R. Schubert and M. J. Mulvany, The myogenic response: established facts and attractive hypotheses, Clinical Science, vol.96, issue.4, pp.313-326, 1999.
DOI : 10.1042/cs0960313

E. M. Kohner, V. Patel, and S. M. Rassam, Role of Blood Flow and Impaired Autoregulation in the Pathogenesis of Diabetic Retinopathy, Diabetes, vol.44, issue.6, pp.603-607, 1995.
DOI : 10.2337/diab.44.6.603

S. Rassam, V. Patel, and E. Kohner, The effect of experimental hypertension on retinal vascular autoregulation in humans: a mechanism for the progression of diabetic retinopathy, Experimental Physiology, vol.80, issue.1, pp.53-68, 1995.
DOI : 10.1113/expphysiol.1995.sp003834

J. Grunwald, C. Riva, R. Stone, E. Keates, and B. Petrig, Retinal Autoregulation in Open-angle Glaucoma, Ophthalmology, vol.91, issue.12, pp.1690-1694, 1984.
DOI : 10.1016/S0161-6420(84)34091-X

P. Jeppesen, C. Aalkjaer, and T. Bek, Myogenic response in isolated porcine retinal arterioles, Current Eye Research, vol.79, issue.1, pp.217-222, 2003.
DOI : 10.1076/ceyr.27.4.217.16597

P. Jeppesen, J. Sanye-hajari, and T. Bek, Increased Blood Pressure Induces a Diameter Response of Retinal Arterioles that Increases with Decreasing Arteriolar Diameter, Investigative Opthalmology & Visual Science, vol.48, issue.1, pp.328-331, 2007.
DOI : 10.1167/iovs.06-0360

M. Blum, K. Bachmann, D. Wintzer, T. Riemer, W. Vilser et al., Noninvasive measurement of the bayliss effect in retinal autoregulation, Graefe's archive for clinical and experimental ophthalmology, pp.296-300, 1999.

A. Harris, O. Arend, K. Bohnke, E. Kroepfl, R. Danis et al., Retinal blood flow during dynamic exercise, Graefe's archive for clinical and experimental ophthalmology, pp.440-444, 1996.

M. J. Dumskyj, J. E. Eriksen, C. J. Doré, and E. M. Kohner, Autoregulation in the Human Retinal Circulation: Assessment Using Isometric Exercise, Laser Doppler Velocimetry, and Computer-Assisted Image Analysis, Microvascular Research, vol.51, issue.3, pp.51-378, 1996.
DOI : 10.1006/mvre.1996.0034

F. Robinson, C. E. Riva, J. E. Grunwald, B. L. Petrig, and S. H. Sinclair, Retinal blood flow autoregulation in response to an acute increase in blood pressure, Investigative ophthalmology & visual science, vol.27, issue.5, pp.722-726, 1986.

T. Nagaoka, F. Mori, and A. Yoshida, Retinal artery response to acute systemic blood pressure increase during cold pressor test in humans, Investigative ophthalmology & visual science, vol.43, issue.6, pp.1941-1945, 2002.

J. C. Arciero, B. E. Carlson, and T. W. Secomb, Theoretical model of metabolic blood flow regulation: roles of ATP release by red blood cells and conducted responses, AJP: Heart and Circulatory Physiology, vol.295, issue.4, pp.1562-1571, 2008.
DOI : 10.1152/ajpheart.00261.2008

J. Arciero, A. Harris, B. Siesky, A. Amireskandari, V. Gershuny et al., Theoretical Analysis of Vascular Regulatory Mechanisms Contributing to Retinal Blood Flow Autoregulation, Investigative Opthalmology & Visual Science, vol.54, issue.8, pp.5584-559312, 2013.
DOI : 10.1167/iovs.12-11543

R. L. Hester and L. W. Hammer, Venular-arteriolar communication in the regulation of blood flow, American Journal of Physiology - Regulatory, Integrative and Comparative Physiology, vol.282, issue.5, pp.1280-1285, 2002.
DOI : 10.1152/ajpregu.00744.2001

