
HAL Id: hal-01242233
https://inria.hal.science/hal-01242233

Submitted on 11 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards Deciding Second-order Unification Problems
Using Regular Tree Automata

Tomer Libal

To cite this version:
Tomer Libal. Towards Deciding Second-order Unification Problems Using Regular Tree Automata.
29th International Workshop on Unification, Jun 2015, Warsaw, Poland. �hal-01242233�

https://inria.hal.science/hal-01242233
https://hal.archives-ouvertes.fr


Towards Deciding Second-order Unification

Problems Using Regular Tree Automata

Tomer Libal1

INRIA
tomer.libal@inria.fr

The second-order unification problem is undecidable [5]. While unification procedures, like
Huet’s pre-unification, terminate with success on unifiable problems, they might not terminate
on non-unifiable ones. There are several decidability results for unification problems with
infinitely-many pre-unifiers, such as for monadic second-order problems [3]. These results are
based on the regular structure of the solutions of these problems and by computing minimal
unifiers.

Beyond the importance of the knowledge that searching for unifiers of decidable problems
always terminates, one can also use this information in order to optimize unification algorithms,
such as in the case for pattern unification [10].

Nevertheless, being able to prove that the unification problem of a certain class of unification
constraints is decidable is far from easy. Some results were obtained for certain syntactic
restrictions on the problems (see Levy [8] for some results and references) or on the unifiers (see
Schmidt-Schauß [11], Schmidt-Schauß and Schulz [12, 13] and Jeż [7] for some results).

Infinitary unification problems, like the ones we are considering, might suggest that known
tools for dealing with the infinite might be useful. One such tool is the regular tree automaton.
The drawback of using regular automata for unification is, of course, their inability to deal
with variables. In this paper we try to overcome this obstacle and describe an on-going work
about using regular tree automata [1] in order to decide more general second-order unification
problems.

The second-order unification problems we will consider are of the form λzn.x0t
.
= λzn.C(x0s)

where C is a non-empty context [2] and x0 does not occur in t or s. We will call such problems
cyclic problems.

An important result in second-order unification was obtained by Ganzinger et al. [4] and
stated that second-order unification is undecidable already when there is only one second-order
variable occurring twice. The unification problem they used for proving the undecidability result
was an instance of the following cyclic problem. Note that we chose to use in the definition
only unary second-order variables but that this restriction should not be essential.

x0(w1, g(y1, a)) = g(y2, x0(w2, a)) (1)

Our decidability result is obtained by posing one further restriction over cyclic problems
which is based on the existence and location of variables other than the cyclic one.

A sufficient condition for the decidability of second-order unification problems was given
by Levy [8]. This condition states that if we can never encounter, when applying Huet’s pre-
unification procedure [6] to a problem, a cyclic equation, then the procedure terminates.

It follows from this result that deciding second-order unification problems depends on the
ability to decide cyclic problems. The rules of Huet’s procedure (PUA) are given in Fig. 1.
Imitation partial bindings and projection partial bindings are defined in [14] and are denoted,
respectively, by PB(f, α) and PB(i, α) where α is a type, Σ a signature f ∈ Σ and i > 0.

1Funded by the ERC Advanced Grant ProofCert.

1



Second-order Unification Using Tree Automata Tomer Libal

S

S ∪ {A .
= A}

(Delete)
S ∪ {λzk.s1

.
= λzk.t1, . . . , λzk.sn

.
= λzk.tn}

S ∪ {λzk.f(sn)
.
= λzk.f(tn)}

(Decomp)

Sσ ∪ {x .
= λzk.t} x 6∈ FV(t) ∧ σ = [λzk.t/x]

S ∪ {λzk.x(zk)
.
= λzk.t}

(Bind)

S ∪ {x .
= u, λzk.x

α(sn)
.
= λzk.f(tm)} u ∈ PB(f, α)

S ∪ {λzk.xα(sn)
.
= λzk.f(tm)}

(Imitate)
1

S ∪ {x .
= u, λzk.x

α(sn)
.
= λzk.a(tm)} i > 0 ≤ k, u = PB(i, α)

S ∪ {λzk.xα(sn)
.
= λzk.a(tm)}

(Project)
2

1. where f ∈ Σ.

2. where either a ∈ Σ or a = zi for some 0 < j ≤ k.

Figure 1: PUA- Huet’s pre-unification procedure

In order to describe the algorithm, we give next several technical definitions. These defini-
tions are taken from our previous work on extending PUA to deal with some non-termination
[9]. The discussions there can help to supplement the description of the definitions given here.

The main technique behind the results of this paper is to analyze the application of PUA

on cyclic equations. A crucial component for obtaining non-termination is the generation of
new cyclic equations in each step. The following definition of progressive contexts describes the
form of these new cyclic equations along the execution of PUA.

