� 3 for the 16f and 60f networks respectively. The
two networks have a similar number of parameters in the
fc6 layer and the same number of parameters in all other
layers. For a systematic study of networks with different
input resolutions we also evaluate the effect of increased
temporal resolution t 2 f20; 40; 60; 80; 100g and varying
spatial resolution of f58� 58; 71� 71g pixels.

In addition to the input size, we experiment with differ-
ent types of input modalities. First, as in [13], we use raw
RGB values from video frames as input. To explicitly learn
motion representations, we also use �ow �elds in x and y
directions as input to our networks. Flow is computed for
original videos. To maintain correct �ow values for network
inputs with reduced spatial resolution, the magnitude of
the �ow is scaled by the factor of spatial subsampling. In
other words, if a point moves 2 pixels in a 320 � 240 video
frame, its motion will be 1 pixel when the frame is resized to
160� 120 resolution. Moreover, to center the input data, we
follow [6] and subtract the mean �ow vector for each frame.

To investigate the dependency of action recognition on
the quality of motion estimation, we experiment with three
types of �ow inputs obtained either directly from the video
encoding, referred to as MPEG �ow [27], or from two op-
tical �ow estimators, namely Farneback [28] and Brox [29].
Figure 3 shows results for the three �ow algorithms. MPEG
�ow is a fast substitute for optical �ow which we obtain
from the original video encoding. Such �ow, however, has
low spatial resolution. It also misses �ow vectors at some
frames (I-frames) which we interpolate from neighboring
frames. Farneback �ow is also relatively fast and obtains

rather noisy �ow estimates. The approach of Brox �ow is
the most sophisticated of the three and is known to perform
well in various �ow estimation benchmarks.

3.3 Learning
We train our networks on the training set of each split in-
dependently for both UCF101 and HMDB51 datasets, which
contain 9.5K and 3.7K videos, respectively. We use stochastic
gradient descent applied to mini-batches with negative log
likelihood criterion. For 16f networks we use a mini-batch
size of 30 video clips. We reduce the batch size to 15 video
clips for 60f networks, and 10 clips for 100f networks due
to limitations of our GPUs. The initial learning rate for
networks learned from scratch is 3� 10�3 and 3� 10�4 for
networks �ne-tuned from pre-trained models. For UCF101,
the learning rate is decreased twice with a factor of 10�1. For
16f networks, the �rst decrease is after 80K iterations and the
second one after 45K additional iterations. The optimization
is completed after 20K more iterations. Convergence is faster
for HMDB51, so the learning rate is decreased once after 60K
iterations and completed after 10K more iterations. These
numbers are doubled for 60f networks and tripled for 100f
networks, since their batch sizes are twice and three times
smaller compared to 16f nets. The above schedule is used
together with 0.9 dropout ratio. Our experimental setups
with 0.5 dropout ratio have less iterations due to faster
convergence. The momentum is set to 0.9 and weight decay
is initialized with 5� 10�3 and reduced by a factor of 10�1

at every decrease of the learning rate.
Inspired by the random spatial cropping during training,

we apply the corresponding augmentation to the temporal
dimension as in [6], which we call random clipping. During
training, given an input video, we randomly select a point
(x; y; t) to sample a video clip of �xed size. A common
alternative is to preprocess the data by using a sliding
window approach to have pre-segmented clips of �xed
size; however, this approach limits the amount of data
when the windows are not overlapped as in [13]. Another
data augmentation method that we evaluate is to have a
multiscale cropping similar to [23]. For this, we randomly
select a coef�cient for width and height separately from (1.0,
0.875, 0.75, 0.66) and resize the cropped region to the size of
the network input. Finally, we horizontally �ip the input
with 50% probability.