P. Moireau, C. Bertoglio, N. Xiao, C. A. Figueroa, C. Taylor et al., Sequential identification of boundary support parameters in a fluid-structure vascular model using patient image data, Biomechanics and Modeling in Mechanobiology, vol.27, issue.7, pp.475-496, 2012.
DOI : 10.1007/s10237-012-0418-3

URL : https://hal.archives-ouvertes.fr/hal-00760703

C. Bertoglio, D. Barber, N. Gaddum, I. Valverde, M. Rutten et al., Identification of artery wall stiffness: In vitro validation and in vivo results of a data assimilation procedure applied to a 3D fluid???structure interaction model, Journal of Biomechanics, vol.47, issue.5
DOI : 10.1016/j.jbiomech.2013.12.029

URL : https://hal.archives-ouvertes.fr/hal-00925902

M. Fernández and J. Gerbeau, Algorithms for fluid-structure interaction problems, Cardiovascular Mathematics. Modeling and simulation of the circulatory system, pp.307-346, 2009.
DOI : 10.1007/978-88-470-1152-6_9

Y. Bazilevs, V. Calo, Y. Zhang, and T. J. Hughes, Isogeometric Fluid???structure Interaction Analysis with Applications to Arterial Blood Flow, Computational Mechanics, vol.193, issue.2, pp.4-5, 2006.
DOI : 10.1007/s00466-006-0084-3

P. Crosetto, P. Reymond, S. Deparis, D. Kontaxakis, N. Stergiopulos et al., Fluid???structure interaction simulation of aortic blood flow, Computers & Fluids, vol.43, issue.1, pp.46-57, 2011.
DOI : 10.1016/j.compfluid.2010.11.032

P. Moireau, N. Xiao, M. Astorino, C. A. Figueroa, D. Chapelle et al., External tissue support and fluid???structure simulation in blood flows, Biomechanics and Modeling in Mechanobiology, vol.31, issue.3, pp.1-18, 2012.
DOI : 10.1007/s10237-011-0289-z

URL : https://hal.archives-ouvertes.fr/hal-00701801

M. A. Fernández, M. Landajuela, and M. Vidrascu, Fully decoupled time-marching schemes for incompressible fluid/thin-walled structure interaction, Journal of Computational Physics, vol.297, pp.156-181, 2015.
DOI : 10.1016/j.jcp.2015.05.009

C. A. Figueroa, I. E. Vignon-clementel, K. E. Jansen, T. J. Hughes, and C. A. Taylor, A coupled momentum method for modeling blood flow in three-dimensional deformable arteries, Computer Methods in Applied Mechanics and Engineering, vol.195, issue.41-43, pp.5685-5706, 2006.
DOI : 10.1016/j.cma.2005.11.011

F. Nobile and C. Vergara, An Effective Fluid-Structure Interaction Formulation for Vascular Dynamics by Generalized Robin Conditions, SIAM Journal on Scientific Computing, vol.30, issue.2, pp.731-763, 2008.
DOI : 10.1137/060678439

O. Pironneau, Simplified Fluid-Structure Interactions for Hemodynamics Numerical Simulations of Coupled Problems in Engineering, of Computational Methods in Applied Sciences, pp.57-70, 2014.

C. M. Colciago, S. Deparis, and A. Quarteroni, Comparisons between reduced order models and full 3D models for fluid???structure interaction problems in haemodynamics, Journal of Computational and Applied Mathematics, vol.265, pp.120-138, 2014.
DOI : 10.1016/j.cam.2013.09.049

M. Aletti, J. Gerbeau, and D. Lombardi, A simplified fluid???structure model for arterial flow. Application to retinal hemodynamics, Computer Methods in Applied Mechanics and Engineering, vol.306, p.submitted, 2015.
DOI : 10.1016/j.cma.2016.03.044

URL : https://hal.archives-ouvertes.fr/hal-01296940

T. Y. Wong, R. Klein, B. E. Klein, S. M. Meuer, and L. D. Hubbard, Retinal Vessel Diameters and Their Associations with Age and Blood Pressure, Investigative Opthalmology & Visual Science, vol.44, issue.11, pp.4644-4650, 2003.
DOI : 10.1167/iovs.03-0079

C. J. Pournaras, E. Rungger-brändle, C. E. Riva, S. H. Hardarson, and E. Stefansson, Regulation of retinal blood flow in health and disease, Progress in retinal and eye research, pp.284-330, 2008.
DOI : 10.1016/j.preteyeres.2008.02.002