Let e be a cyclic equation as above where C = C1 . . . Cm such that for all 0 < i ≤ m,
Ci = fi(r

1
i , . . . , [.], . . . , r

ni
i ) where ni = arity(fi) − 1. Define also, for all m < i, Ci =

fk(y1i−ms, . . . , [.], . . . , y
nk
i−ms) where k = ((i − 1) mod m) + 1 and yji−m for 0 < j ≤ nk are

new variables. We define the progressive context De
i for all 0 ≤ i as De

i = Ci+1 . . . Ci+m.

In the rest of this paper, e will refer to equations of this form and t, s, C,m, k, ni, r
j
i and yji

will refer to the corresponding values in e.

In order to clarify the definitions, we will use the following (non-unifiable) cyclic equation
as an example: x0f(a, a)

.
= f(x0a, f(f(a, a), b)). Note that PUA does not terminate on this

problem.

For the example, t = f(a, a), s = a,C = f([.], f(f(a, a), b)),m = 1, k = 1, ni = 1, and
r1i = f(f(a, a), b) for all 0 < i. The progressive contexts for this example are: D0 = C,D1 =
f([.], y1a), D2 = f([], y2a), etc.

Since the only “don’t know” non-determinism in PUA is due to the choices in the search
between the rules (Imitate) and (Project) [14], we can follow the execution of PUA on the
cyclic equation e using the search tree in Figure 2 and using the following definitions. Given a
cyclic equation e, for all 0 ≤ i, we define I(i), I∗(i) and P(i) inductively as follows:

• P(0) = I(0) = I∗(0) = ∅.

• if 0 < i ≤ m then I∗(i) = I∗(i− 1) ∪ {λzn.yji t
.
= λzn.r

j
i | 1 ≤ j ≤ ni}.

• if m < i then I∗(i) = I∗(i− 1) ∪ {λzn.yji t
.
= λzn.y

j
i−ms | 1 ≤ j ≤ ni}.

• for all i > 0, I(i) = I∗(i) ∪ {λzn.xit
.
= λzn.D

e
i (xis)}.

• for all i > 0, P(i) = I∗(i− 1) ∪ {λzn.t
.
= λzn.D

e
i−1(s)}.

2



Second-order Unification Using Tree Automata Tomer Libal

e

I(1)

. . .P(2)

(Project),(Bind) (Imitate),(Bind),(Decomp)

P(1)

(Project),(Bind) (Imitate),(Bind),(Decomp)

Figure 2: The “don’t-know” non-determinism in PUA

As was noted above, the progressive context is being used in order to describe the form of
the new cyclic equations in the sets P(i) and I(i).

From the fact that PUA is complete for higher-order unification [6] and from the fact that e
is a cyclic problem, it follows that e is unifiable iff there is i > 0 such that P(i) is unifiable [9].

For the example, we have P(1) = {f(a, a)
.
= f(f(a, a), b)}, P(2) = {y1f(a, a)

.
=

f(f(a, a), b), f(a, a)
.
= f(a, y1a)}, P(3) = {y1f(a, a)

.
= f(f(a, a), b), y2f(a, a) = y1a, f(a, a)

.
=

f(a, y2a)}, etc.

Zaionc [15] gave a finite description of complete sets of unifiers for some monadic second-
order problems by proving that a structure based on the matching tree generated by Huet’s
procedure [6] is regular. We would like to pursue a similar approach for our cyclic problems
but unlike the monadic case, where each node in the matching tree contains the same number
of equations, for non-monadic signatures there is no bound on the number of equations in the
nodes.

In the following definition we remove equations from the P sets in order to obtain similar
regularity.

Let P−(i) ⊆ P(i) be the following set of equations.

• if 0 < i ≤ m+ 1 then P−(i) = P(i).

• if m+ 1 < i then P−(i) = I∗(m) ∪ {λzn.t
.
= λzn.D

e
i−1(s)}.

and let P∗(i) = P(i) \P−(i).

The corresponding values for our example are P−(1) = P(1),P−(2) = P(2), P−(3) =
{y1f(a, a)

.
= f(f(a, a), b), f(a, a)

.
= f(a, y2a)} and P∗(3) = {y2f(a, a) = y1a}.

Clearly, P(i) is unifiable only if both P−(i) and P∗(i) are (using the same substitution).
In [9] we proved that P−(i) is unifiable only if there is 0 < j ≤ 3m ≤ i such that P−(j) is
unifiable. I.e. that we can always decide if there is an i > 0 such that P−(i) is unifiable.