At test time, a video is divided into t-frame clips with
a temporal stride of 4 frames. Each clip is further tested
with 10 crops, namely the 4 corners and the center, together
with their horizontal �ips. The video score is obtained by
averaging over clip scores and crop scores. If the number of
frames in a video is less than the clip size, we pad the input
by repeating the last frames to �ll the missing volume.
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4 EXPERIMENTS

We perform experiments on two widely used and chal-
lenging benchmarks for action recognition: UCF101 and
HMDB51 (Sec. 4.1). We �rst examine the effect of network
parameters (Sec. 4.2). We then compare to the state-of-the-art
(Sec. 4.3) and present a visual analysis of the spatio-temporal
�lters (Sec. 4.4). Finally we report runtime analysis (Sec. 4.5).

4.1 Datasets and evaluation metrics
UCF101 [30] is a widely-used benchmark for action recog-
nition with 13K clips from YouTube videos lasting 7 seconds
on average. The total number of frames is 2.4M distributed
among 101 categories. The videos have spatial resolution of
320� 240 pixels and 25 fps frame rate.

The HMDB51 dataset [31] consists of 7K videos of 51
actions. The videos have 320� 240 pixels spatial resolution
and 30 fps frame rate. Although this dataset has been
considered a large-scale benchmark for action recognition
for the past few years, the amount of data for learning deep
networks is limited.

We rely on two evaluation metrics. The �rst one mea-
sures per-clip accuracy, i.e. we assign each clip the class
label with the maximum softmax output and measure the
number of correctly assigned labels over all clips. The
second metric measures video accuracy, i.e. the standard
evaluation protocol. To obtain a video score we average
the per-clip softmax scores and take the maximum value
of this average as class label. We average over all videos to
obtain video accuracy. We report our �nal results according
to the standard evaluation protocol, which is the mean video
accuracy across the three test splits. To evaluate the network
parameters we use the �rst split.

4.2 Evaluation of LTC network parameters
In the following we �rst examine the impact of optical �ow
and data augmentation. We then evaluate gains provided
by long-term temporal convolutions for the best �ow and
data augmentation techniques by comparing 16f and 60f
networks. We also investigate the advantage of pre-training
on one dataset (UCF101) and �ne-tuning on a smaller
dataset (HMDB51). Furthermore, we study the effect of
systematically increased temporal resolution for �ow and
RGB inputs as well as the combination of networks.

Optical �ow. The impact of the �ow quality on action
recognition and a comparison to RGB is shown in Figure 3
for UCF101 (split 1). The network is trained from scratch
and with a 60-frame video volume as input. We �rst ob-
serve that even the low-quality MPEG �ow outperforms
RGB. The increased quality of optical �ow leads to further
improvements. The use of Brox �ow allows nearly 20%
increase in performance. The improvements are consistent
when classifying individual clips and full videos. This sug-
gests that action recognition is easier to learn from motion
compared to raw pixel values. While results in Figure 3 were
obtained for 60f networks, the same holds for 16f networks
(see Table 2). We also conclude that the high accuracy of
optical �ow estimation plays an important role for learning
competitive video representations for action recognition.
Given the results in Figure 3, we choose Brox �ow for all
remaining experiments in this paper.

Method Clip accuracy Video accuracy

Baseline augmentation 71.6 76.5
Random clipping 74.8 79.6
Multiscale cropping 72.5 78.1
High dropout (0.9) 74.4 78.5
Combined 76.3 80.5

TABLE 1
Data augmentations on UCF101 (split 1). All results are with 60-frame

Brox �ow and training from scratch. All three modi�cations (random
clipping, multiscale cropping and high dropout) give an improvement
when used alone, the best performance is obtained when combined.

Data augmentation. Table 1 demonstrates the contribution
of data augmentation when training a large CNN with
limited amount of data. Our baseline uses sliding window
clips with 75% overlap and a dropout of 0.5 during training.
We gain 3.1% with random clipping, 1.6% with multiscale
cropping and 2% with higher dropout ratio. When com-
bined, the data augmentation and a higher dropout results
in a 4% gain for video classi�cation on UCF101 split 1. High
dropout, multiscale cropping and random clipping are used
in the remaining experiments, unless stated otherwise.

