Scale-Adaptive Forest Training via an Efficient Feature Sampling Scheme

Loic Peter 1 Olivier Pauly 1 Pierre Chatelain 1, 2 Diana Mateus 1 Nassir Navab 1, 3, 4
2 Lagadic - Visual servoing in robotics, computer vision, and augmented reality
CRISAM - Inria Sophia Antipolis - Méditerranée , Inria Rennes – Bretagne Atlantique , IRISA-D5 - SIGNAUX ET IMAGES NUMÉRIQUES, ROBOTIQUE
4 CAMP - Computer Aided Medical Procedures
Laboratory for Computational Sensing and Robotics
Abstract : In the context of forest-based segmentation of medical data, modeling the visual appearance around a voxel requires the choice of the scale at which contextual information is extracted, which is of crucial im- portance for the final segmentation performance. Building on Haar-like visual features, we introduce a simple yet effective modification of the for- est training which automatically infers the most informative scale at each stage of the procedure. Instead of the standard uniform sampling during node split optimization, our approach draws candidate features sequen- tially in a fine-to-coarse fashion. While being very easy to implement, this alternative is free of additional parameters, has the same computa- tional cost as a standard training and shows consistent improvements on three medical segmentation datasets with very different properties.
Type de document :
Communication dans un congrès
Nassir Navab; Joachim Hornegger; William M. Wells; Alejandro F. Franji. Medical Image Computing and Computer-Assisted Intervention, MICCAI 2015, Oct 2015, Munich, Germany. Springer International Publishing, Medical Image Computing and Computer-Assisted Intervention -- MICCAI 2015, 9349, 2015, Lecture Notes in Computer Sience
Liste complète des métadonnées

Littérature citée [15 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01241978
Contributeur : Eric Marchand <>
Soumis le : vendredi 18 décembre 2015 - 14:44:32
Dernière modification le : mercredi 16 mai 2018 - 11:23:03
Document(s) archivé(s) le : samedi 19 mars 2016 - 10:20:20

Fichier

peter2015miccai.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01241978, version 1

Citation

Loic Peter, Olivier Pauly, Pierre Chatelain, Diana Mateus, Nassir Navab. Scale-Adaptive Forest Training via an Efficient Feature Sampling Scheme. Nassir Navab; Joachim Hornegger; William M. Wells; Alejandro F. Franji. Medical Image Computing and Computer-Assisted Intervention, MICCAI 2015, Oct 2015, Munich, Germany. Springer International Publishing, Medical Image Computing and Computer-Assisted Intervention -- MICCAI 2015, 9349, 2015, Lecture Notes in Computer Sience. 〈hal-01241978〉

Partager

Métriques

Consultations de la notice

525

Téléchargements de fichiers

148