In the present paper, we will describe how to decide the unification problem of these cycles
under a very strong restriction. We require that the generated sets P− have at most finitely-
many ground unifiers. This is a very strong requirement since even simple first-order problems
like f(x) = y have infinitely-many ground unifiers.. Nevertheless, we hope that this preliminary
work can be extended to stronger classes. A class subsumed by the above and describable
syntactically is the class of second-order problems containing one variable (second or first-
order) occurring at most twice. At the same time, the class described by the cyclic problems in
Equation 1 and which was shown to be undecidable [4] may generate P− sets having infinitely-
many most general unifiers.

In order to decide if such cyclic equations are unifiable, we will first investigate the equations
in P−(i) and P∗(i) and the relation between them.

3



Second-order Unification Using Tree Automata Tomer Libal

Let us consider P(i) for some i > 0 and let us pick an arbitrary equation λzn1 .y
j
kt

.
=

λzn1 .r
j
k ∈ P−(i) where 0 < k ≤ m and j is some index depending on the arity of the enclosing

function symbol in C. This equation is connected to the following set of equations in P∗(i):
{λzn2 .y

j
k+mt

.
= λzn2 .y

j
ks, λzn3 .y

j
k+2mt

.
= λzn3 .y

j
k+ms, . . . , λznl

.yji−1
m

t
.
= λznl

.yji−1
m −m

s}. The

last occurrence of a variable in this chain is the occurrence of yji−1
m

s in the equation λznl+1
.t
.
=

λznl+1
.De

i−1(s) ∈ P−(i). Call the equations from P−(i) base equations and the ones from
P∗(i) inductive equations. In the following algorithm we will consider first the finitely-many
P(j) problems for 0 < j ≤ 3m and will then consider the problems P(i) such that P−(i)
is isomorphic to P−(j) (this is determined according to the indices i and j, see [9] for more
information). We will call the infinitely-many such problems P(i) the extensions of P(j).

Since in our example m equals 1, there can be only one chain. For P(i) the chain is just
the sequence of equations in P(i).

We will require another restriction for the remaining part of the paper and will consider
only the case when there is one chain and renumber the indices of the y variables with 1, . . . , p.
We believe that both this restriction and our use of unary cyclic variables are not essential to
the results obtained. Since there is only one chain and the chain and the problem P(i) are the
same, we will consider both the problems P(i) as extensions of P(j) and the (single) chains of
P(i) as extensions to the chain in P(j).

In order to define the algorithm, we need first to define how to construct the regular tree
automaton based on three terms. The first term will be of the form λz.u where u can contains
z but no subterm of the form v, the second term will be v and the third term will be w such
that w contains occurrences of z and has no subterm of the form v. Using these three terms,
we define the following tree automaton A = (Q,Qf ,∆) where Q = {qw, qu}, Qf = {qu} and ∆
is defined as follows:

• λz.u1 → qu(λz.u2) where u1 is obtained from u by replacing each occurrence of z with
qw(xl) where l is a new index for each occurrence. u2 is obtained in the same way but we
replace each occurrence of z with xl.

• w1 → qw(w2) where w1 and w2 are obtained from w in the same way u1 and u2 were
obtained from u,

• v → qw(v).

• z → qw(z).

We describe this automaton using aut(u, v, w).
The idea behind this construction is that the language accepted by this automaton is exactly

the one containing all the possible mappings for y1 in the chain according to the arbitrarily-
many constraints in the inductive part of the chain and based on a given unifier σ for the base
part of the chain. Given this automaton, we need just to test if σ(y1) is recognized by it. Note
that the base equations contain only occurrences of the variables y1 and yp and therefore, a
unifier for the base part poses no constraints on the values for the variables y2, . . . , yp−1 in
unifiers for the inductive part and we can freely generate all possible substitutions.

We describe next an algorithm for deciding our cyclic problems.

1. given a cyclic problem e.

2. compute the (finite) complete set of unifiers for some P−(j) where 0 < j ≤ 3m.

3. let σ be such a unifier and for the single chain in P−(j) do the following:

4



Second-order Unification Using Tree Automata Tomer Libal

(a) let λz.u be obtained from σ(yp) by replacing all occurrences of sσ with z..

(b) let v = sσ.

(c) let w be obtained from tσ by replacing all occurrences of sσ in it with z.

(d) fail if σ(y1) is not recognized by aut(u, v, w).

The algorithm tries to find one unifier of a P−(j) which can be extended in order to unify
some extension P∗(i) of P∗(j) for an arbitrary i > 0.

The correctness of the above algorithm is based on the following theorem.

Theorem 1. Given a problem e, 0 < j ≤ 3m, a chain in P(j) over variables y1, . . . , yp and a
unifier σ of P−(j), σ(y1) is recognized by aut(u, v, w) as above iff there is an extension P(i) of
P(j) and a substitution θ, such that θ unifies P(i).