Comparison of 16f and 60f networks. Our 16-frame and
60-frame networks have similar complexity in terms of
input sizes and the number of network parameters (see
Section 3). Moreover, the 16-frame network resembles the
C3D architecture and enables direct comparison with [13].
We therefore study the gains provided by the 60-frame
inputs before analyzing performance with systematically
increasing temporal resolution (from 20 to 100 frames by
steps of 20) in the next paragraph.

Table 2 compares the performance of 16f and 60f net-
works for RGB and �ow inputs as well as for different
data augmentation and dropout ratios for UCF101 split 1.
We observe consistent and signi�cant improvement of long-
term temporal convolutions in 60f networks for all tested se-
tups, when measured in terms of clip and video accuracies.
Our 60f architecture signi�cantly improves for both RGB
and �ow-based networks. As expected, the improvement is
more prominent for clips since video evaluation aggregates
information over the whole video.

We repeat similar experiments for the split 1 of HMDB51

Input MS D Test 16f 60f gain

RGB x 0.5 Clip 48.4 57.0 + 8.6
Video 51.9 59.9 + 8.0

Flow x 0.5 Clip 66.8 74.8 + 8.0
Video 77.4 79.6 + 2.2

Flow X 0.9 Clip 67.1 76.3 + 9.1
Video 78.7 80.5 + 1.8

TABLE 2
Results for networks with different temporal resolutions and under

variation of data augmentation (MS: multiscale cropping) and dropout
(D) for UCF101 (split 1), trained from scratch. Random clipping is used
in all experiments. Evaluations are on individual clips and on full videos.

Pre-training Test 16f 60f gain 2D CNN [6]

x Clip 37.0 52.6 + 15.6
Video 43.9 52.9 + 9.0 46.6

X Clip 40.6 56.1 + 15.5
Video 48.3 57.1 + 8.8 49.0

TABLE 3
Results for networks with different temporal resolutions for HMDB51
(split 1) with or without pre-training on UCF101. Flow input, random
clipping, multiscale cropping and 0.9 dropout are used in all setups.
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Fig. 4. Results for the split 1 of UCF101 using LTC networks of i. varying temporal extents t, ii. varying spatial resolutions [high (H), low (L)] and
iii. different input modalities (RGB pre-trained on Sports-1M, �ow trained from scratch). For faster convergence all networks were trained using 0.5
dropout and a �xed batch size of 10. Classi�cation results are shown for clips (a) and videos (b) computed over all classes and presented for a
subset of individual classes for �ow input of low spatial resolution (c). The average number of frames in the training set for a class is denoted in
parenthesis. (d) shows a distribution of action classes over the optimal temporal extent and (e) indicates correspondnig improvements (see text for
details). With the exception of a few classes, most of the classes bene�t from larger temporal extents.

and report results in Table 3. Similar to UCF101, �ow-based
networks with long-term temporal convolutions lead to sig-
ni�cant improvements over the 16f network, in terms of clip
and video accuracies. Given the small size of HMDB51, we
follow [6] and also �ne-tune networks that have been pre-
trained on UCF101. As illustrated in the 2nd row of Table 3,
such pre-training gives signi�cant improvement. Moreover,
our 60f �ow networks signi�cantly outperform results of
the 2D CNN temporal stream ( [6], Table 2) evaluated in a
comparable setup, both with and without pre-training.

Varying temporal and spatial resolutions. Given the bene-
�ts of long-term temporal convolutions above, it is interest-
ing to study networks for increasing temporal extents and
varying spatial resolutions systematically. In particular, we
investigate if accuracy saturates for networks with larger
temporal extents, if higher spatial resolution impacts the
performance of long-term temporal convolutions and if LTC
is equally bene�cial for �ow and RGB networks.

