S. Ghosh and R. Y. , Accuracy of Quadratic Versus Linear Interpolation in Noninvasive Electrocardiographic Imaging (ECGI), Annals of Biomedical Engineering, vol.46, issue.9, pp.1187-1201, 2005.
DOI : 10.1007/s10439-005-5537-x

A. Ghodrati, D. Brooks, and R. Macleod, Methods of Solving Reduced Lead Systems for Inverse Electrocardiography, IEEE Transactions on Biomedical Engineering, vol.54, issue.2, pp.339-343, 2007.
DOI : 10.1109/TBME.2006.886865

S. Geneser, R. Kirby, and R. Macleod, Application of Stochastic Finite Element Methods to Study the Sensitivity of ECG Forward Modeling to Organ Conductivity, IEEE Transactions on Biomedical Engineering, vol.55, issue.1, pp.31-40, 2008.
DOI : 10.1109/TBME.2007.900563

A. Van-oosterom and G. Huiskamp, The effect of torso inhomogeneities on body surface potentials quantified using ???tailored??? geometry, Journal of Electrocardiology, vol.22, issue.1, pp.53-72, 1989.
DOI : 10.1016/0022-0736(89)90023-X

F. Weber, D. Keller, S. Bauer, G. Seemann, C. Lorenz et al., Predicting Tissue Conductivity Influences on Body Surface Potentials—An Efficient Approach Based on Principal Component Analysis, IEEE Transactions on Biomedical Engineering, vol.58, issue.2, pp.265-273, 2011.
DOI : 10.1109/TBME.2010.2090151

R. Throne and L. Olson, The effects of errors in assumed conductivities and geometry on numerical solutions to the inverse problem of electrocardiography, IEEE Transactions on Biomedical Engineering, vol.42, issue.12, pp.1192-1200, 1995.
DOI : 10.1109/10.476126

R. Aboulaich, N. Fikal, E. Guarmah, E. Zemzemi, and N. , Sensitivity of the electrocardiography inverse solution to the torso conductivity uncertainties, Functional Imaging and Modeling of the Heart, pp.475-483, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01222381

N. ´. Zemzemi, Etude théorique et numérique de l'activitéactivité´activitéélectrique du coeur: Applications auxélectrocardiogrammesaux´auxélectrocardiogrammes, 2009.

N. Zemzemi, M. Bernabeu, J. Saiz, and B. Rodriguez, Simulating Drug- Induced Effects on the Heart: From Ion Channel to Body Surface Electrocardiogram. Functional Imaging and Modeling of the, Heart, pp.259-266, 2011.

M. Boulakia, S. Cazeau, M. Fernández, J. Gerbeau, and N. Zemzemi, Mathematical Modeling of Electrocardiograms: A Numerical Study, Annals of Biomedical Engineering, vol.98, issue.1???3, pp.1071-1097, 2010.
DOI : 10.1007/s10439-009-9873-0

URL : https://hal.archives-ouvertes.fr/inria-00400490

C. Dapogny, C. Dobrzynski, and P. Frey, Three-dimensional adaptive domain remeshing, implicit domain meshing, and applications to free and moving boundary problems, Journal of Computational Physics, vol.262, issue.0, pp.358-378, 2014.
DOI : 10.1016/j.jcp.2014.01.005

URL : https://hal.archives-ouvertes.fr/hal-01110395

N. Zemzemi, A steklov-poincaré approach to solve the inverse problem in electrocardiography, Computing in Cardiology Conference (CinC), pp.703-706, 2013.

F. Belgacem, E. Fekih, and H. , On Cauchy's problem: I. A variational Steklov???Poincar?? theory, Inverse Problems, vol.21, issue.6, p.1915, 2005.
DOI : 10.1088/0266-5611/21/6/008