Proof. Proof sketch: the automata for the chain and all its extensions are the same.

• if - by induction on the number of the variables y1, . . . , yq in the extension P(i) of P(j).
For the step we need to prove that the first equation in the chain (which is determined
last since the base of the terms in the language are determined by θ(yq)) is unifiable only
if σ(y1) is recognized by the automaton. Since θ extends σ, we have θ(y1) = σ(y1) and by
assuming that θ(y2) is recognized, the rest follows from the definition of the automaton.

• only if - for this direction, we need to choose the extension P(i) and build the substitution
θ. This is computed by considering the accepting sequence of transitions for σ(y1). The
maximal number of nested transitions determines the number of equations in the chain
while the transitions themselves determines the values θ(y2), . . . , θ(yq−1) in the chain. In
addition, θ(y1) = σ(y1) and θ(yq) = σ(yp).

We will now demonstrate this idea on the example. A unifier σ for P−(2) is [y2 7→ λz.z, y1 7→
λz.f(z, b)]. Using the unifier we get that u = λz.z, v = a and w = f(z, z). Therefore,
aut(u, v, w) = (Q,Qf ,∆) where Q = {qw, qu}, Qf = {qu} and ∆ is defined as follows:

• λz.qw(x)→ qu(λz.x).

• f(qw(x1), qw(x2))→ qw(f(x, y)).

• a→ qw(a).

• z → qw(z).

Clearly σ(y1) cannot be generated by aut(u, v, w) and therefore we have proved, according to
the previous theorem, that there is no possible extension of σ. By doing the same to all unifiers
of P−(1),P−(2) and P−(3), we can prove that the example is not unifiable.

To summarize, we have described a decision algorithm for restricted cyclic second-order
unification problems. Although the class is strongly restricted, it includes the class of second-
order problems containing only one variable (first or second-order) which occurs at most twice.
The main novelty of the method is the use of tree automata in order to decide unification
problems. At the same time, the exact syntactic form of cycles in this class and the possibility
to treat problems with more than one chain are still under investigation.

5



Second-order Unification Using Tree Automata Tomer Libal

References

[1] H Comon, M Dauchet, R Gilleron, F Jacquemard, D Lugiez, S Tison, and M Tommasi. Tree
automata techniques and applications, 1999.

[2] Hubert Comon. Completion of rewrite systems with membership constraints. part i: Deduction
rules. J. Symb. Comput., 25(4):397–419, 1998.

[3] William M. Farmer. A unification algorithm for second-order monadic terms. Annals of Pure and
Applied Logic, 39(2):131–174, 1988.

[4] Harald Ganzinger, Florent Jacquemard, and Margus Veanes. Rigid reachability. In Proceedings
of the 4th Asian Computing Science Conference on Advances in Computing Science (ASIAN 98),
volume 1538 of LNCS, pages 4–21. Springer Verlag, 1998.

[5] Warren D. Goldfarb. The undecidability of the second-order unification problem. Theor. Comput.
Sci., 13:225–230, 1981.

[6] Gérard P. Huet. A unification algorithm for typed lambda-calculus. Theor. Comput. Sci., 1(1):27–
57, 1975.

[7] Artur Jez. Context unification is in PSPACE. In Automata, Languages, and Programming - 41st
International Colloquium, ICALP 2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings,
Part II, pages 244–255, 2014.

[8] Jordi Levy. Decidable and undecidable second-order unification problems. In RTA, pages 47–60,
1998.

[9] Tomer Libal. Regular patterns in second-order unification. 2015. to appear.
http://logic.at/staff/shaolin/papers/holunif.pdf.

[10] Dale Miller. Unification of simply typed lambda-terms as logic programming. In In Eighth Inter-
national Logic Programming Conference, pages 255–269. MIT Press, 1991.

[11] Manfred Schmidt-Schauß. A decision algorithm for stratified context unification. J. Log. Comput.,
12(6):929–953, 2002.

[12] Manfred Schmidt-Schauß and Klaus U. Schulz. Solvability of context equations with two context
variables is decidable. J. Symb. Comput., 33(1):77–122, 2002.

[13] Manfred Schmidt-Schauß and Klaus U. Schulz. Decidability of bounded higher-order unification.
J. Symb. Comput., 40(2):905–954, August 2005.

[14] Wayne Snyder and Jean H. Gallier. Higher-order unification revisited: Complete sets of transfor-
mations. J. Symb. Comput., 8(1/2):101–140, 1989.

[15] Marek Zaionc. The regular expression descriptions of unifier sets in the typed lambda calculus. In
Fundamenta Informaticae X, pages 309–322. North-Holland, 1987.

6