To study these questions, we evaluate networks with
increasing temporal extent t 2 f20; 40; 60; 80; 100g and two
spatial resolutions f58�58; 71�71g for both RGB and �ow.
We also investigate combining RGB and �ow by averaging
their class scores. Preliminary experiments with alternative
fusion techniques did not improve over such a late fusion.

Flow networks have our previous architecture as in Fig-
ure 2, except slightly more connections in fc6 for 71�71 res-
olution. For �ow input, we train our networks from scratch.
For RGB input, learning appears to be dif�cult from scratch.
Even if we extend the temporal extent from 60 frames (see
Table 2) to 100 frames, we obtain 68.4% on UCF101 split 1,
which is still below frame-based 2D convolution methods
�ne-tuned from ImageNet pre-training [6]. Although longer
extent boosts the performance signi�cantly, we conclude
that one needs to pre-train RGB network on larger data.

Given the large improvements provided by the pre-
training of C3D RGB network on the large-scale Sports-
1M dataset in [13], we use this 16-frame pre-trained net-
work and extend it to longer temporal convolutions in 2

steps.1 The �rst step is �ne-tuning the 16f C3D network.
A randomly initialized fully connected (fc) layer of size 101
(number of classes) is added at the end of the network. Only
the fc layers are �ne-tuned by freezing the convolutional
layers. We start with a learning rate of 3�10�4 and decrease
it to 3 � 10�5 after 30K iterations for 1K more iterations. In
the second step, we input longer clips to the network and
�ne-tune all the layers. Convolutional layers are applied to
longer video clips of t frames. This results in outputs from
conv5 layer with bt=16c temporal resolution. To re-cycle pre-
trained fc layers of C3D, we max-pool conv5 outputs over
time and pass results to fc6. We use a subset of the fc6
weights for inputs of lower spatial resolution. For this phase,
we run for same number of iterations, but we decrease the
learning rate from 3 � 10�5 to 3 � 10�6. We keep dropout
ratio 0.5 as in the pre-trained network.

Figure 4(a)(b) illustrates results of networks with varying
temporal and spatial resolutions for clips and videos of
UCF101, split 1. We observe signi�cant improvements over
t for LTC networks using �ow (trained from scratch), RGB
(with pre-training on Sports-1M), as well as combination of
both modalities. Networks with higher spatial resolutions
give better results for lower t, however, the gain of increased
spatial resolution is lower for networks with long temporal
extents. Given the large number of parameters in high-
resolution networks, such behavior can be explained by
the over�tting due to the insuf�cient amount of training
data in UCF101. We believe that larger training sets could
lead to further improvements. Moreover, �ow bene�ts more
from the averaging of clip scores than RGB. This could be
an indication of static RGB information over different time
intervals of the video, whereas �ow is dynamic.

Figure 4(c) presents results of LTC for a few action
classes demonstrating a variety of accuracy patterns over
different temporal extents. Out of all 101 classes, no action
has monotonic decrease with the increasing temporal extent,

1. We have also tried to pre-train our �ow-based networks on Sports-
1M but did not obtain signi�cant improvements.
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Fig. 5. The highest improvement of long-term temporal convolutions in
terms of class accuracy is for JavelinThrow. For 16-frame network, it
is mostly confused with the FloorGymnastics class. Here, we visualize
sample videos with 7 frames extracted at every 8 frames. The intuitive
explanation is that both classes start by running for a few seconds
and then the actual action takes place. LTC can capture this interval,
whereas 16-frame networks fail to recognize such long-term activities.

whereas the performance of 25 action classes increased
monotonically. PushUps, YoYo and ShavingBeard are exam-
ples of classes with high, medium and low performance
that all bene�t from larger temporal extents. Shotput is
an example of a class with lower performance for longer
temporal extents. A possible explanation is that samples of
the Shotput class are relatively short and have 90 frames
on average (we pad short clips). Two additional examples
with a signi�cant gain for larger temporal extents are Floor-
Gymnastics and JavelinThrow, see Figure 5 for sample frames
from these two classes. We observe that both actions are
composed of running followed by throwing a javelin or the
actual gymnastics action. Short-term networks, thus, easily
confuse the two actions, while LTC can capture such long
and complex actions. For both classes, we provide snapshots
at every 8th frame. It is clear that one needs to look at more
than 16 frames to distinguish these actions.