S. Murtada, M. Kroon, and G. A. , A calcium-driven mechanochemical model for prediction of force generation in smooth muscle, Biomechanics and Modeling in Mechanobiology, vol.287, issue.6, pp.749-762, 2010.
DOI : 10.1007/s10237-010-0211-0

A. M. Laties, Central Retinal Artery Innervation, Archives of Ophthalmology, vol.77, issue.3, pp.405-409, 1967.
DOI : 10.1001/archopht.1967.00980020407021

T. Bek, Regional morphology and pathophysiology of retinal vascular disease, Progress in retinal and eye research, pp.247-259, 2013.
DOI : 10.1016/j.preteyeres.2013.07.002

C. Hai and R. A. Murphy, Cross-bridge phosphorylation and regulation of latch state in smooth muscle, Am J Physiol, vol.2541, pp.99-106, 1988.

J. Yang, J. W. Clark-jr, R. M. Bryan, and C. Robertson, The myogenic response in isolated rat cerebrovascular arteries: smooth muscle cell model, Medical Engineering & Physics, vol.25, issue.8, pp.691-709, 2003.
DOI : 10.1016/S1350-4533(03)00100-0

J. Yang, J. W. Clark-jr, R. M. Bryan, and C. S. Robertson, The myogenic response in isolated rat cerebrovascular arteries: vessel model, Medical Engineering & Physics, vol.25, issue.8, pp.711-717, 2003.
DOI : 10.1016/S1350-4533(03)00101-2

J. Stålhand, A. Klarbring, and G. A. , Smooth muscle contraction: Mechanochemical formulation for homogeneous finite strains, Progress in biophysics and molecular biology, pp.465-481, 2008.
DOI : 10.1016/j.pbiomolbio.2007.07.025

B. Sharifimajd and J. Stålhand, A continuum model for excitation???contraction of smooth muscle under finite deformations, Journal of Theoretical Biology, vol.355, pp.1-9, 2014.
DOI : 10.1016/j.jtbi.2014.03.016

C. E. Riva, J. E. Grunwald, S. H. Sinclair, and B. Petrig, Blood velocity and volumetric flow rate in human retinal vessels, Investigative ophthalmology & visual science, vol.26, issue.8, pp.1124-1132, 1985.

J. Staal, M. Abramoff, M. Niemeijer, M. Viergever, and B. Van-ginneken, Ridge-Based Vessel Segmentation in Color Images of the Retina, IEEE Transactions on Medical Imaging, vol.23, issue.4, pp.501-509, 2004.
DOI : 10.1109/TMI.2004.825627

B. Al-diri, A. Hunter, and D. Steel, An Active Contour Model for Segmenting and Measuring Retinal Vessels, IEEE Transactions on Medical Imaging, vol.28, issue.9, pp.1488-1497, 2009.
DOI : 10.1109/TMI.2009.2017941

F. Calivà, M. Aletti, B. Al-diri, and A. Hunter, A new tool to connect blood vessels in fundus retinal images, 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2015.
DOI : 10.1109/EMBC.2015.7319356

C. Geuzaine and J. Remacle, Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities, International Journal for Numerical Methods in Engineering, vol.69, issue.4, pp.1309-1331, 2009.
DOI : 10.1002/nme.2579

G. Guidoboni, A. Harris, S. Cassani, J. Arciero, B. Siesky et al., Intraocular Pressure, Blood Pressure, and Retinal Blood Flow Autoregulation: A Mathematical Model to Clarify Their Relationship and Clinical Relevance, Investigative Opthalmology & Visual Science, vol.55, issue.7, p.4105, 2014.
DOI : 10.1167/iovs.13-13611

A. Pries, D. Neuhaus, and P. Gaehtgens, Blood viscosity in tube flow: dependence on diameter and hematocrit, American Journal of Physiology, vol.263, pp.1770-1770, 1992.

A. Pries, K. Ley, M. Claassen, and P. Gaehtgens, Red cell distribution at microvascular bifurcations, Microvascular Research, vol.38, issue.1, pp.81-101, 1989.
DOI : 10.1016/0026-2862(89)90018-6