Let the performance of class c for temporal extent t be
pc(t). A set of classes with the maximum performance at t is
then M(t) := fc j t 2 arg max

t0
(pc(t0))g. Figure 4(d) plots

jM(t)j with respect to t. The majority of classes (64 out
of 101) obtain maximum performance when trained with
100f networks. To further check if there exists an �ideal
temporal extent� for different actions, Figure 4(e) illustrates
the average performance increase d(t):

d(t) :=
1

jM(t)j
X

M(t)

max
t0

(pc(t0))�min
t0

(pc(t0)) (1)

We can observe that values of d(t) are lower for shorter
extents and larger for longer extents. That means actions
scoring best at short extents score similar at all scales, so we
cannot conclude that certain actions favor certain extents.
Most actions favor long extents as the difference is largest
for 100f. A possible explanation is that making the interval
too long for short actions does not have much impact,
whereas making the interval too short for long actions does
impact the performance, see Figure 5.

Combining networks of varying temporal resolutions.
We evaluate combining different networks with late fusion.
For �nal results on �ow, 58 � 58 spatial resolution and 0.9
dropout are used for both UCF101 and HMDB51 datasets.

UCF101 HMDB51

LTCF low (100f) 82.6 56.7
LTCF low (60f+100f) 83.8 60.5
LTCRGB (100f) 81.8 -
LTCRGB (60f+100f) 81.5 -
LTCF low+RGB 91.0 65.6
LTCF low+RGB+IDT 91.8 67.7

Fig. 6. Results for network combinations. (Left): Combination of LTC
�ow networks with different temporal extents on UCF101-split 1. (Right):
Combination of �ow and RGB networks together with IDT features on
UCF101 and HMDB51-splits 1. For UCF101, �ow is trained from scratch
and RGB is pre-trained on Sports-1M. For HMDB51, �ow is pre-trained
on UCF101 and RGB scores are obtained using C3D feature extractor.

The �ow networks are learned from scratch for UCF101 and
�ne-tuned for HMDB51. For �nal results on UCF101 with
RGB input, we use 71� 71 spatial resolution networks �ne-
tuned from C3D network [13]. However, we do not further
�ne-tune it for HMDB51 because of over�tting, and use
C3D network as a feature extractor in combination with
SVM for obtaining RGB scores. Our implementation of C3D
as a feature extractor and a SVM classi�er achieved 80.2%
and 49.7% average performance on 3 splits of UCF101 and
HMDB51, respectively. We get similar result when �ne-
tuning C3D on 16-frames (80.5% on UCF101).

Figure 6 (left) shows results for combining outputs of
�ow networks with different temporal extents. The combi-
nation is performed by averaging video-level class scores
produced by each network. We observe that combinations
of two networks with different temporal extents provides
signi�cant improvement for �ow. The gains of combining
more than two resolutions appear to be marginal. For �nal
results, we report combining 60f and 100f networks for both
�ow and RGB, with the exception of HMDB51 RGB scores
for which we use a SVM classi�er on 16f feature extractor.
Figure 6 (right) shows results for combining multiscale
networks of different modalities together with the IDT+FV
baseline classi�er [5] on split 1 of both datasets. We observe
complementarity of different networks and IDT+FV where
the best result is obtained by combining all classi�ers.

4.3 Comparison with the-state-of-the-art

In Table 4, we compare to the state-of-the-art on HMDB51
and UCF101 datasets. Note that the numbers do not directly
match with previous tables and �gures, which are reported
only on �rst splits. Different methods are grouped together
according to being hand-crafted, using only RGB or optical
�ow input to CNNs and combining any of these. Trajectory
features perform already well, especially with higher-order
encodings. CNNs on RGB perform very poor if trained from
scratch, but strongly bene�ts from static image pre-training
such as ImageNet. Recently [13] trained space-time �lters
from a large collection of videos; however, their method is
not end-to-end, given that one has to train a SVM on top
of the CNN features. Although we �ne-tune LTCRGB based
on a network learned with a short temporal span and we
reduce the spatial resolution, we are able to improve by
2.2% on UCF101 (80.2% versus 82.4%) by extending the pre-
trained network to 100 frames.

We observe that LTC outperforms 2D convolutions on
both datasets. Moreover, LTCF low outperforms LTCRGB
despite no pre-training. Our results using LTCF low+RGB
with average fusion signi�cantly outperform the Two-
stream average fusion baseline [6] by 4.8% and 6.8%
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Method UCF101 HMDB51

IDT
[5] IDT+FV 85.9 57.2
[32] IDT+MIFS 89.1 65.1

RGB

[12] Slow fusion (from scratch) 41.3 -
[13] C3D (from scratch) 441 -
[12] Slow fusion 65.4 -
[6] Spatial stream 73.0 40.5
[13] C3D (1 net) 82.3 -
[13] C3D (3 nets) 85.2 -

Flow [6] Temporal stream 83.7 54.6

RGB

[6] Two-stream (avg. fusion) 86.9 58.0

+

[6] Two-stream (SVM fusion) 88.0 59.4

Flow

[33] LSTM 88.6 -
[22] TDD 90.3 63.2
[34] Transformations 92.4 62.0
[25] Two-stream (conv. fusion) 92.5 65.4

+IDT
[13] C3D+IDT 90.4 -
[22] TDD+IDT 91.5 65.9
[25] Two-str. (conv. fusion)+IDT 93.5 69.2

LTCRGB 82.4 - 2

LTCF low 85.2 59.0
LTCF low + RGB 91.7 64.8
LTCF low + RGB +IDT 92.7 67.2

TABLE 4
Comparison with the state-of-the-art on UCF101 and HMDB51 (mean

accuracy across 3 splits). 1This number is read from the plot in
�gure 2 [13] and is clip-based, therefore not directly comparable. 2We

use C3D+SVM scores (49.7%) for HMDB51.
on UCF101 and HMDB51 datasets, respectively. More-
over, the SVM fusion baseline in [6] is still signi�-
cantly below LTCF low+RGB . Overall, the combination of
our best networks LTCF low+RGB together with the IDT
method2 provides best results on both UCF101 (92.7%) and
HMDB51 (67.2%) datasets. Notably both of these results
outperform previously published results on these datasets,
except [25] which studies best ways to combine RGB and
�ow streams, hence complementary to our method.

4.4 Analysis of the 3D spatio-temporal �lters
First layer weights. In order to have an intuition of what
an LTC network learns, we visualize the �rst layer space-
time convolutional �lters in the vector-�eld form. Filters
learned on 2-channel optical �ow vectors have dimension
2 � 3 � 3 � 3 in terms of channels, width, height and
time. For each �lter, we take the two channels in each
3 � 3 � 3 volume and visualize them as vectors using x-
and y-components. Figure 7 shows 18 example �lters out of
the 64 from a network learned on UCF101 with 60 frames
�ow input. Since our �lters are spatio-temporal, they have
a third dimension in time. We �nd it convenient to show
them as vectors concatenated one after the other with regard
to the time steps. We denote each time step with different
colors and see that the �lters learned by long-term temporal
convolutions are able to represent complex motions in local
neighborhoods, which enables to incorporate even more
complex patterns in later stages of the network.
High-layer �lter activations. We further investigate �lters
from higher convolutional layers by examining their highest
activations. For a given layer and a chosen �lter, we record
the maximum activation value for all test videos3 for that

2. Our implementation of IDT+FV [5] obtained 84.5% and 57.3% for
UCF101 and HMDB51, respectively.

3. UCF101 videos are obtained by clipping different parts (video) from
a longer video (group). We take one video per group assuming that videos
from the same group would have similar activations and would avoid a
proper analysis. In total, there are 7 test groups per class; therefore there
can be at most 7 videos belonging to a class.

Fig. 7. Spatio-temporal �lters from the �rst layer of the network learned
with 2-channel, Brox optical �ow and 60 frames on UCF101. 18 out of
64 �lters are presented. Each cell in the grid represents two 3 � 3 � 3
�lters for 2-channel �ow input (one for x and one for y). x and y
intensities are converted into vectors in 2D. Third dimension (time) is
denoted by putting vectors one after the other in different colors for better
visualization (t=1 blue, t=2 red, t=3 green). We see that LTC is able to
learn complex motion patterns for video representation. Better viewed in
color.

�lter. We then sort test videos according to the activation
values and select the top 7 videos. This procedure is similar
to [35]. We can expect that a �lter should be activated by
similar action classes especially at the higher network layers.
Given longer video clips available to the LTC networks, we
also expect better grouping of actions from the same class
by �lter activations of LTC. We illustrate action classes for
30 �lters (x-axis) and their top 7 activations (y-axis) for the
100f and 16f networks in Figure 8(a). Each action class is
represented by a unique color. The �lters are sorted by their
purity, i.e. the frequency of the dominating class. We assign
each video the color of its ground truth class label. We see
that the clustering of videos from the same class becomes
more clear in higher layers in the network for both 16f
and 100f networks. However, it is evident that 100f �lters
have more purity than 16f even in L4 and L3. Note that 16f
network is trained with high resolution (112�112) �ow and
100f network with low resolution (58� 58) �ow.

Example frames from top-scoring videos for a set of
selected �lters f are shown in Figure 8(b) for 16f and 100f
�ow networks. We also provide a video on our project web
page [17] to show which videos activate for these �lters. We
can observe that for �lters f maximizing the homogeneity
of returned class labels, the top activations for �lters of the
100f network result in videos with similar action classes.
The grouping of videos by classes is less prominent for
activations of the 16f network. This result indicates that
the LTC networks have higher level of abstraction at cor-
responding convolution layers when compared to networks
with smaller temporal extents.

4.5 Runtime
Training on UCF101 takes 1.9 day for 100f (58x58) networks
and 1.1 day for 16f (112x112) networks with 0.5 dropout.
At test time (without �ow computation), the 100f and 16f
networks run at 4452fps and 1128fps respectively on a
Titan X GPU and 8 CPU cores for parallel data loading.
Although it takes more time (roughly 1.6 times) to compute
one forward pass for 100f, a larger number of frames are
processed per second. C3D [13] reports 313fps for a 16f
network while using a larger number of parameters. Our
proposed solution is therefore computationally ef�cient.
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100f 16f
L5

L4
L3

(a) Top activations of �lters at conv3-conv5 layers. Each row is another
layer, indicated by L3-L5. Left is for 100 frames and right is for 16
frames networks. Colors indicate different action classes. Each color
plot illustrates distribution of classes for seven top activations of
30 selected �lters. Rows are maximum responding test videos and
columns are �lters.

100f 16f
F1 F2 F1 F2
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(b) Frames corresponding to videos with top activations at conv4 and
conv5 layers. Circles indicate the spatial location of the maximum
response. The visualized frames correspond to the maximum response
in time.

Fig. 8. Comparison of 100f and 16f networks by looking at the top
activations of �lters. Better viewed in color.

5 CONCLUSIONS

This paper introduces and evaluates long-term temporal
convolutions (LTC) and shows that they can signi�cantly
improve the performance. Using space-time convolutions
over a large number of video frames, we obtain state of the
art performance on two action recognition datasets UCF101
and HMDB51. We also demonstrate the impact of the optical
�ow quality. In the presence of limited training data, using
�ow improves over RGB and the quality of the �ow impacts
the results signi�cantly.
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